
Enabling Efficient Preemption for SIMT
Architectures with Lightweight Context Switching

Zhen Lin
Dept of Electrical and Computer Engineering

North Carolina State University
Raleigh, North Carolina

zlin4@ncsu.edu

Lars Nyland
NVIDIA Corporation

Durham, North Carolina
lnyland@nvidia.com

Huiyang Zhou
Dept of Electrical and Computer Engineering

North Carolina State University
Raleigh, North Carolina

hzhou@ncsu.edu

Abstract—Context switching is a key technique enabling pre-
emption and time-multiplexing for CPUs. However, for single-
instruction multiple-thread (SIMT) processors such as high-end
graphics processing units (GPUs), it is challenging to support
context switching due to the massive number of threads, which
leads to a huge amount of architectural states to be swapped
during context switching. The architectural state of SIMT proces-
sors includes registers, shared memory, SIMT stacks and barrier
states. Recent works present thread-block-level preemption on
SIMT processors to avoid context switching overhead. However,
because the execution time of a thread block (TB) is highly
dependent on the kernel program. The response time of pre-
emption cannot be guaranteed and some TB-level preemption
techniques cannot be applied to all kernel functions. In this paper,
we propose three complementary ways to reduce and compress
the architectural states to achieve lightweight context switching
on SIMT processors. Experiments show that our approaches can
reduce the register context size by 91.5% on average. Based
on lightweight context switching, we enable instruction-level
preemption on SIMT processors with compiler and hardware
co-design. With our proposed schemes, the preemption latency is
reduced by 59.7% on average compared to the naive approach.

I. INTRODUCTION

State-of-the-art SIMT processors or GPUs exploit high
degrees of thread-level parallelism (TLP). As a side effect,
SIMT processors feature high amounts of on-chip resources to
accommodate the contexts of the large numbers of concurrent
threads. For example, in the NVIDIA GK110 (Kepler) archi-
tecture, each stream multiprocessor (SM) has a 256KB register
file and up to 48KB shared memory. Such large contexts
result in long latency for context switching (meaning switching
in a new kernel rather than switching among the running
threads/warps, which SIMT processors support natively). To
reduce the overhead, TB-level context switching techniques,
SM-draining [27] and SM-flushing [22] have been proposed.
The key idea of SM-draining is to wait for all running TBs
on an SM to finish, then to launch the TBs from the new
incoming kernel to the SM. The drawback of this solution is
that the preemption latency can be very high. In the worst
scenario, a TB can have a lifetime as long as the kernel
[12] [15], and the kernel may not be preempted at all. SM-
flushing flushes the running TBs and then launches the new
kernel. The limitation is that only kernels which conform the

idempotent (re-executable) condition [8] can be preempted in
this way. Also, the useful work is wasted when a running
TB is flushed. To overcome such limitations, an integrated
solution [22] is proposed based on the progress of a TB.
If it is close to the end, TB draining is used. If it just
begins execution, TB flushing is employed instead. In other
scenarios, the baseline context switching, i.e., swapping the
thread contexts, is performed.

In this paper, we propose novel ways to reduce and com-
press SIMT processor contexts to enable lightweight con-
text switching. Three approaches are proposed. First, based
on the observation that for some applications, the on-chip
resource is significantly underutilized, we propose in-place
context switching, which means that not all resources need
to be released/spilled to accommodate a new kernel. Second,
liveness analysis is used to exclude dead registers so as to
reduce the register context sizes. In this paper, we observe
the liveness of a vector register is dependent on the thread
divergence. So the traditional liveness analysis algorithm is
augmented for the SIMT architecture. Third, based on register
pattern analysis, register contexts can be further compressed.
The register pattern is explored in both warp-level and TB-
level. These techniques can greatly reduce the context size
that needs to be swapped to/from off-chip memory.

Based on the lightweight context switching, we use compiler
and hardware co-design to enable instruction-level preemption
for SIMT processors. The compiler analyzes the native assem-
bly code to figure out the appropriate points for preemption.
We introduce two new preemption instructions to annotate the
preemption points, meaning that preemption is only enabled at
this point. The preemption instruction checks the interruption
signal and becomes a nop if there is no such a signal. If
there is an interrupt signal, the context switching is handled
by a special hardware pipeline to reduce and compress the
architectural states. At last, the compressed states are saved
to global memory. To restore the kernel, the context will
be loaded from global memory. After decompressing, the
architectural states are restored on the processor.

Besides preemption, our proposed lightweight context
switching can also be used for long running applications on
supercomputers. The reason is that long running applications
on supercomputers are error prone. Therefore, checkpointingSC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 c©2016 IEEE

Interconnect

Global Memory

...

...

Shared
Memory Registers

L1 Cache SIMT Stack

...

Shared
Memory Registers

L1 Cache SIMT Stack

L2 Cache

Global Memory

L2 Cache

...

Fig. 1: Baseline SIMT processor architecture.

mechanisms are commonly used such that the supercomputer
can resume from a prior checkpoint in the case of an error. Our
proposed scheme enables efficient context saving, i.e., efficient
checkpointing of GPU contexts.

We evaluate our context switching enabled preemption
approach with the Rodinia [6] benchmarks. Our experiments
show that the register context size can be reduced by 91.5%
and the preemption latency can be reduced by 59.7% on
average with our proposed lightweight context switching.

In summary, this paper makes the following contributions.
• We propose three techniques, in-place context switching,

register liveness analysis, and register value compression
to achieve lightweight context switching.

• A compiler and hardware co-design is proposed to enable
instruction-level preemption for SIMT processors.

• We show that our proposed approach achieves low pre-
emption latency.

The rest of the paper is organized as follows. Section II
describes the SIMT architecture and motivates the proposed
ideas. Section III presents the techniques for lightweight
context switching. Section IV makes use of lightweight context
switching for efficient instructional-level preemption. Section
V reports the methodology and experiment results. Section VI
discusses the related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

A. Baseline Architecture

Figure 1 shows the baseline SIMT processor or GPU
architecture. A SIMT processor is composed of a number
of streaming multiprocessors (SMs). The SMs share a multi-
banked L2 cache. Typically, one or more L2 banks are
backed up with a memory controller to communicate with off-
chip memory. The SMs and multiple L2 banks communicate
through a crossbar or an interconnect network. The on-chip
memory in each SM includes shared memory, the register file
and L1 D-cache. The basic execution unit in SIMT processors
is a warp. A warp is a collection of threads that run in the

vo id k e r n e l (f l o a t ∗A, f l o a t ∗B ,
i n t ∗Ahead , i n t ∗Bhead , i n t N) {

i n t i n i d , o u t i d ;
w h i l e ((i n i d = a t o m i c i n c (Ahead)) < N) {

f l o a t i n d a t a = A[i n i d] ;
f l o a t o u t d a t a = do work (i n d a t a) ;
o u t i n d e x = a t o m i c i n c (Bhead)
B[o u t i n d e x] = o u t d a t a ;

} }

Fig. 2: Kernel code of persistent threads.

single-instruction multiple-data (SIMD) style. Each warp has
a private space in the register file. A per-warp SIMT stack
keeps track of the program counters (PCs) of the threads
when a divergent branch is encountered [9]. One or more
warps constitute a thread block (TB). All threads in one TB
can synchronize and share data through shared memory. The
threads in the same TB must be executed on the same SM and
one SM can accommodate one or more TBs depending on the
resource requirement of a TB.

When a kernel is launched, the resource requirement of a
TB is provided to the SIMT processor. Based on its avail-
able resource, an SM decides whether one more TB can be
dispatched to it. There are four types of resources that can
limit the number of concurrent TBs on an SM: the register
file, shared memory, the warp scheduler, and the TB slots.
For example, in the NVIDIA GT200 architecture, the register
file size is 128KB, the shared memory size is 48KB, and
there are 48 warp scheduler slots (i.e., up to 48 warps can
run concurrently) and 8 TB slots on each SM. For a kernel
with 8 warps (i.e., 256 threads) in each TB, if each warp takes
3KB register space and each TB takes 8KB shared memory
space, the maximum TB per SM is 5 as limited by the register
file size. A warp/TB will hold the resources during its whole
lifetime. The resources will be released only after it finishes
execution.

B. Prior Preemption Techniques for SIMT Processors

The large context size on SIMT processors leads to high
preemption overhead. To avoid the overhead, Tanasic et al.
[27] proposed the SM-draining technique, in which all current
running TBs need to finish before releasing the SM for the
new kernel. However, the SM-draining technique can cause
long preemption latency. In the experiments from Park et al.
[22], the preemption latency of SM-draining can be as high as
tens of milliseconds. A more extreme case, as shown in Figure
2, is a persistent kernel [12] [15]. In this kernel, TBs only exit
when all the input elements are processed. In other words, TBs
may have the lifetime as long as the overall kernel execution
time. Such kernels cannot be preempted with the SM-draining
technique.

To address the long preemption latency, Park et al. [22] pro-
posed SM-flushing. Taking advantage of idempotent regions,
the execution of the kernel can be stopped immediately and all
intermediate results can be flushed. The kernel can be resumed

by relaunching the flushed TBs. SM-flushing only works on
idempotent kernels, which means each TB can be re-executed
multiple times without affecting the results. This is a strict
limitation. Although Park et al. [22] also proposed relaxed
idempotent conditions, the scheme does not work on certain
cases. For example, for the kernel shown in Figure 2, in each
iteration, the variables Ahead, Bhead and an element in B will
be modified. So it cannot be safely flushed. Moreover, when
flushed, all the progress made on the TB is wasted.

Because the SM-draining latency may be too long and SM-
flushing wastes useful work, Park et al. [22] also used context
switching for preemption. But the naive approach to swap
all the occupied registers and shared memory incurs high
overhead. For example, in the benchmark HS, the context size
for each SM is about 140KB. For GTX480 with 15 SMs and
the global memory bandwidth of 177GB/s, even if the global
memory bandwidth is fully utilized, it would take at least 12
us to store such a large context. As pointed out in prior works
[27], the SMs are completely underutilized during context save
and restore.

III. EFFICIENT CONTEXT SWITCHING

For context switching, in order to properly restore a warp or
TB, its architectural states must be preserved. For a warp, the
architectural state includes its registers and SIMT stack. The
SIMT stack contains thread execution information in the case
of divergent branches and also includes the program counters
(PCs). For a TB, besides the contexts of all its warps, the
architectural state also includes shared memory and barrier
states, keeping the information on which warps have reached a
barrier and are waiting for others. The SIMT stack and barrier
states tend to be very small compared to registers and shared
memory. For the SIMT stack, each entry has three 32-bit
registers, which are the next PC, active mask and reconvergent
PC [9]. Based on the observation by Rhu et al. [24], the
maximum stack depth is limited (11). So the maximum stack
size is relatively small (132B). For barrier states, each barrier
only needs 1 bit for each warp to record whether it has reached
the barrier. Therefore, we focus on the context of registers and
shared memory in this work. Using the BP 1 benchmark as
an example, each thread has 13 registers (4B each) and each
TB has 256 threads and 1128B shared memory. So the context
size is 1664B per warp and 14440B per TB. Our goal is to
make such context sizes much more manageable.

Next, we propose three complementary schemes, (a) in-
place context switching to leverage unused resource, (b) reg-
ister liveness analysis for architectural state reduction, and (c)
value locality detection for architectural state compression.

A. In-Place Context Switching

As different applications exhibit different resource require-
ments, the fixed-size resources on SIMT processors are com-
monly underutilized. In Figure 3, we report the occupancy
of both the register file and shared memory for different
benchmarks. We can see that for most benchmarks, either (or
both) type(s) of the resources is under-utilized. Take BP 1 as

0%

20%

40%

60%

80%

100%

B
P

_1

B
P

_
2

B
FS

_
1

B
FS

_
2

B
T_

1

B
T_

2

C
FD

_3

D
W

T_
1

D
W

T_
2

H
W

_1

H
S_

1

H
G

_1

K
M

_1

LK
_1

LU
D

_
3

SR
_1

P
F_

1

SC
_1

O
cc
u
p
an

cy

register shared memory

Fig. 3: Occupancy of the register file and shared memory.

an example, the register file occupancy is 60.9% and shared
memory occupancy is 13.7% as the occupancy is limited by the
number of threads (or the maximal number of warps). Such
resource under-utilization have also been observed in prior
works [2] [10]. In this paper, we make use of such unused
resource to store the context of the warps/TBs to be switched
out.

On the baseline SIMT architecture, when the warps of a
thread block are dispatched to an SM, their logic registers are
mapped to physical registers. In this paper, an allocation table
is used for managing the register allocation. Each launched TB
reserves one entry in the table to denote the start address and
allocation size of the register file. When preemption occurs, the
old kernel de-allocates the minimum number of TBs to make
enough space for the new kernel. The remained TBs will keep
reserving the register file. Such in-place context switching
reduces the amount of data to be spilled and restored and
enables fast preemption between two kernels. A similar but
separate allocation table is used to manage the shared memory
allocation.

Figure 4 (a) shows the register and shared memory allo-
cation table when kernel K1 is running. K1 has 3 TBs on
one SM, each TB allocates 300 vector registers and 8KB
shared memory. In Figure 4 (b), K1 is preempted by K2,
which launches 2 TBs per SM and each TB occupies 200
vector registers and 10KB shared memory. There are 1024
vector registers and 48KB shared memory in each SM on our
baseline architecture. In this case, the register file deallocates
and spills 2 TBs of K1 to accommodate K2, whereas none of
shared memory needs to be deallocated.

In our implementation, each entry of register/shared mem-
ory table is 5B and the capacity for each of the tables is 16
entries. So the total overhead for the allocation tables is 160B.

A more aggressive option is to reallocate the dead register
for the new kernel as proposed by H. Jeon et al. [13]. But
such mechanism will increase the hardware complexity by
introducing a register renaming table.

B. Architectural State Reduction

We propose to use liveness analysis to reduce architectural
register states. Liveness analysis reports that at any program
point, which registers are defined and may be potentially used
before the next re-define. Only the values in live registers

Kernel Start Reg # Size

K1_TB0 0 300

K1_TB1 300 300

K1_TB2 600 300

Kernel Start Reg # Size

K2_TB0 0 256

K2_TB1 256 256

K1_TB2 600 300

(a) (b)

Kernel Start Addr Size

K1_TB0 0 8KB

K1_TB1 8KB 8KB

K1_TB2 16KB 8KB

Register
allocation

table

Shared
memory

allocation
table

Kernel Start Addr Size

K1_TB0 0 8KB

K1_TB1 8KB 8KB

K1_TB2 16KB 8KB

K2_TB0 24KB 10KB

K2_TB1 34KB 10KB

Fig. 4: Register and shared memory allocation tables before
and after K1 is preempted by K2. (a) Before. (b) After.

A

B C

Preemption
point

Possible thread
location

D

Fig. 5: Possible thread locations when a preemption point is
reached.

need to be saved during context switching. At compile time,
the compiler identifies live vector registers at each instruction
and saves the results into a liveness table. Each entry in the
liveness table corresponds to one static instruction and the
register liveness information is encoded into a bit vector.

One option to provide the liveness bit vector at runtime is to
load the liveness table to the SIMT processor when the kernel
is launched. At any point of execution, liveness registers can
be looked up by the PC of a thread. The problem of such fine-
granularity approach is that to store liveness table may take
huge hardware resource. In our baseline architecture, the maxi-
mum register number is 64, meaning each liveness entry is 8B.
For a program with 1K instructions, liveness table will take
8KB storage on hardware. To avoid the overhead of liveness
table, we choose selective points to enable preemption. In other
words, instead of enabling preemption for each instruction, we
only enable preemption at certain selected program points. At
each preemption point, a preemption instruction is inserted
with encoded liveness bit vector. At runtime, the liveness
bit vector is fetched to the instruction buffer. The details of
selective preemption is discussed in Section IV-A.

In our approach, an entire warp will be stopped and handled
by the preemption handler if any thread has reached the
preemption point. In the case of thread divergence, the liveness
of a whole warp may be different with the threads which

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BP BFS BT CFD DWT HW HS HG KM LK LUD SR PF SC GM

N
o

rm
al

iz
e

d
 R

e
gi

st
e

r
Si

ze

occupancy live live+warp_cp live+warp_cp+tb_cp

Fig. 6: Normalized register context sizes after liveness analysis
and compression.

reached the preemption point. As shown in Figure 5 are the
possible thread locations when a preemption point is reached.
For example, one warp has two threads, T1 and T2. Assume
that T1 and T2 diverge at basic block A, T1 executes path
B and T2 executes path C. When T2 reaches the preemption
point at path C, T1 can be either at the divergence point (end
of A) or the reconvergence point (start of D). In this case,
the live vector register for the preemption point should be the
union of all these 3 possible thread locations.

In our compiler, we firstly perform the traditional live-
ness analysis without considering thread divergence. Then the
divergence and reconvergence points are analyzed based on
immediate post-dominator [9]. At last, the compiler calculates
the union of liveness at the original preemption point, the
divergence point and recovergence point. Because the thread
divergence can only be determined at runtime, both liveness
vector versions are saved. When handling the preemption of
a warp, the SIMT stack will be checked to determine whether
there is a divergence. If there is, the union version is used.
Otherwise, the original version is used.

To evaluate the effectiveness of liveness analysis, we count
the number of live registers in the Rodinia benchmarks at
runtime. When a warp reaches a preemption point, the total
liveness number is accumulated. Then, the sum is divided
by the number of warps. The result is shown in Figure 6.
Take BP 1 as an example, only 39.6% of occupied registers
are live ones. Therefore, the average per-warp context size
is reduced from 1664B to 656B. On average across all the
kernels, 34.3% of the register context size can be reduced
with liveness analysis.

C. Architectural State Compression

Register state compression is based on the observation
that many register values in GPU programs conform certain
patterns. S. Collange et al. [7] reports that uniform and strided
are common patterns for GPU vector registers. A uniform
register is defined as all scalar registers in a vector register
have the save value, i.e. Vi = a. A strided register is defined
as the scalar registers in a vector register conform arithmetic
progression, i.e. Vi = ai+b. In this paper, we show that the TB
dimension is an important factor for analyzing GPU register

f o r (i = 1 ; i <= LOG H; i ++) {
i n t pow = powf (2 , i) ;
i f (t y % pow == 0) {

f l o a t tmp = s w e i g h t [t y +pow / 2] [t x] ;
s w e i g h t [t y] [t x] += tmp ;

}
s y n c t h r e a d s () ;

}

Fig. 7: A kernel code snippet of BP 1.

0%

20%

40%

60%

80%

100%

R
e

gi
st

e
r

P
at

te
rn

 P
e

rc
e

n
ta

ge

uniform strided random

Fig. 8: Warp-Level register value locality analysis.

pattern. Also, we explore TB-level register compression to
further exploit inter-warp data locality.
Warp-Level Compression

Warp-level register compression is used to leverage intra-
warp value locality to compress vector registers. Take the
kernel code snippet of BP in Figure 7 as an example. BP 1
has 16x16 TB dimension, tx and ty are the thread ids in the
X and Y dimension, respectively. The variable i is uniform
across all threads in a warp, and so are the variable pow and
the base addresses of array s weight. However, for a warp with
32 threads, the values of ty for warp 0 is “0, 0, ..., 0, 1, 1, ...,
1”. The uniform pattern occurs for 16 scalar registers instead
of the whole vector register. A similar situation happens for
tx, which has the values “0, 1, ..., 15, 0, 1, ..., 15” for a warp.
So, in this paper, the register pattern analysis is performed
at the granularity of a pattern analyzing group (PAG). PAG is
the minimum between the vector register width and the lowest
TB dimension. In our baseline architecture, the vector register
width is 32. So the maximum value of PAG is 32. When one
of the TB dimensions is less than 32, PAG is the lowest TB
dimension.

For vector registers containing uniform values, we can
compress it into 1 scalar register. A strided vector register
can be compressed to 2 scalar ones, i.e. a base and a stride.
We refer to other registers as random ones, such as tmp in
Figure 7.

To analyze the warp-level register value locality, we also
take samples in the Rodinia benchmarks at runtime. For each
sample, we count how many vector registers are uniform,
strided or random in each warp. We only analyze the live
registers. After execution, the average of all the samples is
calculated. Figure 8 shows the result. For BP, 47.4% of its

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BP BT DWT HW HS LUD SR PF

R
e

gi
st

e
r

P
at

te
rn

 P
e

rc
e

n
ta

ge

local uniform global uniform local strided global strided random

Fig. 9: TB-Level register value locality analysis.

live registers are uniform and 52.6% live registers are strided.
Therefore, the per-warp context size can be further reduced to
64B on average. From Figure 6, we can see that on average
91.5% register context size can be reduced with combined
liveness analysis and warp-level register compression.

In our benchmark, BP, HS and LUD has two-dimensional
TBs and the PAG is different with the vector register width.
In Figure 8 we use two approaches for warp-level register
pattern analysis. The default approach is to use PAG as the
analysis width whereas the BP vec, HS vec and LUD vec use
the vector register width, i.e., the warp size, as the analysis
width. From the result we can see that our approach can exploit
uniform and strided registers more effectively.

Figure 10 shows the logic design for register state compres-
sion. The inputs are PAG scalar registers. There are PAG-1
subtractors to calculate the differences between two adjacent
values. The first subtraction result will be converted to a
Boolean signal a, showing whether the difference is 0. The
comparator takes the results of all subtractors and outputs 1
if all the results are equal, 0 otherwise. The output of the
comparator is marked as signal b. This way, the signals a and
b encode the value pattern, 01: uniform, 11: stride, 10/00:
random. This logic is fully pipelined. Because the vector
register width is 32 in our baseline architecture, the maximum
of PAG is 32. In our experiments, the compression latency is
assumed as 2 cycles. Such assumption is also used in a similar
design for register compression [17].

The decompression process is relatively straightforward. For
uniform registers, the value is duplicated PAG times for PAG
registers in one warp. For strided registers, the first register
takes the base value, and every following register adds the
stride value to the former one.
TB-Level Compression

TB-level compression leverages inter-warp locality for vec-
tor registers. For example, in Figure 7, all threads across a TB
has the same value of i when they are in the same dynamic
program point. Such registers are defined as global uniform.
A local uniform register is the registers that have the same
value for PAG threads, e.g. variable ty. Similarly, global strided
registers are the registers that are strided across all threads in
a TB. For example, the index of s weight, which equals to

ty × 16 + tx, is global strided. Local strided registers are the
registers that are strided for PAG threads but are not global
strided, e.g. variable tx.

For local uniform/strided registers, the compression is the
same as the warp-level compression. For a global uniform
register, only one scalar register will be saved for the whole
TB. Only two scalar registers, base and stride, in a TB
will be saved for a global strided register. So, for global
uniform/strided registers, the compression ratio is higher than
warp-level compression.

Figure 11 illustrates the TB-level compression logic. For
each logic register, the physical registers of all warps in a
TB are analyzed by the warp-level compressor. The registers
will be identified as random if any physical vector register is
random. Then the random registers bypass the compressor and
spill to the global memory. If all the registers are not random,
the base and stride are stored in the base or stride vector buffer.
After all warps in the TB finished compressing, the pattern of
base vector and stride vector are analyzed. The registers are
global uniform if the base vector is uniform and the stride
vector is zero-uniform, meaning the scalar registers are all
zeros. The registers are local uniform if the stride vector is
zero-uniform and the stride vector is not uniform. The registers
are global strided if the base vector is strided, the stride vector
is non-zero uniform, and the stride in the base vector is the
same as the stride in the stride vector. Otherwise, the registers
are local strided. In this analysis, the base vector and stride
vector width equal to TB size/PAG.The maximum TB size
is 1024, the minimum PAG we support is 8, and the N in
Figure 11 is 32 in our implementation.

The TB-level register pattern is shown in Figure 9. The
approach we use to analysis TB-level register pattern is similar
to warp-level register patterns except that TB-level is only
enabled when the preemption point is a barrier. If the preemp-
tion point is not at a barrier, the liveness of different warps
may be different and the register pattern becomes difficult to
analysis. So only the benchmarks with barriers are shown
in the result. In Figure 6, we apply TB-level compression
at barrier preemption points and warp-level compression for
other preemption points. From the result, we can see that TB-
level compression can further reduce register context size by
36.1% on average. However, because TB-level compression
may be worse on some benchmarks, e.g. PF, and it can
only be applied on barriers, we choose not to use TB-level
compression for our preemption design.

IV. CONTEXT SWITCHING FOR PREEMPTION

A. Selective Preemption

As long execution time of a TB mainly results from loops
with large numbers of iterations, we insert one preemption
point for each loop. For nested loops, only the innermost
loop is considered. For loops with one barrier, the barrier
will be selected as the preemption point. If any other point
is selected as a preemption point, deadlocks may occur when
some warps are waiting at the barrier while other warps reach
the preemption points and wait for preemption. The barrier

V0 V1 V2 . . . VPAG-1

. . .

ComparatorBool

a bStrideBase

PAG
registers

Subtractor Subtractor Subtractor Subtractor

Fig. 10: Warp-level register state compression logic.

Warp-level compressor

B0 B2 B3 ... BN-1 S0 S2 S3 ... SN-1

Base vector Stride vector

Local bases Local strides

Global base/stride Random registers

Vector registers

Fig. 11: TB-level register state compression logic.

with minimum liveness is selected by the compiler if there are
more than one barrier in the loop. For loops without barriers,
the point with minimum liveness is selected. Outside the loops,
we insert one preemption point every K instructions. Similar
to the loops, either the minimum liveness point or the barrier
is selected. If a kernel does not have a loop or a barrier and
the kernel is smaller than K instructions, the execution time
of a TB is small and our approach is essentially the same as
SM-draining [27]. In our experiment, because the execution
time of all benchmarks is dominated by loops, the value of K
does not have a great impact on the evaluation results when
it varies from 100 to 1000.

We introduce two preemption point (pp) instructions, bar.pp
and pp, to annotate the preemption points. After analyzing the
preemption points, one preemption instruction is inserted to
one point. For preemption point at barriers, bar.pp instruction
is inserted to replace the original barrier instruction. bar.pp
is a barrier instruction when the preemption signal is off.
For the other preemption points, pp instructions are inserted
into the program. The pp instruction becomes a nop when
the preemption signal is off. When a preemption signal is on,
warps keep running until a preemption point is reached. Then
the warp stops and waits for preemption.

Both preemption instructions have one operand to provide
the liveness bit vector for the program points at which the
instructions are inserted. To follow the Fermi ISA format
[1] [19], 10 bits are reserved as opcode. The remaining 54
bits are used as liveness bit vector. Because the architecture

TBC[0]

rf_ptr

reg_pat[N] reg_val[N]

Context control block

TBC[1] TBC[M-1]...

smem

TB context

sstack[N]

smem_ptr sstack_ptr

Fig. 12: Kernel context format.

may support more than 54 registers, the highest bit is used
to denote there are live registers that have higher register
number than 53. All higher registers will be saved if such
bit is set. In out benchmarks, we observe that a 53-bit vector
is typically enough for representing the liveness. To provide
the liveness for thread divergence, a dummy instruction is
introduced and it follows the pp instruction. It also encodes 54
bits for the liveness bit vector. At runtime, if thread divergence
is detected at the preemption point, the liveness which is
encoded in the dummy instruction is used for preemption. The
bar.pp instruction doesn’t need to be followed by the dummy
instruction because the barrier ensures that there should be no
divergence [20].

B. Context Format

Due to the in-place context switching as we discussed in
Section III-A, register file and shared memory can either be
reserved on SM or dumped to global memory. In this paper, the
context switching granularity is TB, meaning that the register
file or shared memory of one TB cannot be partly spilled. But
shared memory and that register file of one TB can reside in
different locations, one in SM and the other in global memory,
as illustrated in Figure 4.

As shown in Figure 12 is the context format of a kernel. The
context control block (CCB) contains an array of TB context.
The array size M is the maximum number of TBs that can
be launched on the processor. Each entry contains the global
memory pointers for the context of the register file, shared
memory and SIMT stack. The pointer is NULL if the register
file or shared memory is in-place reserved. Otherwise, a global
memory space is allocated. The shared memory size on global
memory is the same as the occupied size on GPU. The register
file context on global memory has N entries, N equals to the
warp number in one TB. The register context size for each
warp is the maximum liveness number times vector register
width. To maximize the bandwidth usage, the compressed
register values are stored continuously. For decompressing, a
pattern vector is used to store the register pattern and liveness
of a warp. Two bits are used to represent the four states of each
register. The four states are uniform, strided, random and dead.
Because the maximum register number is 64, so the pattern
vector length is 128 bits. In our paper, the whole SIMT stack
will be saved to global memory. Because the SIMT stack

Context saving logic Compressor

Context restoring
logic

Decompressor

Pattern vector

RF/Smem
allocation table

RF/Smem
read port

RF/Smem
write port

Global
 write port

Global
 read port

Liveness bit vector

Fig. 13: Saving and restoring pipelines for preemption.

includes the PC for each thread, the PCs are not separately
saved. The warp is waiting at a barrier if the PC points to a
barrier instruction, so the barrier state of each TB can also be
derived from the SIMT stack.

C. Preemption Pipeline

Because the executions on different SMs are independent,
a new kernel may preempt all SMs or only some of them.
Here, we focus on preemption in one SM. When an SM
receives an interrupt signal for preemption, the active warps
keep executing until a preemption point is reached. Then the
reached warp is set as inactive so that they will not fetch or
issue new instructions. In order to preserve precise states, a
warp must be drained before being switched out. A drained
warp means that it has no issued instructions in the pipeline
and has no pending updates to the register file.

As shown in Figure 13 is the spilling and restoring pipeline
for preemption. For saving the context, the context saving
logic looks up the register and shared memory allocation
table, shown in Figure 4, to calculates how much resources
(i.e. registers and/or shared memory) to be spilled to global
memory in order to accommodate the new kernel. Such
information is converted to how many resident TBs to be
spilled. To save the register of a warp, the liveness vector
is fetched from the instruction buffer. Then the live vector
registers are compressed and pushed into a buffer. Because
the most efficient way to access global memory is by a width
of 128B, the compressed data form data segments with the
size of 128B through the buffer. After the register states of all
warps from one TB are drained, shared memory used by this
TB starts to be spilled to global memory.

To restore a TB, the restoring logic waits for there is enough
on-chip resource to launch the TB. Then the context control
block, shown in Figure 12, is accessed to find the TB context.
To restore the registers of a warp, the pattern vector is firstly
loaded. Then each vector register is decompressed based on
its pattern.

V. EXPERIMENTS

A. Methodology

We implemented our lightweight context switching on
GPGPU-sim [4] v3.2.2. Our baseline architecture models the
NVIDIA GTX480 GPU, and its configuration is shown in
Table I. GPGPU-sim supports both the PTX and GT200

0%

20%

40%

60%

80%

100%

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

o
cc

u
p

liv
e

liv
e+

cp

BP BFS BT CFD DWT HW HS HG KM LK SR PF SC GM

N
o

rm
al

iz
e

d
 S

p
ill

in
g

La
te

n
cy

register shared memory SIMT stack

Fig. 14: Normalized spilling latency.

TABLE I: Baseline architecture configuration

Num. of SMs 15
SIMT core freq. 700MHz
Warp size 32
SIMD width 32

Resources per SM
8 TB slots, 48 warp slots (1536
threads), 128KB register file, 48KB
shared memory

Warp scheduler 2 schedulers, RR policy
L1 D-cache 16KB per SM, 128B block size
L2 cache 128KB per channel, 6 channels

DRAM
924MHz, QDR, 384-bit bus, peak
bandwidth = 0.924*4*384/8 =
177GB/s

instruction set architecture (ISA). PTX is for a virtual machine
with unlimited registers. Therefore, in order to collect the
accurate architectural register information, all benchmarks are
compiled to the GT200 ISA. We evaluate our techniques on
the Rodinia [6] benchmarks. Table II lists all the benchmarks.
Each entry in Table II shows the information of a kernel.
Because some benchmarks (e.g., BP) contain multiple kernels,
(e.g., BP 1 and BP 2), we combine the results of these kernels
in our evaluation.

We model the potential traffic contention due to context
switching at register read/write ports, shared memory read-
/write ports, the interconnect to memory controllers, and
memory read/write bandwidth. For preemption, we found that
the contention is limited as the SM essentially stops execution
and all the ports are used for context swapping. The context
switching requests have lower priority than regular requests
from instruction execution.

To evaluate the preemption performance, we add periodic
preemption signals (every 10000 cycles) when running the
benchmarks. We run each benchmark for at most 200 million
cycles or until it exits. When a preemption signal is received,
one SM stops running and spill its architectural states to global
memory while other SMs keeps running, the same method as
used in prior works [22].

B. Spilling Latency

In Figure 14, we evaluate the normalized latency for spilling
the architectural states to global memory. Three approaches

are compared to show the effectiveness of liveness analysis
and register compression. ‘Occup’ shows the latency to spill
all the occupied architectural states. The spilling latency is
measured from interrupt signal is issued to all the states are
spilled. ‘Live’ is to spill only the live registers and ‘live+cp’ is
to spill the live registers with warp-level register compression.
For ‘live’ and ‘live+cp’, the latency for the spilling registers of
a warp starts from the preemption point is reached. Then the
latencies of all warps are accumulated. For each mechanism,
the normalized latency to spill register file, shared memory
and SIMT stack are evaluated.

If we see the results of ’Occup’, the spilling latency of
most benchmarks (except for HG) is dominated by spilling
the registers. This is because the register file is the largest
on-chip memory that stores the architectural states and it has
relatively high occupancy (Figure 3). For DWT, HW and HG,
shared memory accounts for more than 20% of spilling latency
because the shared occupancy for these benchmarks is high
(Figure 3). For most benchmarks, the SIMT stack spilling
latency is too small to be observed. The SIMT stack latency
appears for BFS because its live register number is very small.

From the results, we can see that liveness analysis and
register compression drastically reduce the latency to dump
the register state. Since shared memory size is not reduced by
these two mechanisms, the latency for saving shared memory
states is similar for different approaches. The geometric mean
for spilling total architectural states is reduced to 17.7%. With
the GPU core frequency of 700Hz, the average spilling latency
is reduced from 9.9us to 1.8us. In the special case of BFS, the
spilling latency is increased with ‘live+cp’ compared to ‘live’.
The reason is that no live registers can be compressed at the
preemption points and our preemption mechanism needs to
store metadata for the compression patterns of the registers.
Therefore, the data to be saved become larger for BFS when
compression is enabled.

C. Preemption Latency

The preemption latency evaluation is shown in Figure 15.
The results are normalized with spilling all occupied archi-
tectural states to global memory. ‘Select’ shows the selective
preemption latency with register liveness analysis and com-
pression. The total preemption latency is measured from the

TABLE II: Benchmark specification

Kernel (Label) Benchmark (Label) Warps/TB TBs/SM Vec reg/Warp Smem/TB
(bytes) Limiting Factor

layerforward (BP 1) backprop (BP) 8 6 13 1128 warp
adjust weight (BP 2) backprop (BP) 8 6 18 40 warp, reg
Kernel1 (BFS 1) bfs (BFS) 16 3 7 44 warp
Kernel2 (BFS 2) bfs (BFS) 16 3 4 36 warp
findRangeK (BT 1) b+tree (BT) 8 6 10 48 warp
findK (BT 2) b+tree (BT) 8 6 9 60 warp
initialize variable (CFD 1) cfd (CFD) 6 8 6 32 warp
compute step factor (CFD 2) cfd (CFD) 6 8 8 48 warp, TB
compute flux (CFD 3) cfd (CFD) 6 4 39 36 reg
copySrcToComponets (DWT 1) dwt2d (DWT) 8 6 4 804 warp
fdwt53Kernel (DWT 2) dwt2d (DWT) 6 5 32 8668 reg, smem
kernel (HW 1) heartwall (HW) 8 4 23 11888 smem
calculate temp (HS 1) hotspot (HS) 8 4 31 3144 reg
histogram1024 (HG 1) hybridsort (HG) 3 3 10 12324 smem
invert mapping (KM 1) kmeans (KM) 8 6 9 32 warp
GICOV kernel (LK 1) leukocyte (LK) 6 8 18 24 warp, TB
lud diagonal (LUD 1) lud (LUD) 1 8 8 2076 TB
lud perimeter (LUD 2) lud (LUD) 1 8 16 3104 TB
lud internal (LUD 3) lud (LUD) 8 6 9 1056 warp
reduce (SR 1) srad v1 (SR) 16 3 14 4132 warp
srad (SR 2) srad v1 (SR) 16 3 16 128 warp
dynproc kernel (PF 1) pathfinder (PF) 8 6 12 2096 warp
kernel compute cost (SC 1) streamcluster (SC) 16 3 8 56 warp

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

o
cc
u
p

se
le
ct

SM
_d
ra
in

BP BFS BT CFD DWT HW HS HG KM LK SR PF SC GM

N
o

rm
al

iz
e

d
 P

re
e

m
p

ti
o

n
 L

at
e

n
cy

spill drain213% 4251% 1925% 4719% 214% 7667% 270%

Fig. 15: Normalized preemption latency.

start of preemption signal to the architectural states are spilled.
The latency labeled as ‘spill’ is the context spilling latency.
With selective preemption, the warps keep executing until
preemption points are reached. So, for some time the spilling
pipeline is idle to wait for warps reaching the preemption
points. Such latency is called draining latency and labeled as
‘drain’. Because SM-draining lets all current TBs to finish, it
doesn’t need to save any architectural states for these TBs.

Compared with the baseline, the preemption latency is
reduced to 40.3% on average (geometric mean). With the GPU
core frequency of 700Hz, the preemption latency is reduced
from 9.9us to 4.0us. The draining latency accounts for 55.8%
of the selective preemption latency. Note that during draining,
some (if not all) warps are still doing useful work.

For SM-draining, although the SM keeps doing useful work
during preemption, the latency becomes unbearable for many
benchmarks. For example, the average preemption latency
for LK is 1431.1us. The newly incoming kernel would have

to wait for such long TBs. As a result, fairness cannot be
guaranteed with SM-draining because it favors kernels with
long TBs. With selective preemption, because the preemption
is guaranteed to be done in every loop iteration or every 1000
instructions, the draining latency is much more manageable.

D. Worst Case Preemption Latency

Because selective preemption has to wait for the warps to
execute some instructions before being spilled, the latency
variation may become higher than naive approach. To eval-
uate the preemption latency in the worst case scenario, we
select 12 kernels which can run long enough to generate 15
times preemption signals. As shown in Figure 16, for each
mechanism, the worst case preemption latency is normalized
to its average latency. From the results, we can see that
the naive approach, which is saving all occupied states, has
0.4x difference between average and worst case scenario. The
difference may result from the different instructions to drain

1

1.5

2

2.5

3

3.5

4
N

o
rm

al
iz

e
d

 W
o

rs
t

C
as

e

P
re

e
m

p
ti

o
n

 L
at

e
n

cy
occupancy select drain

Fig. 16: Normalized worst case preemption latency

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

co
m
p
le
te

in
p
la
ce

BT_1-
HG_1

PF_1-
HW_1

LK_1-
BP_1

SR_1-
BP_2

CFD_3-
BFS

HS_1-
KM_1

HW_1-
HG_1

SC_1-
HW_1

GM

N
o

rm
al

iz
e

d
 P

e
e

m
p

ti
o

n
 L

at
e

n
cy

spill drain

Fig. 17: Normalized preemption latency with in-place context
switching

before preemption or the difference of memory traffic. For
selective preemption, the difference between average and worst
case scenario is 0.6x, which is slightly higher than the naive
approach. The worst case latency for SM-draining is 2.4x
compared with the average. For SM-draining, the worst case
happens when an interrupt is signaled when a new TB has just
being launched.

E. Impact of In-Place Context Switching

To evaluate in-place context switching, we randomly pick
8 pairs of kernels which are labeled as ‘kernel1-kernel2’ in
Figure 17. We assume that ‘kernel1’ is preempted by ‘kernel2’
and measure the switching out latency for ’kernel1’. The
baseline, which is labeled as ‘complete’, is the preemption
latency of the approach using both liveness analysis and
compression. For in-place context switched warps, they still
have to reach the preemption point until being handled by
preemption pipeline. As a result, the warps still need to be
drained even if there is no register to spill, e.g. BT 1-HG 1.
From the figure, we can see that the latency for spilling the
register and shared memory states can be further reduced with
our proposed in-place context switching, by 21.5% on average.
On some benchmarks, e.g. BT 1-HG, The draining latency is
higher on in-place context switching. This is because spilling
can hide the latency for some warps to drain.

VI. RELATED WORK

On CPUs, there are many works focusing on context
reduction to reduce the preemption overhead and improve

processor utilization. Some works [25] [30] propose to seek
program points with small numbers of live registers for context
switching, thereby reducing the context switching latency.
Register relocation [28] is used to partition the register file into
variable-size contexts. The more-often resident contexts are
allowed to stay on the processor. Switching between resident
contexts is very fast, and multiple contexts can tolerate long
latencies from cache misses.

To enable fast context switching and exception handling
on GPUs, iGPU [18] partitions kernel code into idempotent
regions and each region is a recovery point. iGPU also lever-
ages liveness analysis when formatting recovery points for
context reduction. Register liveness is also used for dynamic
register file management [13]. Lee et al. [17] leverage register
compression for reducing GPU power. They use the base-
delta-immediate (BDI) compression algorithm [23] for register
file compression. BDI separates a vector register into several
trunks and stores the value of first chunk and the delta between
adjacent chunks. As delta values tend to be very small, they
can be stored in small bins. The compression technique is used
for the register file and every each register read/write needs to
be decompressed/compressed. In comparison, we only perform
compression/decompression when a context is spilled/restored.

Some recent works aim to enable the preemption on GPU.
RGEM [14] is a user-space solution to reduce the response
time of high priority kernels. It splits the input data into
multiple chunks so that a kernel can be preempted at a chunk
boundary. PKM [5] partitions the overall TBs of a kernel into
multiple sets where each set has a specific number of TBs.
Softshell [26] is a GPU programming model which supports
a kernel being preempted at the boundary of TBs. In compar-
ison, our proposed approaches enable efficient preemption at
the instruction granularity.

Concurrent kernel execution is another option to support
GPU sharing by multiple kernels. KernelMerge [11] and
Spacial Multiplexing [3] study how to use concurrent kernels
to better utilize GPU resources and improve overall through-
put. Elastic kernel [21] increases GPU utilization by issuing
concurrent kernels on one SM. After TBs from one kernel are
issued to the SM, the spare resources are distributed to another
kernel. In [16], Lee et al. also leverage mixed concurrent
kernels to improve GPU utilization.

Compared to these prior works, the novelty of our work in-
cludes (a) fast context switching through context reduction and
compression (b) efficient instruction-level GPU preemption.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present lightweight context switching
for SIMT processors and compiler-hardware co-design to
enable efficient preemption. We propose three schemes, in-
place context switching, liveness analysis and register com-
pression, to address the problem of the large kernel context
on SIMT processors. Our results show that with register
liveness analysis and compression, the register context can
be reduced drastically by 91.5%. With selective preemption
enabling instructions, we can achieve efficient instruction-level

preemption with an average preemption latency of 4.0us (with
the 700MHz GPU core frequency).

Our work mainly focuses on the register context. For
shared memory, Yang et al. [29] observe that the lifetimes
of the shared memory variables are short and they propose
explicit allocation and de-allocation functions. We can use the
shared memory de-allocation points as the potential places for
selective preemption. It provides finer granularity than TB-
level context switching and reduces the shared memory context
size. Integrating such shared memory management with our
proposed schemes is left as our future work.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable comments. This work is supported by NSF grants
CCF-1216569, CCF-1618509, a Chinese research program
“introducing talents of discipline to universities B13043”, and
an AMD gift fund.

REFERENCES

[1] asfermi: An assembler for the nvidia fermi instruction set. [online].
available: https://github.com/hyqneuron/asfermi.

[2] M. Abdel-Majeed and M. Annavaram. Warped register file: A power
efficient register file for gpgpus. In High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium
on, pages 412–423, Feb 2013.

[3] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte. The case for
gpgpu spatial multitasking. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pages 1–12, Feb
2012.

[4] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing
cuda workloads using a detailed gpu simulator. In Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 163–174, April 2009.

[5] C. Basaran and K.-D. Kang. Supporting preemptive task executions and
memory copies in gpgpus. In Real-Time Systems (ECRTS), 2012 24th
Euromicro Conference on, pages 287–296, July 2012.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, 2009.

[7] S. Collange, D. Defour, and Y. Zhang. Dynamic detection of uniform
and affine vectors in gpgpu computations. In Proceedings of the 2009
International Conference on Parallel Processing, Euro-Par’09, pages
46–55, Berlin, Heidelberg, 2010. Springer-Verlag.

[8] M. de Kruijf and K. Sankaralingam. Idempotent processor architecture.
In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, pages 140–151, New York, NY, USA,
2011. ACM.

[9] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp
formation: Efficient mimd control flow on simd graphics hardware. ACM
Trans. Archit. Code Optim., 6(2):7:1–7:37, July 2009.

[10] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally. Unifying primary cache, scratch, and register file memories
in a throughput processor. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45,
pages 96–106, Washington, DC, USA, 2012. IEEE Computer Society.

[11] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron. Fine-grained resource
sharing for concurrent gpgpu kernels. In Presented as part of the 4th
USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA, 2012.
USENIX.

[12] K. Gupta, J. Stuart, and J. Owens. A study of persistent threads style gpu
programming for gpgpu workloads. In Innovative Parallel Computing
(InPar), 2012, pages 1–14, May 2012.

[13] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram. Gpu register file
virtualization. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, pages 420–432, New York, NY, USA,
2015. ACM.

[14] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. Rgem: A responsive gpgpu execution model for runtime
engines. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd,
pages 57–66, Nov 2011.

[15] J. Y. Kim and C. Batten. Accelerating irregular algorithms on gpgpus
using fine-grain hardware worklists. In Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on, pages 75–
87, Dec 2014.

[16] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu.
Improving gpgpu resource utilization through alternative thread block
scheduling. In High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, pages 260–271, Feb 2014.

[17] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram.
Warped-compression: Enabling power efficient gpus through register
compression. In Proceedings of the 42Nd Annual International Sympo-
sium on Computer Architecture, ISCA ’15, pages 502–514, New York,
NY, USA, 2015. ACM.

[18] J. Menon, M. De Kruijf, and K. Sankaralingam. igpu: Exception support
and speculative execution on gpus. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, ISCA ’12, pages
72–83, Washington, DC, USA, 2012. IEEE Computer Society.

[19] NVIDIA. cuda binary utilities. [online]. available:
http://docs.nvidia.com/cuda/cuda-binary-utilities/index.html.

[20] NVIDIA. CUDA C Programming Guide. March 2015.
[21] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu

concurrency with elastic kernels. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 407–418, New
York, NY, USA, 2013. ACM.

[22] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative preemption
for multitasking on a shared gpu. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 593–606, New
York, NY, USA, 2015. ACM.

[23] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. Base-delta-immediate compression: Practical data
compression for on-chip caches. In Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’12, pages 377–388, New York, NY, USA, 2012. ACM.

[24] M. Rhu and M. Erez. The dual-path execution model for efficient gpu
control flow. In High Performance Computer Architecture (HPCA2013),
2013 IEEE 19th International Symposium on, pages 591–602, Feb 2013.

[25] J. S. Snyder, D. B. Whalley, and T. P. Baker. Fast context switches:
Compiler and architectural support for preemptive scheduling. Micro-
processors and Microsystems, 19:35–42, 1995.

[26] M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel, and
D. Schmalstieg. Softshell: Dynamic scheduling on gpus. ACM Trans.
Graph., 31(6):161:1–161:11, Nov. 2012.

[27] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero.
Enabling preemptive multiprogramming on gpus. In Computer Architec-
ture (ISCA), 2014 ACM/IEEE 41st International Symposium on, pages
193–204, June 2014.

[28] C. A. Waldspurger and W. E. Weihl. Register relocation: Flexible con-
texts for multithreading. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, pages 120–130, New
York, NY, USA, 1993. ACM.

[29] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and H. Zhou. Shared memory
multiplexing: A novel way to improve gpgpu throughput. In Proceedings
of the 21st International Conference on Parallel Architectures and
Compilation Techniques, PACT ’12, pages 283–292, New York, NY,
USA, 2012. ACM.

[30] X. Zhou and P. Petrov. Rapid and low-cost context-switch through em-
bedded processor customization for real-time and control applications.
In Design Automation Conference, 2006 43rd ACM/IEEE, pages 352–
357, 2006.

