
 

 
ABSTRACT  

In this work, we propose a novel information 
redundancy scheme to protect microprocessors from 
transient faults. Similar to traditional information 
redundancy techniques such as ECC, our approach 
does not require redundant execution in order to 
detect faults. Instead, redundant bits are used to 
encode correct instruction execution. However, our 
mechanism is fundamentally different from traditional 
information redundancy approaches in how the 
redundant bits are generated. Rather than using 
generic information theory, our scheme exploits a 
program locality, named limited variance in data 
values (LVDV) to encode instruction execution. In our 
proposed scheme, a single table tracks the expected 
behavior of instructions and is used to protect 
multiple logic units in the pipeline at the same time. 
The experimental results show that our proposed 
scheme significantly improves the MTTF (mean time 
to failure) of both the issue queue and functional units 
and provides an efficient mechanism for opportunistic 
transient-fault recovery.  

 

I. INTRODUCTION 
Under the current trends of technology scaling, 
transient faults (also known as soft-errors) are 
predicted to grow at least in proportion to the number 
of devices  [13], [14]. To meet reliability targets, 
designers need to consider error protection early in the 
design process at the architecture level, identify 
critical components, and employ techniques, which 
offer the right balance between error protection and 
performance/power overhead. To detect or recover 
from transient faults, computer systems are typically 
equipped with a combination of space redundancy  [1], 
 [5], time redundancy  [8],  [9], and information 
redundancy schemes. Space or time redundancy 
schemes involve redundant execution to protect 

 
 

processor logic and may incur significant energy or 
performance overheads. In comparison, information 
redundancy approaches such as parity or error 
correction coding (ECC) do not require redundant 
execution. Instead, they generate redundant bits using 
the algorithms derived from information theory to 
detect/recover faults on stored or transmitted data. 
However, it is commonly regarded difficult for 
information redundancy schemes to protect 
computational or control logic functions  [6].  

In this paper, we advocate the use of locality-based 
information redundancy approaches to protect 
processor logic, both computational and control logic. 
Historically, program localities have been studied 
extensively and widely used in high performance 
processor design. We observe that program localities 
also enable efficient encoding to protect processor 
logic. In this work, we focus on a novel locality, 
called limited variance in data values (LVDV), and 
design a simple yet effective information redundancy 
scheme for opportunistic transient-fault recovery.  

LVDV is based on the observation that the 
execution results of many instructions vary only 
within a certain, predictable range. In other words, if 
we compute the data variance of a static instruction by 
XORing its last two dynamic execution results, the 
variance is usually small, indicating that only a limited 
fraction of the result bits vary among different 
execution instances. The range of variance can be 
encoded as a signature of instruction execution. If the 
instruction produces a result, for which the variance 
exceeds the encoded one, an error is detected 
speculatively. Then, the pipeline is squashed and the 
offending instructions as well as other squashed 
instructions are re-executed in an attempt to correct 
the error transparently. Our design requires only 
modest hardware resources and opportunistically 
protects multiple processor structures including: 
decode logic, rename tables, the register file, issue 
queue and functional units.  
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Program localities, invariants in particular, are also 
exploited to discover software bugs  [2], [3]. The 
principle of such approaches is to use anomalies in 
program execution, e.g., a deviation from invariant 
computation results, as symptoms of potential 
software bugs. It has been shown that invariant 
violations are especially helpful to pinpoint latent 
code errors promptly  [3]. The LVDV approach 
proposed in this paper detects instruction-level 
invariants to protect hardware logic. Given its 
similarity to software bug detection schemes such as 
DIDUCE  [3], the proposed scheme can also be used as 
an efficient hardware accelerator to reduce the 
performance overhead of software bug detection. 

II. EXPLOITING VALUE LOCALITY FOR RELIABILITY 

A. Limited Variance in Data Values 
The program characteristics termed value locality 

has been studied extensively  [7],  [10]. It generally 
refers to the likelihood that the instructions’ execution 
results exhibit predictable patterns, such as constants, 
strides, etc. In this work, we realize that value 
localities enable efficient encoding of instruction 
execution. For example, if an instruction produces a 
history of a constant value, the constant value can be 
viewed as an encoding of the execution process of that 
particular instruction. Whenever the instruction 
produces a result that is different from the constant 
value, it would indicate abnormal behavior or a 
possible soft error. The problem with traditional value 
locality is that some instructions do not exhibit strong 
patterns. In this case, it offers either no protection or 
generates too many false alarms, which may result in 
excessively high performance overhead.  

In this paper, we propose a new type of value 
locality named limited variance in data values 
(LVDV) for soft error protection. Variance between 
two values is simply defined as the result of XORing 
the two values. LVDV extends the traditional/classical 
value localities and can be exploited for higher 
protection coverage and lower false positive rates. 
LVDV is based on the observation that for many 
instructions, even if they don’t show predictable value 
patterns, the variance among their execution results is 
usually limited. For example, for an instruction with 
outputs: 1, 60, 122, 40, 402, 7, etc, although there 
seems to be no apparent value pattern, an output of 
100000000014 still hints a high possibility of a soft 
error. LVDV also captures the region locality, which 
refers to the fact that memory operations tend to 
access data in a fixed region. For example, a load 

instruction accesses a certain data structure in the heap 
space and it generates the following address sequence 
that has no stride locality: 0x11112654, 0x11117838, 
…, 0x11111200, 0x11119088, …. Then, an out-of-
place address such as 0x01117854 (an address 
accessing the text segment) or 0x71117800 (a stack 
address) or 0x1191c014 (a seemingly out-of-range 
heap address) would indicate a likely error.  

For instructions with traditional value localities, 
LVDV provides a more effective way of encoding 
their characteristics for error protection.  For example, 
for an instruction with a repeating stride pattern, 1, 2, 
3, …100, 1, 2, 3, …,100, etc, the variance of the 
results is constrained to the lower 7 bits and any result 
showing a larger variance would signal a potential 
error. Compared to the traditional stride value locality, 
although any error in the lower 7 bits can not be 
detected by LVDV, the majority of data paths, which 
produce the upper 25 bits of the results, are protected 
(assuming a 32-bit machine). More importantly, 
LVDV eliminates all the false positives that would 
have been signaled using the stride value locality as 
the stride fails to characterize transition values (i.e. the 
value changes from 100 to 1) correctly. Since soft 
errors happen rather infrequently, LVDV presents a 
more desirable tradeoff between protection coverage 
and performance overheads. 

LVDV can be encoded using the following simple 
technique. A 32-bit variance is first divided into N 
equal chunks. If all the bits in a chunk are zeros, a bit 
‘0’ is used to encode the entire chunk. If any of the 
bits in a chunk is ‘1’, a bit ‘1’ is used to encode the 
chunk. In this way, any variance can be encoded in N 
bits instead of 32 bits. The decode process is also 
straightforward. For example, when N equals to 4, the 
encoded value ‘001x’ is simply decoded to a 32-bit 
variance 0x0000FFFF, meaning that the variance 
should be constrained within the lower 16 bits or 
lower two chunks. 

Given the similarity between value locality and 
instruction reuse  [12], it is worth to address the 
difference between our approach and implicit 
redundancy through reuse (IRTR)  [1]. IRTR stores 
both operation inputs and outputs in a reuse buffer 
(RB). In case an instruction hits in the RB, its inputs 
are compared to the inputs stored from the previous 
execution of the same instruction. If the inputs match, 
then the result stored in the RB and the currently 
computed result can be compared for error detection. 
With IRTR, the error detection is un-speculative and 
there are no false alarms if ignoring any possible soft 



 

errors in the RB. However, corruption of the input 
values, either in the RB or in the currently executing 
instruction will cause the input comparison to fail, 
resulting in loss of coverage. Therefore, IRTR is not 
suitable for protecting input-related logic, such as the 
rename table or source operand decode logic. Our 
scheme protects more logic units since only the 
instruction PC is needed to check what the expected 
variance should be. The storage requirement is also 
reduced compared to IRTR, since we do not need to 
keep input values.  

Exploiting value locality for soft error detection is 
similar to symptom-based soft error detection, in 
which mispredictions of high confidence branches are 
used as symptoms of soft errors  [13]. The advantage 
of exploiting value locality is that an error can be 
detected more promptly and simple pipeline squashing 
is likely to fix the error as indicated in our 
experimental results (see Section 4).  

Using a ‘signature’ to protect pipeline control logic 
is proposed in  [6]. In this scheme, the control logic 
signals of an instruction are categorized as either static 
or dynamic. The static signals used in each pipeline 
stage are integrated as an instruction’s signature. 
When an instruction is ready to commit, the history of 
its static control signals are compared with the cached 
signature to detect errors. A signature of dynamic 
control signals, however, can keep changing. As a 
result, component replication (or space redundancy) is 
used in  [6] to protect dynamic control signals.  
Compared to this approach, our scheme uses the 
similar principle of signature checking to detect soft 
errors but our signature of instruction execution is 
generated through program locality and is able to 
protect both static and dynamic signals in control and 
computational logic. 

As addressed in Section 1, the proposed LVDV 
approach is closely related to software approaches for 
dynamically discovering program invariants  [2], [3]. In 
these approaches, the program’s source code or object 
code is instrumented and the results of selected static 
instructions or expressions are monitored in order to 
learn the invariants. Once the invariance information 
is obtained, it can be used as a helpful guide for 
modifying/evolving the program  [2] or detecting 
latent software bugs  [3].    

B. Information Redundancy through LVDV 
Our proposed design to exploit LVDV for soft error 

detection/recovery is shown in Figure 1. The key 
component is the LVDV table, which is a cache 
structure keeping track of variances of various static 

instructions. Each data entry in the table contains an 
encoded variance, a last-value field, and a 3-bit 
saturating confidence counter. 

 

 
Figure 1. The architecture to exploit LVDV for 
soft error detection. 

 
Instructions access the LVDV table with their 

program counter (PC). The variance between the 
instruction’s last two results is obtained by XORing 
the current execution result and the last value from the 
LVDV table. The variance is then compared with the 
encoded variance. If the current variance is larger than 
the encoded one and the confidence counter is equal to 
7 (maximum confidence), a possible soft error is 
detected. If the current variance is larger than the 
encoded one and the confidence is low, it means that 
the LVDV table is still learning the proper range of 
the variance. The current larger variance then replaces 
the stored one and the confidence counter is reset. If 
the current variance is smaller than or equal to the 
encoded one, the confidence counter is incremented 
by one and there is no update to the stored variance. 
As a last step, the last value field is replaced with the 
current execution result. 

When a likely soft error is detected by the LVDV 
table, the processor can fall back to a previous 
checkpoint as proposed in  [13]. Alternatively, it may 
squash the pipeline and resume execution from the 
instruction that resides at the head of the re-order 
buffer (ROB). At the same time, the new variance is 
updated to include the faulting chunk and the 
confidence is reset to zero. In this paper, we adopt 
pipeline squashing for its simplicity and our 
experimental results show that pipeline squashing is 
capable of fixing many errors, which occur in the 
issue queue and functional units. The reason is that an 
error is promptly detected if the faulting instruction or 
one of its immediate dependent instructions has 
limited variance. Pipeline squashing is usually 
sufficient to prevent the error from being committed to 
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the architectural state and the re-execution of the 
faulting instruction will ensure correctness. In the case 
when the detected error is a false positive, pipeline 
squashing incurs performance overheads but does not 
affect correct program execution.  

The LVDV table captures the runtime execution 
behavior of value-producing instructions. Therefore, a 
single LVDV table is capable of detecting any soft 
error, which occurs in the pipeline, as long as the 
altered execution results lead to a higher-than-
expected variance. Besides the computational logic in 
the execution stage, control logic such as the decoder, 
renaming table, issue queue, and operand selection 
logic are protected. In Section V, the protection of the 
issue queue and functional units are examined in 
detail. 

C. Reliability and Complexity Impact of the LVDV 
Table 
 In this section we elaborate on several issues related 

to the implementation of the LVDV table. We address 
the effects of soft errors occurring in the LVDV table 
itself, the impact on cycle time, and the ways to 
improve the variance encoding techniques.  

Like any logic units in the processor, the LVDV 
table is susceptible to soft errors but there is no need 
for any protection for the LVDV table. The reason is 
that soft errors, which corrupt the LVDV table, have 
two possible outcomes: they either induce the LVDV 
table to signal a false-positive error alarm, or result in 
a loss of error coverage. A soft error occurring in a 
confidence counter, for example, may set the counter 
to be confident prematurely. In this case, the LVDV 
could be prompted to signal an error, while in fact it 
should be still learning the proper variance of this 
instruction. On the other hand, a soft error lowering 
the confidence counter will simply delay the learning 
process for that instruction slightly. A soft error in the 
“Variance” or “Last Value” field in an LVDV entry 
can also cause a false-positive error alert- for example 
by lowering the variance to a lower chunk. On the 
other hand, the “Variance” or “Last Value” could be 
corrupted in such a way as to limit the error coverage 
for a particular entry. This could happen if the soft 
error moves the variance to a higher chuck. Similar 
false positive or loss of coverage interactions are 
possible if the error occurs in the “Tag” field as well. 
To prevent accumulation of errors in the LVDV table, 
which result in loss of coverage, the table is simply 
flushed periodically. 

 The design presented in Figure 1 can be tuned with 
the following optimization. Rather than computing the 
variance between execution results directly, we can 
first compute the DELTA (∆) between execution 

results and then compute the variance between two 
DELTAs. The advantage of this optimization is that 
for some value sequences, the range of the variance 
can be significantly reduced when the variance is 
computed on their DELTA sequences. The overhead 
is that it needs extra hardware to compute subtraction 
and requires an extra field in the LVDV table to store 
DELTA along with the last value. However, our 
experiments with this DELTA variance optimization 
do not show sufficient improvement in error detection 
to justify the overhead.  

The LVDV table only needs the instruction PC in 
order to start the access. The instruction PC is 
available as early as the fetch stage, while the only 
requirement on the LVDV table is that the access is 
complete by the end of execution stage. Therefore, the 
LVDV table is not on the critical path of the processor 
and should not impact the cycle time.  

III. PROCESSOR MODEL 
Our simulator models an MIPS R10000 style 

superscalar processor and its configuration is shown in 
Table 1. All the experiments are performed using 
SPEC 2000 benchmarks with the reference inputs. 
Representative simulation points are determined using 
the SimPoint  [11] with the program phase size as 
600M instructions given the requirements set by our 
fault injection methodology. 
Table 1. The configuration of processor model. 

Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 
1-cycle issue stage, 1-cycle register access 
stage, 1-cycle retire stage. Minimum 
branch misprediction penalty = 9 cycles  

Instruction 
Cache 

 

Size=32 kB; Assoc.=2-way; Replacement 
= LRU; Line size=16 instructions; Miss 
penalty=10 cycles. 

Data Cache 
 

Size=32 kB; Assoc.=2-way; 
Replacement=LRU; Line size = 64 bytes; 
Miss penalty=10 cycles. 

Unified L2 
Cache 

(shared) 

Size=1024kB; Assoc.=8-way; 
Replacement = LRU; Line size=128 bytes; 
Miss penalty=220 cycles. 

Br Predictor 64k-entry G-share; 32k-entry BTB 
Superscalar 

Core 
Reorder buffer: 128 entries; 
Dispatch/issue/retire bandwidth: 4-way 
superscalar; 4 fully-symmetric function 
units; Data cache ports: 4. Issue queue: 64 
entries. LSQ: 64 entries. Rename map 
table checkpoints: 32 

Execution 
Latencies 

Address generation: 1 cycle; Memory 
access: 2 cycles (hit in data cache); Integer 
ALU ops = 1 cycle; Complex ops = MIPS 
R10000 latencies 

Mem. 
Disambig. 

Perfect memory disambiguation 



 

The LVDV table that we use has 1024 entries and is 
configured as 4-way set-associative. Each entry in its 
data store takes 39 bits, including a 3-bit confidence 
counter, a 4-bit variance value (i.e., we use 4 chunks 
to encode the 32-bit variance), and a 32-bit field for 
the last value. Therefore, the size of the LVDV table is 
39k bits. The LVDV table maintains the variances of 
value-producing instructions, except memory 
operations, for which the variances of the addresses 
are encoded. Although load values are not protected 
directly in this way, immediate dependent operations 
offer indirect protection if they exhibit limited 
variances. 

IV. FAULT INJECTION METHODOLOGY 
We evaluate the effectiveness of our mechanism 

using fault injection. Errors are injected into the issue 
queue (IQ) and the functional units (FUs) of our 
microprocessor model. The protection level of each of 
the above structures is evaluated separately by 
injecting at least 10000 errors into the structure under 
study. According to the analysis in  [13], 10000 is a 
large enough number of injections to make our results 
statistically significant. Similar to  [13] we pre-
compute a list of random cycles at which to cause a 
single-event upset. Upon reaching a designated cycle, 
a random bit is flipped into the target structure. After 
injecting a fault, we disable the assertions in the 
timing simulator and let the error propagate. We 
simulate 10000 cycles after the fault is injected based 
on the condition that the control flow is not altered 
and there are no exceptions such as memory access 
violations. At the end of the 10000-cycle trial period, 
the architectural state including the program counter, 
the architected register file, and memory are compared 
against a fault-free model. If a mismatch is detected, 
then we assume that the error will not be masked and 

is critical. On the other hand, if no mismatch is 
detected, then the error must have been either masked 
during normal program execution (i.e., a dead or 
unused bit is flipped) or fixed by some fault protection 
mechanism. During the trial period, if the control flow 
deviates from the fault-free model (i.e., a retiring 
branch jumps to the wrong target) or a memory access 
violation is detected, the error is determined to be 
unmasked and critical. After exiting the trial period, 
the timing simulator restores the architectural state 
from the fault-free model and resumes normal 
simulation until it reaches the next designated fault-
injection cycle. 

When injecting errors into the issue queue (IQ), we 
target the instruction’s operands and opcode. We 
assume 8-bit operands and 16-bit opcode. Errors are 
not injected in any of the additional state bits kept in 
the IQ, such as bits which indicate if an operand is 
ready. A soft-error which marks an operand as not-
ready may cause a deadlock, which is easily detected 
by a watchdog timer and thus we choose to simplify 
our implementation and ignore such errors. Due to 
lack of the circuit implementation details in our timing 
simulator, we cannot properly model error 
propagation within combinational logic networks. 
Therefore, when injecting faults into the functional 
units, we flip a bit in the final computed result. This is 
sufficient for our purposes, because we are only 
interested in determining how many of the errors 
which propagate from the FUs can be removed by the 
proposed mechanisms. 

In order to evaluate the effectiveness of a fault 
protection scheme, we first perform fault injections 
without any error protection (i.e., the base case) and 
record the number of critical faults (i.e., faults that are 
not masked). Then, with a fault-protection mechanism 
enabled, we repeat the fault injection campaign and 
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Figure 2. The fraction of protected bits using LVDV locality. 



 

record the number critical faults again. The difference 
in the number of critical faults shows the effectiveness 
of the fault-protection scheme.  Faults that do not 
corrupt the architectural state in the base case are not 
considered.  

V. EXPERIMENTAL RESULTS 
We first examine the fraction of bits in execution 

results that are protected using our LVDV scheme. 
For a result with variance constrained within the lower 
k bits, the remaining (32-k) bits of the result are 
protected. The ratio of all the protected bits over the 
overall result bits is reported for each benchmark, as 
shown in Figure 2. It can be seen that the proposed 
LVDV protects a significant portion of execution 
results, implying strong LVDV locality for various 
benchmarks. 
 Next, we examine the protection provided by the 
LVDV mechanism. In particular, we look at the 
protection provided to the issue queue (IQ) and the 
functional units (FUs). We also compare our approach 
to three other existing approaches: Instruction 
Redundancy through Reuse (IRTR), Squash on L2-
miss (SL2)  [14] and Branch-miss Squash (BR-
squash). IRTR was detailed in Section 2.A. We 
implement IRTR as a 1024 entry, 2-way table. Each 
entry contains two inputs and one output, for a total of 
96k bits.  The idea of SL2 is to keep critical data away 
from vulnerable structures. SL2 provides partial 
protection to the IQ by squashing instructions when a 
long latency L2-cache miss is being repaired. The 
rational is that instructions in the IQ are unnecessarily 
exposed to soft errors while the pipeline is essentially 
idle. We implemented SL2 by performing a complete 
pipeline squash whenever the instruction at the head 

of the ROB is detected to be an L2 cache miss. The 
pipeline resumes fetching instructions as soon as the 
L2 cache miss has been repaired. BR-squash is a 
modified version of the symptom based protection 
mechanism proposed in  [13]. In the original symptom 
mechanism, when a confident branch is mispredicted, 
the processor is rolled back to a previous checkpoint. 
In this work, we do not implement the checkpointing 
mechanism and simply squash the pipeline when a 
misprediction of a confident branch is resolved. The 
reason is to show how promptly the impact of a soft 
error can manifest in program execution. The branch 
prediction confidence is modeled by a 4k-entry table 
and each entry is a 3-bit saturating counter.  

We first evaluate the performance overheads 
introduced by all these protection mechanisms in 
fault-free environment. In SL2, instruction execution 
can be significantly delayed since squashing on a L2 
miss prevents the processor from performing any 
overlapping computation. For the benchmark mcf, 
many parallel cache misses become sequential due to 
the squashing, which results in relatively large 
performance degradation. In both the LVDV scheme 
and BR-squash, a pipeline squashing could be due to a 
false alarm as both schemes are speculative. IRTR, on 
the other hand, is the only one that does not incur 
performance overhead. The performance results are 
show in Figure 3. As it can be seen from Figure 3, the 
proposed LVDV scheme incurs very limited 
performance overhead, up to 3.3% in the benchmark 
twolf and an average of 0.7% and 0.3% for the integer 
and floating-point benchmarks, respectively. Here, the 
average performance is computed by the harmonic 
mean of the IPCs and then normalized to the baseline 
processor (labeled either ‘HM_INT’ or ‘HM_FP’). 
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Figure 3. Performance overheads of different error protection schemes. 



 

SL2 incurs very high performance penalties for 
memory-intensive benchmarks such as mcf. On 
average, 39% and 9% slowdown is incurred for the 
integer and floating-point benchmarks respectively. 
BR-squash also has relatively high performance 
overheads, up to 17% and an average of 7% for the 
integer benchmarks. The floating-point benchmarks 
have low branch misprediction rates. Therefore, the 
overhead is much lower, about 2% on average. 
Comparing the average false alarm rates, for the 
integer benchmarks, LVDV generates an average of 
0.32 false alarms per 1000 retired instructions while 
BR-squash has 5.63 false alarms per 1000 instruction 
and SL2 squashes the pipeline 8.57 times every 1000 
instruction. The different false positive rates explain 
the performance overheads induced by these schemes. 

The protection provided to the IQ is detailed in 
Figure 4. The proposed LVDV approach performs 
best for the integer benchmarks, removing 33% of 
critical errors, compared to 21% and 20% for SL2 and 
BR-squash respectively. LVDV removes 12% of 

critical errors for the floating-point benchmarks, 
where SL2 and BR-squash remove 23% and 9% 
respectively. Notice that SL2 is very effective in 
protecting those benchmarks, which suffer from a 
large number of cache misses, such as twolf, vpr, mcf 
and equake. Similarly, BR-squash is effective on 
benchmarks with many branch mispredictions, such as 
gap, parser, twolf, vpr, and vortex. However both SL2 
and BR-Squash suffer from severe performance 
degradation on these benchmarks, due to the large 
number of squashes, as reported in Figure 3. Note 
that, for benchmarks with low branch misprediction 
rates, e.g., gzip and gcc, although many injected errors 
result in control flow errors, BR-squashing cannot fix 
them since it is too late to prevent the error from 
propagating to the architectural state when the 
misprediction is detected. Therefore, a checkpoint 
mechanism is necessary for BR-squashing to restore 
the architectural state. In comparison, LVDV detects 
errors much more promptly and simple pipeline 
squash can fix them in time, instead of relying on a 
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Figure 4. Protection of IQ by LVDV, SL2 and BR-squash. 
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Figure 5. Protection of FUs by LVDV and IRTR. 



 

checkpoint mechanism. By removing 33% of critical 
errors on average for integer benchmarks, LVDV 
improves the MTTF (Mean Time to Failure) of the 
issue queue by 49%. Since MTTF is defined as the 
inverse of the error rate, the improvement of MTTF is 
calculated as 1 / (1- %errors removed). Compared to 
SL2 and BR-squash, our approach is more effective 
and also provides strong protections to other critical 
logic units such as functional units as we will examine 
next. 
 In our experiments, IRTR did not protect the IQ 
well. The reason is that our simulator models a MIPS 
R10000 style pipeline and its IQ does not contain the 
operand values. As errors are only injected to the 
opcode and operands (i.e., the renamed register 
numbers), IRTR only protects the opcode. In a 
microarchitecture that models the issue logic using 
reservation stations, IRTR will be more effective. 

In our next experiment, we evaluate the 
effectiveness of LVDV on FUs as compared to IRTR. 
We do not include SL2 and BR-squash as these 
mechanisms did not protect well from the faults 
injected into the FUs. Figure 5 shows that the 
proposed LVDV removes many more critical errors 
than IRTR. It achieves a reduction of critical errors of 
up to 59% for gap and 38% on average for the integer 
and 29% for the floating point benchmarks. 
Considering the MTTF of the FUs, our opportunistic 
error protection provides up to 144% improvement of 
MTTF for gap, and 61% improvement of MTTF on 
average for the integer benchmarks and 40% for the 
floating point benchmarks.  

In general LVDV is more effective on the integer 
than the floating point benchmarks. The reason lies in 
the way floating point numbers are represented. Our 
simple encoding mechanism frequently detects 
variance in the highest chunk of a floating point value 
and essentially offers no/little protection. In this work, 
we have purposely kept our LVDV implementation 
simple. However we are confident that more 
intelligent encoding techniques are possible. One 
possibility is a special variance encoding for floating-
point values by separately encoding the variances in 
their fraction and exponent fields. Such exploration is 
left as future work. 

VI. CONCLUSION AND FUTURE WORK 
We advocate locality-based information redundancy 

for protecting instruction execution. A new locality, 
called limited variance in data values (LVDV), is 
proposed and exploited for opportunistic transient-
fault recovery. In our proposed scheme, a single 

hardware structure which tracks the variance of 
execution results can protect multiple logic units in 
the fetch, decode, issue, and execution stages. The 
experimental results show that the proposed scheme 
improves the MTTF of both the issue queue and the 
functional units, by an average of 41% and 61% 
respectively, and such reliability enhancements are 
achieved at negligible performance overheads.  

The future work is focused on exploring other 
program localities that can be used for information 
redundancy. One example is the locality of memory 
aliasing. If a store and a load always access the same 
address (e.g., due to spilling and refilling), any 
exception will indicate a potential error in program 
execution.  
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