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ABSTRACT 
On-chip shared memory (a.k.a. local data share) is a critical 
resource to many GPGPU applications. In current GPUs, the 
shared memory is allocated when a thread block (also called a 
workgroup) is dispatched to a streaming multiprocessor (SM) and 
is released when the thread block is completed. As a result, the 
limited capacity of shared memory becomes a bottleneck for a 
GPU to host a high number of thread blocks, limiting the 
otherwise available thread-level parallelism (TLP). In this paper, 
we propose software and/or hardware approaches to multiplex the 
shared memory among multiple thread blocks. 

Our proposed approaches are based on our observation that the 
current shared memory management reserves shared memory too 
conservatively, for the entire lifetime of a thread block. If the 
shared memory is allocated only when it is actually used and freed 
immediately after, more thread blocks can be hosted in an SM 
without increasing the shared memory capacity. We propose three 
software approaches to enable shared memory multiplexing and 
implement them using a source-to-source compiler. The 
experimental results show that our proposed software approaches 
effectively improve the throughput of many GPGPU applications 
on both NVIDIA GTX285 and GTX480 GPUs (an average of 
1.44X on GTX285, 1.70X on GTX480 with 16kB shared 
memory, and 1.26X on GTX480 with 48kB shared memory). We 
also propose hardware support for shared memory multiplexing, 
which incurs minor hardware changes to existing hardware and 
enables significant performance improvements (an average of 
1.53X) to be achieved with very little change in GPGPU code. 

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – shared memory 

General Terms 
Performance, Design, Experimentation. 

Keywords 
GPGPU, Shared memory, Dynamic management. 

1. INTRODUCTION 
Modern many-core graphics processor units (GPUs) rely on 
thread-level parallelism (TLP) to deliver high computational 
throughput. To mitigate the impact of long latency memory 
accesses, besides TLP, software managed on-chip local memory is 
included in state-of-art GPUs. Such local memory, called shared 
memory in NVIDIA GPUs and local data share in AMD GPUs, 
has limited capacity. As a shared resource among threads, shared 
memory is one of the key factors to determine how many threads 
can run concurrently on a GPU. 

State-of-art GPUs manage shared memory in a relatively simple 
manner. When a group of threads (called a thread block or 
workgroup) is to be dispatched, the shared memory is allocated 
based on the aggregate shared memory usage of all the threads in 
the thread block (TB). When a TB finishes execution, the 
allocated shared memory is released. When there is not sufficient 
shared memory for a thread block, the TB dispatcher is halted. 

There are two major limitations to the aforementioned shared 
memory management. First, the allocated shared memory is 
reserved throughout the lifetime of a TB, even if it is only utilized 
during a small portion of the execution time. Second, when the 
shared memory size (e.g., 16kB) is not a multiple of the shared 
memory usage (e.g., 9kB) of a TB, a fraction of shared memory 
(e.g., 7kB) is always wasted. These two limitations reduce the 
number of TBs that can concurrently run on a GPU, which may 
impact the performance significantly as there may not be 
sufficient threads to hide long latencies of operations such as 
memory accesses. 

In this paper, we first characterize the usage of shared memory in 
GPGPU (general purpose computation on GPUs) applications and 
make an important observation that many GPGPU applications 
only utilize shared memory for a small amount of time compared 
to the lifetime of a TB. Then, we propose novel ways to multiplex 
shared memory so as to enable a higher number of TBs to be 
executed concurrently. These schemes include three software 
approaches, namely VTB, VTB_pipe, CO-VTB, and one 
hardware solution. Our software approaches work on existing 
GPUs and they essentially combine two original TBs into a new 
TB and add if-statements to control time multiplexing of the 
allocated shared memory between the two original TBs. Our 
hardware solution incurs minor changes to existing hardware and 
supports dynamic shared memory allocation and de-allocation so 
as to enable shared memory multiplexing with very little change 
in GPGPU code.  
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Our experimental results on NVIDIA GTX285 and GTX480 
GPUs show remarkable performance gains from our proposed 
software approaches, up to 1.95X and 1.44X on average on 
GTX285 and up to 2.19X and 1.70X on average on GTX480. We 
also evaluate our hardware proposal using the GPGPUsim 
simulator [1], which shows up to 2.34X and an average of 1.53X 
performance enhancement.  

Our work makes the following contributions. (1) We characterize 
shared memory usage among GPGPU applications and highlight 
that many GPGPU applications utilize shared memory only for a 
limited portion (an average of 25.6%) of the execution time of a 
TB; (2) we propose three software approaches to time multiplex 
shared memory among TBs; (3) we propose a simple hardware 
approach to support dynamic shared memory management; and (4) 
we show that our proposed software- and hardware-based shared 
memory multiplexing approaches are highly effective and 
significantly improve the performance. 

The remainder of the paper is organized as follows. In Section 2, 
we present a brief background on GPGPU architecture and 
highlight the importance of shared memory. We characterize the 
shared memory usage of GPGPU applications in Section 3. In 
Section 4, we present our three software approaches to multiplex 
shared memory. Section 5 discusses our hardware solution. The 
experimental methodology is addressed in the Section 6 and the 
results are presented in Section 7. Related work is discussed in 
Section 8. Section 9 concludes our paper. 

2. BACKGROUND 
State-of-art GPUs use many-core architecture to deliver high 
computational throughput. One GPU consists of multiple 
streaming multiprocessors (SMs) in NVIDIA GPU architecture or 
computer units (CUs) in AMD GPU architecture. Each SM/CU in 
turn includes multiple streaming processors (SPs) or thread 
processors (TPs). Threads running on GPUs follow the single 
program multiple data (SPMD) model and are organized in a 
hierarchy. A GPU kernel is launched to a GPU with a grid of 
thread blocks (TBs) using the NVIDIA CUDA terminology [10], 
which are called workgroups in OpenCL [12]. Threads in a TB 
form multiple warps, with each running in the Single Instruction 
Multiple Data (SIMD) mode. One or more TBs run concurrently 
on one SM, depending on the resource requirement of a TB. 

On-chip shared memory is a critical resource for GPGPU 
applications. The shared memory provides a mechanism for 
threads in the same TB to communicate with each other. It also 
serves as a software managed cache so as to reduce the impact of 
long latency memory accesses. Since each SM has limited amount 
of shared memory, for many GPGPU applications, the usage of 
shared memory of a TB determines how many TBs can run 
concurrently, i.e., the degree of thread level parallelism (TLP). 
Besides shared memory, the register usage of each thread is 
another critical factor to determine the number of threads that can 
run concurrently. In state-of-art GPUs, both shared memory and 
register files (RFs) are managed similarly. When a TB is to be 
dispatched to an SM, the TB dispatcher allocates the shared 
memory and registers based on the aggregate usage of all the 
threads in the TB. The allocated shared memory and registers are 
released when the TB finishes execution. When there is not 
sufficient resource available in either shared memory or RF in an 
SM, the resource is not allocated and no TB will be dispatched to 
the SM.     

Between shared memory and RFs, current GPUs have higher 
capacity in RFs. For example, on NVIDIA GTX285 GPUs, each 

SM has 16kB shared memory and a 64kB RF. On NVIDIA 
GTX480 GPUs (i.e., the Fermi architecture), each SM has a 
128kB RF and a 64kB hybrid storage that can be configured as a 
16kB L1 cache+48kB shared memory or a 48kB L1cache+16kB 
shared memory. The latest NVIDIA GPU, GTX680 (i.e., the 
Kepler architecture), has the same size of shared memory per SM 
as GTX480 and a 256kB RF. With a high number of SPs and a 
larger RF in each SM, the Kepler architecture is designed to host 
more concurrent thread blocks/threads in each SM than the Fermi 
architecture, thereby increasing the pressure on shared memory. 
On AMD HD5870 GPUs, each CU contains 32kB shared memory 
(called local data share) and a 256kB RF. As a result, for many 
GPGPU applications, shared memory presents a more critical 
resource to limit the number of TBs/threads to run concurrently on 
an SM. 

3. CHARACTERIZATION OF SHARED 
MEMORY USAGE 
To understand how GPGPU applications utilize shared memory, 
we select and study ten benchmarks, which have shared memory 
variables in the source code, as shown in Table 1. Among the 
benchmarks, MC, SP, MM, CV, RD and TP are from NVIDIA 
SDK [11]. FFT and HG are from AMD SDK [2]. STO [13] is 
from the GPGPUSim infrastructure [1]. We implemented the 
GPU kernel for MV, which has similar performance to CUBLAS 
4.0 [8]. For each benchmark, the shared memory usage of a TB as 
well as the number of threads in a TB is reported in Table 1. Also 
included is the number of TBs that can run concurrently in an SM 
with 16kB shared memory. 

Table 1. Benchmarks used in experiments 

Benchmarks Shared 
memory 
size per 

TB 
(Bytes) 

Thread
s per 
TB 

Thread
s (TBs) 
per SM 

Actual shared 
memory usage 
per SM (Bytes)

Matrix vector 
multiplication (MV)

4268 32 96 (3) 4268x3 = 12804

Fast Fourier 
Transform (FFT) 

8736 64 64 (1) 8736x1 = 8736

MarchingCubes 
(MC) 

9324 32 32 (1) 9324x1 = 9324

StoreGPU (STO) 16304 128 128 (1) 16304x1 = 
16304 

ScalarProd (SP) 4144 64 192 (3) 4144x3 = 12432
Histogram (HG) 8224 64 64 (1) 8224x1 = 8224
Convolution(CV) 8300 128 128 (1) 8300x1 = 8300

Matrix 
Multiplication (MM)

2084 256 1024 (4) 2084x4 = 8336

Transpose (TP) 4260 128 384 (3) 4260x3 = 12870
Reduction (RD) 540 128 1024 (8) 540x8 = 4320 

 

From Table 1, we can classify the benchmarks into two categories. 
The first category, including MV, FFT, MC, STO, SP, HG and 
CV, has the characteristics that the number of threads, which can 
execute concurrently in a SM, is severely limited by the shared 
memory capacity. The second category, including MM, TP, and 
RD, has the characteristics that either the shared memory usage of 
each TB is small or each TB has a large number of threads. For 
the benchmarks in the second category, the shared memory is not 
a bottleneck for TLP. Therefore, the target of our proposed 
approaches is the workloads in the first category. Another 
interesting observation from Table 1 is that for all workloads in 



the first category, except STO, the shared memory can be severely 
underutilized, as shown in the last column of Table 1, although 
the limited shared memory size is the cause for limited thread-
level parallelism (TLP). The reason is that when a TB is to be 
dispatched, all its required shared memory needs to be available. 
Therefore, if the remaining shared memory is not enough for a TB, 
it is always wasted.   

Next, for all the benchmarks in Table 1, we use simulation to 
determine how long the shared memory is utilized in a TB (see 
Section 6 for the detailed experimental methodology). Since the 
compiler may schedule the shared memory accesses to interleave 
with other type instructions to improve instruction-level 
parallelism (ILP), if we simply consider the lifetime of shared 
memory usage as between the first instruction writing to the 
shared memory and the last instruction reading from the shared 
memory, we may find that the shared memory is used for almost 
the entire lifetime of kernel execution. To isolate the usage of 
shared memory from other parts of the kernel code, we insert 
‘__syncthreads()’ instructions before the first write/define to and 
after the last read/use from the shared memory. We denote a code 
region surrounded by our inserted ‘__syncthreads()’ as a shared 
memory access region. A redefine of the shared memory variables 
will start a new shared memory access region. Here, any define or 
use of shared memory variables is based on all the threads in a TB. 
Then, we use the accumulated execution time of all shared 
memory access regions as the duration for shared memory usage. 
In Figure 1, we show the ratio of the duration of shared memory 
usage over the overall execution time of a TB. For each 
benchmark, this ratio is an average across all its TBs.  

 
Figure 1. The portion of the execution time, during which the 
allocated shared memory is actually utilized, of a thread block 

for GPGPU applications. 

As shown in Figure 1, using the geometric mean (GM) for all the 
benchmarks, the shared memory is only used in 25.6% of the 
execution time, which means that TBs do not need to use the 
allocated shared memory during the 74.4% of their execution time. 
Among these benchmarks, MM and TP have high TLP and they 
use the shared memory often during the lifetime of a TB. RD has 
high TLP but its performance bottleneck is global memory 
accesses; therefore the shared memory is idle most of the time. 
HG spends most of the execution time on accessing data in the 
shared memory, thereby showing the high ratio in Figure 1. For 
the remaining benchmarks, the TLP is limited by the shared 
memory capacity although their allocated shared memory is only 
used for a very limited amount of time compared to the lifetime of 
a TB. 

4. SHARED MEMORY MULTIPLEXING: 
SOFTWARE APPROACHES 
As discussed in Section 3, many GPGPU applications suffer from 
insufficient TLP due to the limited shared memory capacity. In 
this section, we propose three software approaches to time 
multiplex shared memory to boost TLP. The key idea of these 
three approaches is the same: we combine multiple original TBs 
into a larger one and introduce control flow to manage how the 
shared memory is accessed among the original TBs. The 
difference among the three approaches lies in how to overlap 
shared memory accesses with other parts of the code and whether 
the combined TB will use more shared memory than an original 
TB. To illustrate the proposed approaches, we use the FFT as a 
running example. Figure 2 shows the pseudo code of the kernel 
function, which implements a 1K-point FFT through a sequence 
of 4-point FFT (FFT4 functions) and data interchange through 
shared memory (loadFromSM and saveToSM functions). In 
loadFromSM, threads load data from shared memory. In 
saveToSM threads save data to the shared memory. 
‘__syncthreads()’ is used to ensure the order of the shared 
memory accesses. We also include the sequence number as a 
parameter of FFT4, loadFromSM and saveToSM functions to 
show the different parts of the code. With this implementation, 
each TB has 64 threads and uses 8736-Byte shared memory (8192 
Bytes for data, additional bytes for padding to avoid bank 
conflicts and a few bytes reserved by CUDA). This shared 
memory usage is obtained from the NVCC compiler.  

 

Figure 2. The pseudo code of a 1k-point FFT implementation, 
which uses 8736-Byte shared memory per thread block and 

there are 64 threads per thread block. 

4.1 Virtual Thread Block (VTB) 
In this approach, we first isolate the part(s) of a kernel function 
that accesses shared memory variables. Second, we combine two 
original TBs into a new one. Here, we refer to an original TB as a 
virtual TB. In other words, after TB combination, one TB contains 
two virtual TBs. Third, we introduce the control flow 
“if(v_tb_id==0)” and “if(v_tb_id ==1)” to manage which virtual 
TB will access the shared memory at a time. The amount of the 
required shared memory of the combined TB remains the same as 
either of the virtual TBs.  

For the FFT code example, the code after we apply VTB is shown 
in Figure 3. The ‘if-statements’ on lines 4, 6, 8, and 10 are 
introduced to ensure that only one virtual TB is accessing the 
allocated shared memory at a time. The ‘syncthreads()’ function 
on line 7 implicitly marks the last use of the shared memory of 
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loadFromGlobal(); 
FFT4(0); 
saveToSM(0);     //define by multiple threads in a TB 
__syncthreads(); 
loadFromSM(0);  //use by multiple threads in a TB 
FFT4(1);  
__syncthreads(); 
saveToSM(1);    //(re)define by multiple threads in a TB 
__syncthreads(); 
loadFromSM(1);  //use by multiple threads in a TB 
…. 
FFT4(4);                              

   writeToGlobal();



virtual TB 0 so that virtual TB 1 can use the shared memory 
immediately afterwards. 

 

Figure 3. The pseudo code of a 1k-point FFT implementation 
using VTB. Each thread block uses  8736-Byte shared memory 

and there are 128 threads in each thread block. 

Next, we illustrate the reason why our proposed VTB can improve 
the GPU throughput and also highlight its overhead. Assuming a 
GPU with 16kB shared memory in each SM, since each TB 
requires more than 8kB shared memory, two TB dispatched to the 
same SM have to execute back to back with the code in Figure 2. 
This execution process is shown in Figure 4a. For the purpose of 
clarity, in Figure 4 we only show the execution time 
corresponding to the global memory access, the first 4-point FFT 
and the data exchange via the shared memory. The remaining 
code in the kernel function simply repeats 4-point FFT and data 
exchange multiple times. With the code in Figure 3, the combined 
TB is equivalent to the two original TBs. Due to the increased 
TLP, the execution time of the function loadFromGlobal() and 
FFT4() of 128 threads is significantly less than the back-to-back 
execution of the same functions for 64 threads, as shown in Figure 
4b. However, to control the accesses to shared memory between 
the two virtual TBs, additional synchronization functions are 
added to ensure correctness. Besides the latency to perform such 
‘__syncthread()’ functions, the barrier also limits the compiler’s 
capability to schedule instructions across the barriers, which may 
result in reduced instruction-level parallelism (ILP) and additional 
register usage. The added control flow instruction “if(v_tb_id==0)” 
has minimal overhead as it does not generate any control 
divergence within a warp since all 64 threads in the same virtual 
TB will follow the same direction and each warp has 32 threads 
on NVIDIA GPUs. The global memory access functions 
‘loadFromGlobal’ and ‘writeToGlobal’ benefit from VTB as the 
increased TLP translate to increased memory-level parallelism 
(MLP).  

From Figure 4, we can also see that when a virtual TB accesses 
the shared memory, the other virtual TB is forced to be idle due to 
the control flow and the ‘__syncthread()’ functions. Our proposed 
second and third software approaches address this limitation and 
we include the execution time information of these approaches in 
Figure 4c and 4d for comparison. We discuss these two 
approaches in detail in Sections 4.2 and 4.3. 

Note that although Figure 3 and Figure 4 show the case of 
combining two original TBs into one, we can apply the same 
principle to combine more than two TBs. The optimal number of 
TBs to combine is dependent on how many concurrent threads can 
run on an SM. Typically, combining two TBs is sufficient to reap 

most performance benefits. Among all the benchmarks in our 
study, only MarchingCubes (MC) benefits from combining more 
than two TBs (we combined 4 TBs for MC using our proposed 
VTB approach).  

 

Figure 4. A comparison of execution time of the baseline to 
our proposed software approaches: (a) the baseline, (b) VTB, 

(c) VTB_pipe, and (d) CO-VTB. 

4.2 Pipelined Virtual Thread Block 
(VTB_PIPE) 
As discussed in Section 4.1, VTB combines two virtual TBs into a 
larger one and it ensures that only one virtual TB is accessing the 
shared memory by forcing the other virtual TB to be idle. To 
reduce such idle cycles, we propose to overlap computation with 
shared memory accesses. To do so, we make the first virtual TB to 
run faster than the second one using an ‘if(v_tb_id==0)’ statement. 
Then, when the first virtual block reaches the code section of 
shared memory access, the second virtual TB continues its 
computation instead of being forced idle. When the second virtual 
block reaches the code section of shared memory accesses, the 
first will continue to run ahead. This process is similar to letting 
the two virtual TBs to go through a pipeline. Therefore, we refer 
to this approach as pipelined VTB (VTB_pipe).  

For the FFT example, the code after we apply our proposed 
VTB_pipe is shown in Figure 5. From Figure 5, we can see that 
initially the two virtual TBs will both execute the 
‘loadFromGlobal()’ function. Then, the ‘if(v_td_id==0)’ 
statements on lines 3 and 4 as well as the ‘__syncthreads()’ on 
line 5 enable virtual TB 0 to execute the ‘FFT4()’ and ‘saveToSM’ 

1.  int v_tb_id = threadIdx.x/64;  //virtual thread block id 
2.  loadFromGlobal(); 
3.  FFT4(0); 
4.  if (v_tb_id==0) saveToSM(0); //def. from threads in v_tb_0 
5.  __syncthreads(); 
6.  if (v_tb_id==0) loadFromSM(0);//use. from threads in v_tb_0 
7.  __syncthreads(); 
8.  if (v_tb_id==1) saveToSM(0);  //def. from threads in v_tb_1 
9.  __syncthreads(); 
10.if (v_tb_id==1) loadFromSM(0);//use. from threads in v_tb_1 
11.FFT4(1); 
12.      …. 
13.FFT4(4); 
14.writeToGlobal(); 

Execution time 
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of shared memory with a pipelined schedule (VTB_pipe) 
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functions, making it running ahead of virtual TB1. The code on 
line 6 and line 7 shows the overlapping between the function 
‘loadFromSM()’ of virtual TB0 and the ‘FFT4()’ function of 
virtual TB1. Since virtual TB1 is lagging behind, when it reads 
from the shared memory via ‘loadFromSM()’ on line 11, the 
virtual TB0 proceeds to compute its next 4-point FFT, the ‘FFT4()’ 
on line 12. The execution process is shown in Figure 4b. Due to 
the overlapping between shared memory accesses and 
computation, we can reduce the idle cycles experienced by virtual 
TBs.  

 

Figure 5. The pseudo code of a 1k-point FFT implementation 
using VTB_pipe. Each thread block uses  8736-Byte shared 

memory and there are 128 threads in each thread block. 

The complexity of VTB_pipe, however, is that we may need to 
partition the non-shared memory access code section to create 
small computational/global memory access tasks so that they can 
overlap with shared memory accesses. The ideal case is that the 
small computational tasks have similar execution latency to the 
shared memory accesses and can completely utilize the otherwise 
idle cycles. In the FFT example, the FFT4 is a convenient choice 
and does not require such partition. For other benchmarks such as 
Histogram (HG), loop peeling is used to create such a 
computational/global memory access task to overlap with the 
shared memory accesses. Similar to the VTB approach, we can 
choose to combine more than two original TBs. However, 
synchronization among more than two TBs becomes difficult to 
manage. Therefore, we choose not to combine more than two TBs 
for our VTB_pipe approach.  

4.3 Collaborative Virtual Thread Block 
(CO_VTB) 
In both VTB and VTB_pipe, a few original TBs are combined to 
time multiplex the allocated shared memory, thereby significantly 
improving TLP. For some applications, the TLP improvement is 
sufficient to hide instruction execution latencies. For others, there 
exist additional opportunities. As discussed in Section 3, if the 
shared memory size is not a multiple of the shared memory usage 
of a TB, part of shared memory is always wasted. Neither VTB 
nor VTB_pipe addresses this issue as they do not alter the shared 
memory usage of a TB. To effectively utilize such otherwise 
wasted shared memory, we propose to let two TBs to 

collaboratively utilize the shared memory and refer to this 
approach as collaborative virtual thread blocks (CO-VTB). In CO-
VTB, we partition the shared memory usage of a TB into two 
parts, private and public, and apply the VTB (or VTB_pipe) 
approach only on the public part. For example, if the original 
shared memory usage of a TB is 9kB, an SM with 16kB shared 
memory can only host 1 TB. If we partition the shared memory 
usage of a TB into a 7kB private part and a 2kB public part, when 
we combine two TBs, each uses 7kB private shared memory each 
(a total of 14kB) and both time multiplex the 2kB public shared 
memory, thereby utilizing the 16kB shared memory effectively. 
Figure 4d illustrates the execution of our proposed CO-VTB 
approach. 

Next, we use the benchmark, MatchingCube, to show the code 
changes for CO-VTB. For the benchmark FFT, CO-VTB involves 
too much code change, which incurs high performance overhead. 
The simplified pseudo code of the baseline MatchingCube kernel 
is shown in Figure 6a. From the code, we can see that each TB has 
32 threads and uses 9216-Byte (=24*32*3*4) shared memory. 
The code after we apply CO-VTB is shown in Figure 6b. Now, 
one TB has 2 virtual TBs and there are 64 threads in a TB. The 
shared memory array is partitioned into two parts: the private 
arrays ‘vertlist_v0’ and ‘vertlist_v1’, which are combined into a 
single array ‘vertlist’, and the public array ‘vertlist2’, which is 
multiplexed by the two virtual TBs. Either private array has the 
size of 6144(=16*32*3*4) Bytes and the public array size is 
3072(=8*32*3*4) Bytes. So, the overall shared memory usage of 
a TB becomes 15360 (= 2*6144+3072) Bytes. The register 
variable ‘reg’ is introduced to temporarily hold the data to be 
written to the public part of the shared memory. Additional code 
is inserted to check the array index (the variable ‘edge’) to 
determine whether the data resides in the private or public part of 
shared memory and then either the array ‘vertlist’ (private) or the 
array ‘vertlist2’ (public) is used accordingly. 

As shown from the code example in Figure 6, there is overhead 
involved in the CO-VTB approach, including additional register 
variables and additional code. For kernel functions like FFT, the 
complex array access patterns introduce too much overhead when 
a shared memory array is partitioned to private and public parts. 
Therefore, CO-VTB is utilized selectively, only for arrays with 
relatively simple access patterns. Due to this complexity, we also 
choose not to combine more than two TBs. 

5. SHARED MEMORY MULTIPLEXING: 
A HARDWARE SOLUTION 
As discussed in Section 4, our proposed software approaches 
improve TLP by merging original TBs and explicitly managing 
the shared memory accesses among them. The advantage of the 
software approaches is that they work well with current GPUs. 
The disadvantage, however, is the overhead introduced to manage 
the shared memory. In this section, we propose a hardware 
solution to managing shared memory.  

In GPUs, the TB dispatcher dispatches TBs onto SMs. For each 
SM, it maintains a shared memory management (SMM) table, as 
shown in Figure 7. The SMM table has multiple entries and each 
entry keeps three fields, the TB id, the size, and the starting 
address. When a TB is to be dispatched to an SM, the TB 
dispatcher goes through the SMM table of the SM to determine 
whether there is enough free shared memory. If so, the dispatcher 
allocates the required shared memory by filling an entry in the 
SMM table with the TB id and setting its size field to the required 
shared memory size of the TB. The starting address field is 

1.   int v_tb_id = threadIdx.x/64; 
2.   loadFromGlobal();           
3.   if (v_tb_id==0)  FFT4(0); 
4.   if (v_tb_id==0) saveToSM(0); 
5.   __syncthreads(); 
6.   if (v_tb_id==0) loadFromSM(0); 
7.   else FFT4(0); 
8.   __syncthreads(); 
9.    if (v_tb_id==1) saveToSM(0); 
10.  __syncthreads(); 
11.  if (v_tb_id==1) loadFromSM(0); 
12.  else FFT4(1); 
13.  __syncthreads(); 
14.  if (v_tb_id==0) saveToSM(1); 
15.  __syncthreads(); 
16.  if (v_tb_id==0) loadFromSM(1); 
17.  else FFT4(1); 
18.    …. 
19.  FFT4(4);                       
20.  writeToGlobal(); 



determined and then passed to the TB so that every shared 
memory access in the TB will use this starting address as the base 
address. When a TB finishes execution, the dispatcher releases the 
allocated shared memory by invalidate the corresponding SMM 
table entry. Since the shared memory is allocated through the 
lifetime of a TB, we refer to such shared memory management as 
‘static’ allocation and de-allocation. 

 

Figure 6. The simplified pseudo code of MarchingCubes, (a) the 
baseline kernel code; (b) the code after we apply CO-VTB.

 

Figure 7. A shared memory management (SMM) table. 

To enable dynamic shared memory management, we propose to 
extend the TB dispatcher so that the shared memory management 
is exposed to and can be controlled by software. Since shared 
memory allocation and de-allocation affect all the threads in a TB, 
we propose to associate shared memory management with the 
existing ‘__syncthreads()’ function and the new syntax of the 
function becomes ‘__syncthreads(int opt, unsigned &base_addr, 
unsigned size)’. It still serves as a barrier to synchronize all the 
threads in a TB. When the parameter ‘opt’ is 1, it invokes the TB 
dispatcher to allocate the shared memory for ‘size’ bytes. The TB 
dispatcher uses the same allocation process by going through the 
corresponding SMM table. If there is enough free shared memory, 
an entry in the SMM table is updated and its ‘starting address’ 
field is passed to the ‘base_addr’ variable to be used by 
subsequent shared memory accesses. If there is no sufficient 
shared memory to be allocated, the TB will be stalled until 
another TB frees its allocated shared memory. If the parameter 
‘opt’ is ‘-1’, the TB dispatcher performs shared memory de-
allocation using the ‘base_addr’ parameter. It searches the SMM 
table entries to find the matching ‘starting address’ with the 
‘base_addr’ and invalidates the table entry. If the parameter ‘opt’ 
is ‘0’, the other two parameters (‘base_addr’ and ‘size’) are 
ignored and ‘__syncthreads’ operates as a regular barrier. To 
simplify the design, we choose not to allow nested shared memory 
allocation so as to avoid any potential deadlock issue. We also 
require that for a kernel function, the size of dynamic allocation 
and de-allocation to be the same so as to avoid fragmentation.  

The code change to utilize our proposed dynamic shared memory 
management is very little. It only needs a shared memory 
allocation at the beginning and de-allocation at the end of each 
memory access code region. For the FFT kernel, the code after 
such changes is shown in in Figure 8. 

 

Figure 8. The pseudo code for 1k-point FFT kernel using the 
hardware supported dynamic shared memory management. 

Each TB allocates and de-allocates 8376-byte shared memory 
and contains 64 threads. 

The dynamic shared memory allocation and de-allocation in the 
FFT kernel shown in Figure 8 enables an SM to exploit higher 
degrees of TLP. Figure 9 illustrates this effect with two TBs 
running on an SM. Although the shared memory (16kB) on the 
SM is not large enough for the aggregate requirement from the 
two TBs (2x8376=16752B), our proposed dynamic allocation 
enables them to run concurrently and ensures that the two 
allocation calls will be served one after the other. 

From Figure 9, it can be seen that the key performance advantages 
of our dynamic shared memory management include: (1) higher 
degrees of TLP to hide instruction latencies, and (2) reduced 
overhead of ‘__syncthreads()’ as the barrier is limited to a TB and 
doesn’t affect other TBs. In comparison, in our software 

(b) The pseudo code of MarchingCubes using CO-VTB. 
Each thread block uses 2*6144+3072=15360 Byte shared 
memory and there are 64 threads in each thread block.

(a) The pseudo code of MarchingCubes, for which each 
thread block uses 9216-Byte shared memory and has 32 
threads. 

#define NTHREADS 32 
__global__ void generateTriangles() { 
// each virtual TB uses 6144-byte private shared memory. 
//__shared__ float3 vertlist_v0[16][ NTHREADS]; 
//__shared__ float3 vertlist_v1[16][ NTHREADS]; 
//Both private parts are combined into a single array vertlist 
     __shared__ float3 vertlist[2][16][NTHREADS]; 
// accessing the private part of shared memory 

for (i=0; i<16; i++) vertlist [v_tb_id][i][v_t_id]=f1(i);   
float3 reg[8]; 
for (i=16; i<24; i++) reg[i-16] = f1(i);  
__syncthreads(); 

// two virtual TBs multiplex 3072-byte public shared memory. 
__shared__ float3 vertlist2[8][NTHREADS]; 
if (v_tb_id==0) { 
  for(i=0; i<8; i++) vertlist2[i][v_t_id]= reg[i]; 

      for(i=0; i<numVerts; i++) { 
        uint edge = tex1Dfetch(triTex, cubeindex*16 + i); 
// check whether the data is in private or public shared memory 
        if( edge<16) pos[index] = 
                         f2(vertlist[v_tb_id][edge][v_t_id]) 
        else pos[index] = f2(vertlist2[edge-16][v_t_id]);   }  } 

__syncthreads(); 
    if (v_tb_id==1) { … } 
} 

#define NTHREADS 32 
__global__ void generateTriangles() { 
    //each TB uses 4*3*24*32 = 9216 byte share memory. 

__shared__ float3 vertlist[24][NTHREADS];     
// store the result of function f1 into shared memory 
for (i=0; i<24; i++) vertlist [i][threadIdx.x]= f1(i); 

    for(i=0; i<numVerts; i++) { 
        uint edge = tex1Dfetch(triTex, cubeindex*16 + i); 
        // use function f2 perform computation on shared memory 
        pos[index] = f2(vertlist[edge][ threadIdx.x]); 
   }  
} 

Valid TB id Size Starting Address 
1 6 4kB 0 
1 10 4kB 4096 
 … …  

loadFromGlobal(); 
FFT4(0); 
__syncthreads(1, &base_addr , 8376); //allocation  
saveToSM(0);        //define by multiple threads in a TB 
__syncthreads(0, 0, 0); //synchronization 
loadFromSM(0);    //use by multiple threads in a TB 
__syncthreads(-1, &base_addr , 8376); //de-allocation  
 
FFT4(1);  
…. 

   writeToGlobal();



approaches, such a barrier will affect both virtual TBs. 
Furthermore, dynamic allocation and de-allocation naturally 
enables overlap between shared memory accesses of one TB and 
non-shared memory code in another as long as they do not reach 
allocation at the same time. This is the reason why we do not need 
the code changes of our VTB or VTB_pipe approaches.  

 

Figure 9. Two TBs running concurrently on an SM using 
dynamic shared memory management. 

With the hardware supported shared memory management, we do 
not need to combine TBs. A TB can be dispatched to an SM as 
long as other resource requirements such as registers are satisfied. 
As a result, there might be too many TBs dispatched to an SM. 
We propose to use a counter to track how many TBs are running 
on an SM and stall TB dispatching when this counter reaches a 
threshold. If we denote the maximum number of TBs that can be 
dispatched to an SM using the static shared memory management 
as K, the threshold setting of K+2 or K+3 achieves good 
performance (See Section 7.2). In other words, allowing an SM to 
run 2 or 3 more TBs concurrently usually improves TLP 
sufficiently.  

With our proposed hardware solution, the TB dispatcher can 
support both static and dynamic shared memory management. We 
propose to let either the run-time or compiler to determine which 
mechanism to be used. If the static management is selected for the 
purpose of quality of service, the dynamic management 
instructions are ignored. Static and dynamic shared memory 
management can also be used together to support collaborative 
TBs, similar to the idea exploited in CO-VTB. We refer to this 
hardware supported collaborative TB approach as CO-HW. Like 
CO-VTB, we need to change the kernel code to partition the 
shared memory usage into the private part and the public part. 
Unlike CO-VTB, we do not need to use VTB or CO-VTB on the 
public part. Instead, we insert dynamic allocation and de-
allocation instruction to multiplex the public part. When a kernel 
is launched to a GPU, the compiler or the run-time provides the 
sizes of both the private part and the public part to the TB 
dispatcher. Static shared memory management is used for the 
private part and dynamic shared memory management is used to 
multiplex the public part. For example, a TB originally uses 6kB 
shared memory and an SM with 16kB shared memory can host 
two such TBs using static shared memory management. After 
partition, a TB uses 4kB private and 2kB public shared memory. 
With 16kB shared memory, three TBs can run concurrently using 
a total of 12kB (=4kBx3) private shared memory. The remaining 
4kB is used as public shared memory among the three TBs. The 
same SMM table is used to manage shared memory as shown in 
Figure 10, where the first three entries are allocated when the 
three TBs are dispatched and the last two are allocated/de-
allocated with the ‘__syncthreads(opt, &base_addr, size)’ 
instructions. 

 

Figure 10. The SMM table manages shared memory usage for 
collaborative TBs. The first three entries are for the private 
shared memory of the 3 TBs. The last two entries are for the 

public shared memory. 

Due to static management, the private part is allocated when a TB 
is dispatched and is de-allocated when it completes execution. The 
public part is managed based on the dynamic allocation and de-
allocation instructions. The only constraint, which the TB 
dispatcher enforces, is that when a TB is dispatched, the total 
amount of the private parts of currently running TBs in an SM 
cannot exceed (the size of overall shared memory – the size of the 
public part of a TB). The purpose is to ensure that there is at least 
one set of public shared memory available to be used among the 
TBs.  

Our proposed hardware solution simply exposes the existing 
shared memory management in the TB dispatcher to the software 
and enables it to be controlled by the extended ‘__syncthreads()’ 
instructions. The code change is to insert ‘__syncthreads(1, 
&base_addr, size)’ at the beginning of shared memory access 
regions and ‘__syncthreads(-1, &base_addr, size)’ at the end. For 
CO-HW, this region is where the public shared memory part is 
accessed. Therefore, we argue that this solution has low overhead 
in both hardware and software changes. The effectiveness is 
evaluated in Section 7.2. 

6. EXPERIMENTAL METHODOLOGY 
To evaluate our proposed software approaches, we use both 
NVIDIA GTX 480 and NVIDIA GTX285 GPUs with CUDA 
SDK 4.0. Because the shared memory size is configurable on 
GTX 480 GPUs, we present two sets of results: one with 48kB 
shared memory and the other with 16kB shared memory. As 
discussed in Section 3, the focus of our proposed approaches is 
the category of applications, which have low TLP due to the 
limited capacity of shared memory in an SM. Therefore, among 
all the workloads in Table 1, our experiments do not include MM, 
TP, and RD as they have high TLP already and are not affected by 
our approaches. We implemented our proposed VTB and 
VTB_pipe using a source-to-source compiler, Cetus [14]. For 
VTB, the compiler searches defines and uses of shared memory 
variables among all the threads in a TB. The code between the 
first define and the last use is treated as a shared memory access 
region. Re-defines to shared memory variables are used to help to 
determine the last uses in a region. Then, the compiler generates 
the code for virtual TB ids and the control flow to determine 
which virtual TB accesses the shared memory. For VTB_pipe, we 
add annotations manually to denote the section of code to overlap 
with shared memory access regions and the compiler generates 
the final code. For CO-VTB, we generate the code manually due 
to the complexity of partitioning shared memory variables into 
private and public parts. Also, as discussed in Section 5.3, not all 
workloads are suitable to CO-VTB due to the associated 
overheads. Among the workloads, we applied CO-VTB to MC, 
STO, and HG.   

 

Execution time 
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TB1 

Shared memory
access region 

Non-shared 
memory regions 

syncthreads 
(opt, &base_addr, size) 

 TB2 

 TB3 

  

  

 

Valid TB id Size Starting Address 
1 0 4kB 0 
1 1 4kB 4096 
1 2 4kB 8192 
1 0 2kB 12288 
1 1 2kB 14436 



To model our proposed hardware support, we extend the 
GPGPUsim V3.0 simulator [1] to support our proposed dynamic 
shared memory management instructions (i.e., the extended 
‘__syncthreads()’ instruction). The simulator models an NVIDIA 
GTX285 GPU, which has 16kB shared memory and a 64kB 
register file on each SM. The off-chip memory frequency is set to 
1100MHz. We manually inserted the dynamic allocation and de-
allocation instructions in the workloads. For the CO-HW 
approach, we used very similar code to CO-VTB except the part 
using virtual TB ids as we do not need to combine two TBs. We 
also inserted the dynamic allocation and de-allocation instructions 
surrounding the code region that accesses the public shared 
memory. 

7. EXPERIMENTAL RESULTS 
7.1 Evaluation of Software-Based Shared 
Memory Multiplexing 

In our first experiment, we evaluate the performance 
improvements from our proposed software approaches, VTB, 
VTB_pipe and CO-VTB. In Figure 11, we report the speedups of 
these three approaches over the baseline implementation. For each 
benchmark, we examine three GPU configurations, GTX 480 with 
16kB shared memory (labeled “GTX480_SM_16K”), GTX 480 
with 48kB shared memory (labeled “GTX480_SM_48K”) and 
GTX 285 with 16kB shared memory (labeled 
“GTX285_SM_16K”). From the figure, we can make some 
interesting observations. First, among the three software 
approaches, CO-VTB achieves highest performance on average, 
using geometric mean (GM). However, as discussed in Section 6, 
not all workloads are suitable for this approach. VTB_pipe 
achieves higher performance than VTB on average as it can 
overlap shared memory accesses with other parts of code. The 
benchmark, MC, is an exception since the shared memory 
accesses dominate its execution and the overlapping effect from 
VTB_pipe fails to offset the overhead. Since different workloads 
may favor different shared memory multiplexing approaches, in 
order to achieve the best performance, we can generate three 
versions of optimized code using VTB, VTB_pipe and CO-VTB 
and select the best performing one. Second, among three GPU 
configurations, highest performance gains are achieved on GTX 
480 with 16kB shared memory and the average speedups are 
1.42X, 1.60X, 1.61X for VTB, VTB_pipe and CO-VTB, 
respectively. If we select the best version for each benchmark, the 
average performance gain reaches 1.70X. The reason is that 
compared to GTX285, GTX480 has a higher number of SPs. One 

instruction from a warp will keep the SP busy for 4 cycles on 
GTX285 compared 2 cycles on GTX480. Therefore, compared to 
GTX285, TLP is more critical for GTX480. Third, the increased 
shared memory capacity on GTX480 with 48kB shared memory 
enables an SM to host more TBs. The improved TLP in turn 
reduces the benefit of our proposed software schemes. For 
example, for the benchmark CV, each TB has 128 threads and 
uses 8300 Bytes of shared memory. As a result, 16kB shared 
memory can only host 1 TB while 48kB shared memory can host 
5TBs (or 640 threads). Nevertheless, our proposed approaches 
remain effective and the achieved speedups are 1.09X, 1.22X, 
1.14X on average for VTB, VTB_pipe, and CO-VTB, 
respectively. Selecting the best version for each benchmark 
provides a 1.26X speedup on average.  

As two of our benchmarks, FFT and MV, are implemented in 
NVIDIA libraries, we compare our implementation of FFT to 
CUFFT4.0 and MV to CUBLAS4.0 on GTX480. For MV, we 
keep the width of the input matrix as 1024 and vary the height 
from 8K to 128K. The reason is that the height of the input matrix 
determines the number of threads for MV. The throughput 
comparison to CUBLAS4.0 is shown in Figure 12.  

 

Figure 12. Performance comparison of MV among the 
baseline (xK_BL), VTB_pipe (xK_VTB_pipe) and CUBLAS 

4.0 on GTX 480. ‘xK’ denotes the size of shared memory. 

In Figure 12, the results with label ‘16K_BL’ and ‘48K_BL’ are 
our baseline implementation running on GTX480 with 16kB 
shared memory and 48kB shared memory, respectively. Our 
VTB_pipe results are labeled as ‘16K_VTB_pipe’ and 
‘48K_VTB_pipe’ for the two shared memory configurations of 
GTX480. From the results, we can see that our baseline 
implementation running on GTX 480 with 48kB shared memory 
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Figure 11. Speedups of the proposed software approaches over the baseline for different GPUs. 



has similar performance to CUBLAS. With our VTB_pipe 
approach on GTX480 with 16kB shared memory, we can achieve 
similar performance to CUBLAS. On the GTX480 configuration 
with 48kB shared memory, our VTB_pipe approach outperforms 
CUBLAS by up to 74% and 52% on average. 

For 1K-point FFT, we use batch execution [7] to evaluate the 
throughput and vary the batch size from 128 to 2048. The 
throughput results are reported in Figure 13.  

 
Figure 13. Performance comparison of FFT among the 

baseline (xK_BL), VTB_pipe (xK_VTB_pipe) and CUFFT 4.0 
on GTX 480. ‘xK’ denotes the size of shared memory. 

From the figure, we can see that our baseline implementation 
running on GTX480 with 16kB shared memory outperforms 
CUFFT [9] for small batch sizes and not as good as CUFFT for 
large batch sizes. With the 48kB shared configuration, our 
baseline implementation consistently outperforms CUFFT. The 
average throughput of ‘48K_BL’ is 168.3 GFLOPS compared to 
the average of 72.4 GFLOPS throughput of CUFFT. Our 
VTB_pipe further improves the throughput by up to 33% and 
achieves the average throughput of 205.9 GFLOS (a 2.84X 
speedup over CUFFT). 

7.2 Evaluation of Hardware-Supported 
Shared Memory Multiplexing 

To evaluate the effectiveness of our proposed hardware solution, 
we first measure the performance of the baseline implementation 
(i.e., the static shared memory management) and the one with 
hardware support for dynamic shared memory management. Here, 
we use execution time (in the unit of cycles) rather than 
instruction per cycle (IPC) since we insert the dynamic allocation 
and de-allocation instructions into the code. The speedups of our 
hardware-supported dynamic shared memory management 
(labeled ‘HW’) over the baseline are shown in Figure 14. We also 
report the performance results of CO-HW, in which the shared 
memory usage is partitioned into statically managed private and 
dynamically managed public parts, in the figure (labeled 
‘CO_HW’).  

From Figure 14, we can see that our hardware supported dynamic 
allocation and de-allocation can significantly improve the 
performance, up to 2.34X and 1.53X on average, over the baseline 
static shared memory allocation. Similar to the software-based 
CO-VTB approach, we manually modified the code of MC, STO 
and HG for CO-HW. From Figure 14, it can be seen that CO-HW 
achieves up to 1.88X and an average of 1.42X speedups over the 
baseline. As discussed in Section 5, our hardware support 
dynamic shared memory management (‘HW’) eliminates some 
overheads of VTB or VTB_pipe. As a result, between HW and 

CO-HW, CO-HW remains more effective for MC but not for STO 
and HG. In contrast, for their software counterparts, CO-VTB 
typically performs much better than VTB or VTB-pipe. 

 

Figure 14. Speedups of hardware-supported dynamic shared 
memory management over baseline. 

As discussed in Section 5, using dynamic shared memory 
management, many TBs can be dispatched to an SM if the shared 
memory is the only resource bottleneck. This may generate too 
much contention for multiplexing shared memory. A counter 
scheme is proposed in Section 5 to control the number of 
concurrent TBs that can be dispatched to an SM. If we use K to 
denote the maximum number of TBs that can be supported using 
the static shared memory management, we vary the upper bound 
of this counter from K+1 to K+3 and show the performance 
impact in Figure 15. In other words, we use dynamic shared 
memory management to allow an SM to host 1~3 more TBs. 
From the figure, we can see that on average, hosting 1 more TB 
(‘K+1’) does not provide sufficient TLP. Although hosting 2 or 3 
more TBs in an SM shows similar performance, individual 
benchmarks show different trends. FFT and MC favor more TLP 
while HG and MV do not. Overall, our results suggest that either 
K+2 or K+3 is a fine choice as the maximum number of TBs to be 
allowed to run concurrently on an SM. 

 

Figure 15. The impact of the maximum number of TBs to be 
allowed to run in an SM. 

8. RELATED WORK 
On-chip shared memory is a critical resource for GPGPU 
applications. Previous works mainly focus on utilizing shared 
memory to achieve coalesced memory accesses 
[3][4][5][15][16][17][18][19][20], to provide data exchange 
among threads [7], to use shared memory as software managed 
cache [18], etc. Although it is well known that heavy usage of 
shared memory may limit TLP [6][18], it is common that the 
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benefits of using shared memory overweigh the shortcomings of 
reduced TLP. As a result, many GPGPU workloads as shown in 
Section 3 have exhibited high shared memory usage. This is also a 
reason why the latest NVIDIA Fermi architecture (e.g., GTX 480 
GPUs) provides larger shared memory and an L1 cache. However, 
as shown in Section 7, the high number of SPs in an SM in 
GTX480 (and even higher number of SPs in GTX680) makes TLP 
more important to hide instruction execution latencies. In contrast, 
our work improves TLP without sacrificing the usage of shared 
memory. 

9. CONCLUSION 
In this paper, we propose novel software and hardware approaches 
to multiplex shared memory. Our approaches are based on our 
observation that for the GPGPU applications with heavy use of 
shared memory, the duration of time, when the shared memory is 
utilized, is actually low. Our experimental results confirm that the 
shared memory is utilized for only 25.6% of the execution time of 
a TB. Therefore, there exist significant opportunities to time 
multiplex shared memory. Among our software approaches, VTB 
is simplest and it combines two TBs into a new one and adds 
control flow to ensure only one original TB accesses the shared 
memory at a time. VTB_pipe reduces the performance overhead 
of VTB by overlapping non-shared memory access regions (e.g., 
computation or global memory accesses) with shared memory 
accesses. CO-VTB partitions the shared memory data into a 
private part and a public part and only applies VTB/VTB_pipe 
upon the public part. Our proposed hardware support essentially 
exposes the existing shared memory management to software and 
enables software to control when to perform allocation and de-
allocation. Our experimental results show that our proposed 
software schemes improve the performance significantly on 
current GPUs. We evaluate our hardware solution using the 
GPGPUsim simulator and the results show that it improves the 
performance remarkably with very little change in GPGPU code. 
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