

ABSTRACT

In this work, we propose a novel information
redundancy scheme to protect microprocessors from
transient faults. Similar to traditional information
redundancy techniques such as ECC, our approach
does not require redundant execution in order to
detect faults. Instead, redundant bits are used to
encode correct instruction execution. However, our
mechanism is fundamentally different from traditional
information redundancy approaches in how the
redundant bits are generated. Rather than using
generic information theory, our scheme exploits a
program locality, named limited variance in data
values (LVDV) to encode instruction execution. In our
proposed scheme, a single table tracks the expected
behavior of instructions and is used to protect
multiple logic units in the pipeline at the same time.
The experimental results show that our proposed
scheme significantly improves the MTTF (mean time
to failure) of both the issue queue and functional units
and provides an efficient mechanism for opportunistic
transient-fault recovery.

I. INTRODUCTION
Under the current trends of technology scaling,
transient faults (also known as soft-errors) are
predicted to grow at least in proportion to the number
of devices [13], [14]. To meet reliability targets,
designers need to consider error protection early in the
design process at the architecture level, identify
critical components, and employ techniques, which
offer the right balance between error protection and
performance/power overhead. To detect or recover
from transient faults, computer systems are typically
equipped with a combination of space redundancy [1],
 [5], time redundancy [8], [9], and information
redundancy schemes. Space or time redundancy
schemes involve redundant execution to protect

processor logic and may incur significant energy or
performance overheads. In comparison, information
redundancy approaches such as parity or error
correction coding (ECC) do not require redundant
execution. Instead, they generate redundant bits using
the algorithms derived from information theory to
detect/recover faults on stored or transmitted data.
However, it is commonly regarded difficult for
information redundancy schemes to protect
computational or control logic functions [6].

In this paper, we advocate the use of locality-based
information redundancy approaches to protect
processor logic, both computational and control logic.
Historically, program localities have been studied
extensively and widely used in high performance
processor design. We observe that program localities
also enable efficient encoding to protect processor
logic. In this work, we focus on a novel locality,
called limited variance in data values (LVDV), and
design a simple yet effective information redundancy
scheme for opportunistic transient-fault recovery.

LVDV is based on the observation that the
execution results of many instructions vary only
within a certain, predictable range. In other words, if
we compute the data variance of a static instruction by
XORing its last two dynamic execution results, the
variance is usually small, indicating that only a limited
fraction of the result bits vary among different
execution instances. The range of variance can be
encoded as a signature of instruction execution. If the
instruction produces a result, for which the variance
exceeds the encoded one, an error is detected
speculatively. Then, the pipeline is squashed and the
offending instructions as well as other squashed
instructions are re-executed in an attempt to correct
the error transparently. Our design requires only
modest hardware resources and opportunistically
protects multiple processor structures including:
decode logic, rename tables, the register file, issue
queue and functional units.

Martin Dimitrov Huiyang Zhou
School of Electrical Engineering and Computer Science

University of Central Florida
{dimitrov, zhou}@cs.ucf.edu

Locality-Based Information Redundancy for
Processor Reliability

Program localities, invariants in particular, are also
exploited to discover software bugs [2], [3]. The
principle of such approaches is to use anomalies in
program execution, e.g., a deviation from invariant
computation results, as symptoms of potential
software bugs. It has been shown that invariant
violations are especially helpful to pinpoint latent
code errors promptly [3]. The LVDV approach
proposed in this paper detects instruction-level
invariants to protect hardware logic. Given its
similarity to software bug detection schemes such as
DIDUCE [3], the proposed scheme can also be used as
an efficient hardware accelerator to reduce the
performance overhead of software bug detection.

II. EXPLOITING VALUE LOCALITY FOR RELIABILITY

A. Limited Variance in Data Values
The program characteristics termed value locality

has been studied extensively [7], [10]. It generally
refers to the likelihood that the instructions’ execution
results exhibit predictable patterns, such as constants,
strides, etc. In this work, we realize that value
localities enable efficient encoding of instruction
execution. For example, if an instruction produces a
history of a constant value, the constant value can be
viewed as an encoding of the execution process of that
particular instruction. Whenever the instruction
produces a result that is different from the constant
value, it would indicate abnormal behavior or a
possible soft error. The problem with traditional value
locality is that some instructions do not exhibit strong
patterns. In this case, it offers either no protection or
generates too many false alarms, which may result in
excessively high performance overhead.

In this paper, we propose a new type of value
locality named limited variance in data values
(LVDV) for soft error protection. Variance between
two values is simply defined as the result of XORing
the two values. LVDV extends the traditional/classical
value localities and can be exploited for higher
protection coverage and lower false positive rates.
LVDV is based on the observation that for many
instructions, even if they don’t show predictable value
patterns, the variance among their execution results is
usually limited. For example, for an instruction with
outputs: 1, 60, 122, 40, 402, 7, etc, although there
seems to be no apparent value pattern, an output of
100000000014 still hints a high possibility of a soft
error. LVDV also captures the region locality, which
refers to the fact that memory operations tend to
access data in a fixed region. For example, a load

instruction accesses a certain data structure in the heap
space and it generates the following address sequence
that has no stride locality: 0x11112654, 0x11117838,
…, 0x11111200, 0x11119088, …. Then, an out-of-
place address such as 0x01117854 (an address
accessing the text segment) or 0x71117800 (a stack
address) or 0x1191c014 (a seemingly out-of-range
heap address) would indicate a likely error.

For instructions with traditional value localities,
LVDV provides a more effective way of encoding
their characteristics for error protection. For example,
for an instruction with a repeating stride pattern, 1, 2,
3, …100, 1, 2, 3, …,100, etc, the variance of the
results is constrained to the lower 7 bits and any result
showing a larger variance would signal a potential
error. Compared to the traditional stride value locality,
although any error in the lower 7 bits can not be
detected by LVDV, the majority of data paths, which
produce the upper 25 bits of the results, are protected
(assuming a 32-bit machine). More importantly,
LVDV eliminates all the false positives that would
have been signaled using the stride value locality as
the stride fails to characterize transition values (i.e. the
value changes from 100 to 1) correctly. Since soft
errors happen rather infrequently, LVDV presents a
more desirable tradeoff between protection coverage
and performance overheads.

LVDV can be encoded using the following simple
technique. A 32-bit variance is first divided into N
equal chunks. If all the bits in a chunk are zeros, a bit
‘0’ is used to encode the entire chunk. If any of the
bits in a chunk is ‘1’, a bit ‘1’ is used to encode the
chunk. In this way, any variance can be encoded in N
bits instead of 32 bits. The decode process is also
straightforward. For example, when N equals to 4, the
encoded value ‘001x’ is simply decoded to a 32-bit
variance 0x0000FFFF, meaning that the variance
should be constrained within the lower 16 bits or
lower two chunks.

Given the similarity between value locality and
instruction reuse [12], it is worth to address the
difference between our approach and implicit
redundancy through reuse (IRTR) [1]. IRTR stores
both operation inputs and outputs in a reuse buffer
(RB). In case an instruction hits in the RB, its inputs
are compared to the inputs stored from the previous
execution of the same instruction. If the inputs match,
then the result stored in the RB and the currently
computed result can be compared for error detection.
With IRTR, the error detection is un-speculative and
there are no false alarms if ignoring any possible soft

errors in the RB. However, corruption of the input
values, either in the RB or in the currently executing
instruction will cause the input comparison to fail,
resulting in loss of coverage. Therefore, IRTR is not
suitable for protecting input-related logic, such as the
rename table or source operand decode logic. Our
scheme protects more logic units since only the
instruction PC is needed to check what the expected
variance should be. The storage requirement is also
reduced compared to IRTR, since we do not need to
keep input values.

Exploiting value locality for soft error detection is
similar to symptom-based soft error detection, in
which mispredictions of high confidence branches are
used as symptoms of soft errors [13]. The advantage
of exploiting value locality is that an error can be
detected more promptly and simple pipeline squashing
is likely to fix the error as indicated in our
experimental results (see Section 4).

Using a ‘signature’ to protect pipeline control logic
is proposed in [6]. In this scheme, the control logic
signals of an instruction are categorized as either static
or dynamic. The static signals used in each pipeline
stage are integrated as an instruction’s signature.
When an instruction is ready to commit, the history of
its static control signals are compared with the cached
signature to detect errors. A signature of dynamic
control signals, however, can keep changing. As a
result, component replication (or space redundancy) is
used in [6] to protect dynamic control signals.
Compared to this approach, our scheme uses the
similar principle of signature checking to detect soft
errors but our signature of instruction execution is
generated through program locality and is able to
protect both static and dynamic signals in control and
computational logic.

As addressed in Section 1, the proposed LVDV
approach is closely related to software approaches for
dynamically discovering program invariants [2], [3]. In
these approaches, the program’s source code or object
code is instrumented and the results of selected static
instructions or expressions are monitored in order to
learn the invariants. Once the invariance information
is obtained, it can be used as a helpful guide for
modifying/evolving the program [2] or detecting
latent software bugs [3].

B. Information Redundancy through LVDV
Our proposed design to exploit LVDV for soft error

detection/recovery is shown in Figure 1. The key
component is the LVDV table, which is a cache
structure keeping track of variances of various static

instructions. Each data entry in the table contains an
encoded variance, a last-value field, and a 3-bit
saturating confidence counter.

Figure 1. The architecture to exploit LVDV for
soft error detection.

Instructions access the LVDV table with their

program counter (PC). The variance between the
instruction’s last two results is obtained by XORing
the current execution result and the last value from the
LVDV table. The variance is then compared with the
encoded variance. If the current variance is larger than
the encoded one and the confidence counter is equal to
7 (maximum confidence), a possible soft error is
detected. If the current variance is larger than the
encoded one and the confidence is low, it means that
the LVDV table is still learning the proper range of
the variance. The current larger variance then replaces
the stored one and the confidence counter is reset. If
the current variance is smaller than or equal to the
encoded one, the confidence counter is incremented
by one and there is no update to the stored variance.
As a last step, the last value field is replaced with the
current execution result.

When a likely soft error is detected by the LVDV
table, the processor can fall back to a previous
checkpoint as proposed in [13]. Alternatively, it may
squash the pipeline and resume execution from the
instruction that resides at the head of the re-order
buffer (ROB). At the same time, the new variance is
updated to include the faulting chunk and the
confidence is reset to zero. In this paper, we adopt
pipeline squashing for its simplicity and our
experimental results show that pipeline squashing is
capable of fixing many errors, which occur in the
issue queue and functional units. The reason is that an
error is promptly detected if the faulting instruction or
one of its immediate dependent instructions has
limited variance. Pipeline squashing is usually
sufficient to prevent the error from being committed to

Fetch Dispatch Issue Reg Read Execution Write Back Retire

PC

Error
detected

Tag Confident Encoded Variance Last Value

XOR >

Execution
result

LVDV Table

the architectural state and the re-execution of the
faulting instruction will ensure correctness. In the case
when the detected error is a false positive, pipeline
squashing incurs performance overheads but does not
affect correct program execution.

The LVDV table captures the runtime execution
behavior of value-producing instructions. Therefore, a
single LVDV table is capable of detecting any soft
error, which occurs in the pipeline, as long as the
altered execution results lead to a higher-than-
expected variance. Besides the computational logic in
the execution stage, control logic such as the decoder,
renaming table, issue queue, and operand selection
logic are protected. In Section V, the protection of the
issue queue and functional units are examined in
detail.

C. Reliability and Complexity Impact of the LVDV
Table
 In this section we elaborate on several issues related

to the implementation of the LVDV table. We address
the effects of soft errors occurring in the LVDV table
itself, the impact on cycle time, and the ways to
improve the variance encoding techniques.

Like any logic units in the processor, the LVDV
table is susceptible to soft errors but there is no need
for any protection for the LVDV table. The reason is
that soft errors, which corrupt the LVDV table, have
two possible outcomes: they either induce the LVDV
table to signal a false-positive error alarm, or result in
a loss of error coverage. A soft error occurring in a
confidence counter, for example, may set the counter
to be confident prematurely. In this case, the LVDV
could be prompted to signal an error, while in fact it
should be still learning the proper variance of this
instruction. On the other hand, a soft error lowering
the confidence counter will simply delay the learning
process for that instruction slightly. A soft error in the
“Variance” or “Last Value” field in an LVDV entry
can also cause a false-positive error alert- for example
by lowering the variance to a lower chunk. On the
other hand, the “Variance” or “Last Value” could be
corrupted in such a way as to limit the error coverage
for a particular entry. This could happen if the soft
error moves the variance to a higher chuck. Similar
false positive or loss of coverage interactions are
possible if the error occurs in the “Tag” field as well.
To prevent accumulation of errors in the LVDV table,
which result in loss of coverage, the table is simply
flushed periodically.

 The design presented in Figure 1 can be tuned with
the following optimization. Rather than computing the
variance between execution results directly, we can
first compute the DELTA (∆) between execution

results and then compute the variance between two
DELTAs. The advantage of this optimization is that
for some value sequences, the range of the variance
can be significantly reduced when the variance is
computed on their DELTA sequences. The overhead
is that it needs extra hardware to compute subtraction
and requires an extra field in the LVDV table to store
DELTA along with the last value. However, our
experiments with this DELTA variance optimization
do not show sufficient improvement in error detection
to justify the overhead.

The LVDV table only needs the instruction PC in
order to start the access. The instruction PC is
available as early as the fetch stage, while the only
requirement on the LVDV table is that the access is
complete by the end of execution stage. Therefore, the
LVDV table is not on the critical path of the processor
and should not impact the cycle time.

III. PROCESSOR MODEL
Our simulator models an MIPS R10000 style

superscalar processor and its configuration is shown in
Table 1. All the experiments are performed using
SPEC 2000 benchmarks with the reference inputs.
Representative simulation points are determined using
the SimPoint [11] with the program phase size as
600M instructions given the requirements set by our
fault injection methodology.
Table 1. The configuration of processor model.

Pipeline 3-cycle fetch stage, 3-cycle dispatch stage,
1-cycle issue stage, 1-cycle register access
stage, 1-cycle retire stage. Minimum
branch misprediction penalty = 9 cycles

Instruction
Cache

Size=32 kB; Assoc.=2-way; Replacement
= LRU; Line size=16 instructions; Miss
penalty=10 cycles.

Data Cache

Size=32 kB; Assoc.=2-way;
Replacement=LRU; Line size = 64 bytes;
Miss penalty=10 cycles.

Unified L2
Cache

(shared)

Size=1024kB; Assoc.=8-way;
Replacement = LRU; Line size=128 bytes;
Miss penalty=220 cycles.

Br Predictor 64k-entry G-share; 32k-entry BTB
Superscalar

Core
Reorder buffer: 128 entries;
Dispatch/issue/retire bandwidth: 4-way
superscalar; 4 fully-symmetric function
units; Data cache ports: 4. Issue queue: 64
entries. LSQ: 64 entries. Rename map
table checkpoints: 32

Execution
Latencies

Address generation: 1 cycle; Memory
access: 2 cycles (hit in data cache); Integer
ALU ops = 1 cycle; Complex ops = MIPS
R10000 latencies

Mem.
Disambig.

Perfect memory disambiguation

The LVDV table that we use has 1024 entries and is
configured as 4-way set-associative. Each entry in its
data store takes 39 bits, including a 3-bit confidence
counter, a 4-bit variance value (i.e., we use 4 chunks
to encode the 32-bit variance), and a 32-bit field for
the last value. Therefore, the size of the LVDV table is
39k bits. The LVDV table maintains the variances of
value-producing instructions, except memory
operations, for which the variances of the addresses
are encoded. Although load values are not protected
directly in this way, immediate dependent operations
offer indirect protection if they exhibit limited
variances.

IV. FAULT INJECTION METHODOLOGY
We evaluate the effectiveness of our mechanism

using fault injection. Errors are injected into the issue
queue (IQ) and the functional units (FUs) of our
microprocessor model. The protection level of each of
the above structures is evaluated separately by
injecting at least 10000 errors into the structure under
study. According to the analysis in [13], 10000 is a
large enough number of injections to make our results
statistically significant. Similar to [13] we pre-
compute a list of random cycles at which to cause a
single-event upset. Upon reaching a designated cycle,
a random bit is flipped into the target structure. After
injecting a fault, we disable the assertions in the
timing simulator and let the error propagate. We
simulate 10000 cycles after the fault is injected based
on the condition that the control flow is not altered
and there are no exceptions such as memory access
violations. At the end of the 10000-cycle trial period,
the architectural state including the program counter,
the architected register file, and memory are compared
against a fault-free model. If a mismatch is detected,
then we assume that the error will not be masked and

is critical. On the other hand, if no mismatch is
detected, then the error must have been either masked
during normal program execution (i.e., a dead or
unused bit is flipped) or fixed by some fault protection
mechanism. During the trial period, if the control flow
deviates from the fault-free model (i.e., a retiring
branch jumps to the wrong target) or a memory access
violation is detected, the error is determined to be
unmasked and critical. After exiting the trial period,
the timing simulator restores the architectural state
from the fault-free model and resumes normal
simulation until it reaches the next designated fault-
injection cycle.

When injecting errors into the issue queue (IQ), we
target the instruction’s operands and opcode. We
assume 8-bit operands and 16-bit opcode. Errors are
not injected in any of the additional state bits kept in
the IQ, such as bits which indicate if an operand is
ready. A soft-error which marks an operand as not-
ready may cause a deadlock, which is easily detected
by a watchdog timer and thus we choose to simplify
our implementation and ignore such errors. Due to
lack of the circuit implementation details in our timing
simulator, we cannot properly model error
propagation within combinational logic networks.
Therefore, when injecting faults into the functional
units, we flip a bit in the final computed result. This is
sufficient for our purposes, because we are only
interested in determining how many of the errors
which propagate from the FUs can be removed by the
proposed mechanisms.

In order to evaluate the effectiveness of a fault
protection scheme, we first perform fault injections
without any error protection (i.e., the base case) and
record the number of critical faults (i.e., faults that are
not masked). Then, with a fault-protection mechanism
enabled, we repeat the fault injection campaign and

Percentage of Protected Result Bits

0%

10%

20%

30%

40%

50%

60%

70%

ga
p

bz
ip2 gz

ip
pe

rl
tw

ol
f

vp
r

gc
c

m
cf

pa
rs
er

vo
rte

x

AV
-IN

T

am
m
p

ar
t

eq
ua

ke

m
es

a
sw

im

wu
pw

ise

AV
-F
P

Figure 2. The fraction of protected bits using LVDV locality.

record the number critical faults again. The difference
in the number of critical faults shows the effectiveness
of the fault-protection scheme. Faults that do not
corrupt the architectural state in the base case are not
considered.

V. EXPERIMENTAL RESULTS
We first examine the fraction of bits in execution

results that are protected using our LVDV scheme.
For a result with variance constrained within the lower
k bits, the remaining (32-k) bits of the result are
protected. The ratio of all the protected bits over the
overall result bits is reported for each benchmark, as
shown in Figure 2. It can be seen that the proposed
LVDV protects a significant portion of execution
results, implying strong LVDV locality for various
benchmarks.
 Next, we examine the protection provided by the
LVDV mechanism. In particular, we look at the
protection provided to the issue queue (IQ) and the
functional units (FUs). We also compare our approach
to three other existing approaches: Instruction
Redundancy through Reuse (IRTR), Squash on L2-
miss (SL2) [14] and Branch-miss Squash (BR-
squash). IRTR was detailed in Section 2.A. We
implement IRTR as a 1024 entry, 2-way table. Each
entry contains two inputs and one output, for a total of
96k bits. The idea of SL2 is to keep critical data away
from vulnerable structures. SL2 provides partial
protection to the IQ by squashing instructions when a
long latency L2-cache miss is being repaired. The
rational is that instructions in the IQ are unnecessarily
exposed to soft errors while the pipeline is essentially
idle. We implemented SL2 by performing a complete
pipeline squash whenever the instruction at the head

of the ROB is detected to be an L2 cache miss. The
pipeline resumes fetching instructions as soon as the
L2 cache miss has been repaired. BR-squash is a
modified version of the symptom based protection
mechanism proposed in [13]. In the original symptom
mechanism, when a confident branch is mispredicted,
the processor is rolled back to a previous checkpoint.
In this work, we do not implement the checkpointing
mechanism and simply squash the pipeline when a
misprediction of a confident branch is resolved. The
reason is to show how promptly the impact of a soft
error can manifest in program execution. The branch
prediction confidence is modeled by a 4k-entry table
and each entry is a 3-bit saturating counter.

We first evaluate the performance overheads
introduced by all these protection mechanisms in
fault-free environment. In SL2, instruction execution
can be significantly delayed since squashing on a L2
miss prevents the processor from performing any
overlapping computation. For the benchmark mcf,
many parallel cache misses become sequential due to
the squashing, which results in relatively large
performance degradation. In both the LVDV scheme
and BR-squash, a pipeline squashing could be due to a
false alarm as both schemes are speculative. IRTR, on
the other hand, is the only one that does not incur
performance overhead. The performance results are
show in Figure 3. As it can be seen from Figure 3, the
proposed LVDV scheme incurs very limited
performance overhead, up to 3.3% in the benchmark
twolf and an average of 0.7% and 0.3% for the integer
and floating-point benchmarks, respectively. Here, the
average performance is computed by the harmonic
mean of the IPCs and then normalized to the baseline
processor (labeled either ‘HM_INT’ or ‘HM_FP’).

Performance Overheads

0.3%0.7%1.9%1.1%0.0%0.0%0.0%0.7%1.5%0.6%0.0%0.2%1.0%3.3%2.6%
0.0%0.0%1.0%

0%

10%

20%

30%

40%

50%

60%

ga
p

bz
ip2 gz

ip pe
rl

tw
olf vp

r
gc

c
mcf

pa
rse

r

vo
rte

x

HM-IN
T

am
mp

art

eq
ua

ke
mes

a
sw

im

wup
wise

HM-F
P

LVDV

SL2

BR-squash

Figure 3. Performance overheads of different error protection schemes.

SL2 incurs very high performance penalties for
memory-intensive benchmarks such as mcf. On
average, 39% and 9% slowdown is incurred for the
integer and floating-point benchmarks respectively.
BR-squash also has relatively high performance
overheads, up to 17% and an average of 7% for the
integer benchmarks. The floating-point benchmarks
have low branch misprediction rates. Therefore, the
overhead is much lower, about 2% on average.
Comparing the average false alarm rates, for the
integer benchmarks, LVDV generates an average of
0.32 false alarms per 1000 retired instructions while
BR-squash has 5.63 false alarms per 1000 instruction
and SL2 squashes the pipeline 8.57 times every 1000
instruction. The different false positive rates explain
the performance overheads induced by these schemes.

The protection provided to the IQ is detailed in
Figure 4. The proposed LVDV approach performs
best for the integer benchmarks, removing 33% of
critical errors, compared to 21% and 20% for SL2 and
BR-squash respectively. LVDV removes 12% of

critical errors for the floating-point benchmarks,
where SL2 and BR-squash remove 23% and 9%
respectively. Notice that SL2 is very effective in
protecting those benchmarks, which suffer from a
large number of cache misses, such as twolf, vpr, mcf
and equake. Similarly, BR-squash is effective on
benchmarks with many branch mispredictions, such as
gap, parser, twolf, vpr, and vortex. However both SL2
and BR-Squash suffer from severe performance
degradation on these benchmarks, due to the large
number of squashes, as reported in Figure 3. Note
that, for benchmarks with low branch misprediction
rates, e.g., gzip and gcc, although many injected errors
result in control flow errors, BR-squashing cannot fix
them since it is too late to prevent the error from
propagating to the architectural state when the
misprediction is detected. Therefore, a checkpoint
mechanism is necessary for BR-squashing to restore
the architectural state. In comparison, LVDV detects
errors much more promptly and simple pipeline
squash can fix them in time, instead of relying on a

Pr o te c tio n o f IQ b y LVD V

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gap
bzip2

gzip
perl

tw
olf vpr

gcc
mcf

parse
r

vorte
x

AV-IN
T

amm
p

art

equake
mesa

swim

wupwise
AV-F

P

Perc ent e r ro rs remov ed by LV DV
Perc ent e r ro rs remov ed by SL2
Perc ent e r ro rs remov ed by BR-s quas h

Figure 4. Protection of IQ by LVDV, SL2 and BR-squash.

Protection of the Functional Units

0%

10%

20%

30%

40%

50%

60%

70%

ga
p

bz
ip2 gz

ip
pe

rl
tw

ol
f

vp
r

gc
c

m
cf

pa
rs
er

vo
rte

x

AV
-IN

T

am
m
p

ar
t

eq
ua

ke

m
es

a
sw

im

wu
pw

ise

AV
-F
P

Percent errors removed by LVDV

Percent Errors removed by IRTR

Figure 5. Protection of FUs by LVDV and IRTR.

checkpoint mechanism. By removing 33% of critical
errors on average for integer benchmarks, LVDV
improves the MTTF (Mean Time to Failure) of the
issue queue by 49%. Since MTTF is defined as the
inverse of the error rate, the improvement of MTTF is
calculated as 1 / (1- %errors removed). Compared to
SL2 and BR-squash, our approach is more effective
and also provides strong protections to other critical
logic units such as functional units as we will examine
next.
 In our experiments, IRTR did not protect the IQ
well. The reason is that our simulator models a MIPS
R10000 style pipeline and its IQ does not contain the
operand values. As errors are only injected to the
opcode and operands (i.e., the renamed register
numbers), IRTR only protects the opcode. In a
microarchitecture that models the issue logic using
reservation stations, IRTR will be more effective.

In our next experiment, we evaluate the
effectiveness of LVDV on FUs as compared to IRTR.
We do not include SL2 and BR-squash as these
mechanisms did not protect well from the faults
injected into the FUs. Figure 5 shows that the
proposed LVDV removes many more critical errors
than IRTR. It achieves a reduction of critical errors of
up to 59% for gap and 38% on average for the integer
and 29% for the floating point benchmarks.
Considering the MTTF of the FUs, our opportunistic
error protection provides up to 144% improvement of
MTTF for gap, and 61% improvement of MTTF on
average for the integer benchmarks and 40% for the
floating point benchmarks.

In general LVDV is more effective on the integer
than the floating point benchmarks. The reason lies in
the way floating point numbers are represented. Our
simple encoding mechanism frequently detects
variance in the highest chunk of a floating point value
and essentially offers no/little protection. In this work,
we have purposely kept our LVDV implementation
simple. However we are confident that more
intelligent encoding techniques are possible. One
possibility is a special variance encoding for floating-
point values by separately encoding the variances in
their fraction and exponent fields. Such exploration is
left as future work.

VI. CONCLUSION AND FUTURE WORK
We advocate locality-based information redundancy

for protecting instruction execution. A new locality,
called limited variance in data values (LVDV), is
proposed and exploited for opportunistic transient-
fault recovery. In our proposed scheme, a single

hardware structure which tracks the variance of
execution results can protect multiple logic units in
the fetch, decode, issue, and execution stages. The
experimental results show that the proposed scheme
improves the MTTF of both the issue queue and the
functional units, by an average of 41% and 61%
respectively, and such reliability enhancements are
achieved at negligible performance overheads.

The future work is focused on exploring other
program localities that can be used for information
redundancy. One example is the locality of memory
aliasing. If a store and a load always access the same
address (e.g., due to spilling and refilling), any
exception will indicate a potential error in program
execution.

VII. ACKNOWLEDGEMENT
 We would like to thank the anonymous reviewers
for their insightful feedback on our work.

REFERENCES

[1] T. Austin, “DIVA: a reliable substrate for deep

submicron microarchitecture design”, MICRO-32, 1999
[2] M. Ernst, J. Cockrell, W. Griswold and D. Notkin,

“Dynamically discovering likely program invariants to
support program evolution”, IEEE TSE, Vol.27, No. 2,
February 2001

[3] S. Hangal and M. Lam, “Tracking down software bugs
using automatic anomaly detection”, ICSE, 2002.

[4] M. Gomaa and T. Vijaykumar, “Opportunistic
Transient-Fault Detection”, in ISCA-32, 2005.

[5] M. Gomma et. al., “Transient-fault recovery for chip
multiprocessors”, ISCA-30, 2003.

[6] S. Kim and A. Somani, “On-line integrity monitoring of
microprocessor control logic”, ICCD, 2001.

[7] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value
locality and load value prediction,” ASPLOS-7, 1996.

[8] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed
design and evaluation of redundant multithreading
alternatives”, ISCA-29, 2002.

[9] E. Rotenberg, “AR-SMT: a microarchitectural approach
to fault tolerance in microprocessors”, FTCS-29, 1999.

[10] Y. Sazeides and J. E. Smith, “The predictability of data
values,” MICRO-30, 1997.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program
behavior”, ASPLOS-X, 2002

[12] A. Sodani and G. Sohi, “Dynamic instruction reuse”,
ISCA-24, 1997.

[13] N. Wang and S. Patel, “ReStore: Symptom Based Soft
Error Detection in Microprocessors”, DSN, 2005.

[14] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt,
“Techniques to reduce the soft error rate of a high-
performance microprocessor”, ISCA-31, 2004.

