
Shared Memory Multiplexing: A Novel Way to Improve
GPGPU Throughput

Yi Yang
North Carolina State University

Raleigh, NC
yyang14@ncsu.edu

Ping Xiang
North Carolina State University

Raleigh, NC
pxiang@ncsu.edu

Mike Mantor
Advanced Micro Devices

Orlando, FL
Michael.Mantor@amd.com

Norm Rubin
Advanced Micro Devices

Boxborough, MA
Norman.Rubin@amd.com

Huiyang Zhou
North Carolina State University

Raleigh, NC
hzhou@ncsu.edu

ABSTRACT
On-chip shared memory (a.k.a. local data share) is a critical
resource to many GPGPU applications. In current GPUs, the
shared memory is allocated when a thread block (also called a
workgroup) is dispatched to a streaming multiprocessor (SM) and
is released when the thread block is completed. As a result, the
limited capacity of shared memory becomes a bottleneck for a
GPU to host a high number of thread blocks, limiting the
otherwise available thread-level parallelism (TLP). In this paper,
we propose software and/or hardware approaches to multiplex the
shared memory among multiple thread blocks.

Our proposed approaches are based on our observation that the
current shared memory management reserves shared memory too
conservatively, for the entire lifetime of a thread block. If the
shared memory is allocated only when it is actually used and freed
immediately after, more thread blocks can be hosted in an SM
without increasing the shared memory capacity. We propose three
software approaches to enable shared memory multiplexing and
implement them using a source-to-source compiler. The
experimental results show that our proposed software approaches
effectively improve the throughput of many GPGPU applications
on both NVIDIA GTX285 and GTX480 GPUs (an average of
1.44X on GTX285, 1.70X on GTX480 with 16kB shared
memory, and 1.26X on GTX480 with 48kB shared memory). We
also propose hardware support for shared memory multiplexing,
which incurs minor hardware changes to existing hardware and
enables significant performance improvements (an average of
1.53X) to be achieved with very little change in GPGPU code.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – shared memory

General Terms
Performance, Design, Experimentation.

Keywords
GPGPU, Shared memory, Dynamic management.

1. INTRODUCTION
Modern many-core graphics processor units (GPUs) rely on
thread-level parallelism (TLP) to deliver high computational
throughput. To mitigate the impact of long latency memory
accesses, besides TLP, software managed on-chip local memory is
included in state-of-art GPUs. Such local memory, called shared
memory in NVIDIA GPUs and local data share in AMD GPUs,
has limited capacity. As a shared resource among threads, shared
memory is one of the key factors to determine how many threads
can run concurrently on a GPU.

State-of-art GPUs manage shared memory in a relatively simple
manner. When a group of threads (called a thread block or
workgroup) is to be dispatched, the shared memory is allocated
based on the aggregate shared memory usage of all the threads in
the thread block (TB). When a TB finishes execution, the
allocated shared memory is released. When there is not sufficient
shared memory for a thread block, the TB dispatcher is halted.

There are two major limitations to the aforementioned shared
memory management. First, the allocated shared memory is
reserved throughout the lifetime of a TB, even if it is only utilized
during a small portion of the execution time. Second, when the
shared memory size (e.g., 16kB) is not a multiple of the shared
memory usage (e.g., 9kB) of a TB, a fraction of shared memory
(e.g., 7kB) is always wasted. These two limitations reduce the
number of TBs that can concurrently run on a GPU, which may
impact the performance significantly as there may not be
sufficient threads to hide long latencies of operations such as
memory accesses.

In this paper, we first characterize the usage of shared memory in
GPGPU (general purpose computation on GPUs) applications and
make an important observation that many GPGPU applications
only utilize shared memory for a small amount of time compared
to the lifetime of a TB. Then, we propose novel ways to multiplex
shared memory so as to enable a higher number of TBs to be
executed concurrently. These schemes include three software
approaches, namely VTB, VTB_pipe, CO-VTB, and one
hardware solution. Our software approaches work on existing
GPUs and they essentially combine two original TBs into a new
TB and add if-statements to control time multiplexing of the
allocated shared memory between the two original TBs. Our
hardware solution incurs minor changes to existing hardware and
supports dynamic shared memory allocation and de-allocation so
as to enable shared memory multiplexing with very little change
in GPGPU code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09...$15.00.

Our experimental results on NVIDIA GTX285 and GTX480
GPUs show remarkable performance gains from our proposed
software approaches, up to 1.95X and 1.44X on average on
GTX285 and up to 2.19X and 1.70X on average on GTX480. We
also evaluate our hardware proposal using the GPGPUsim
simulator [1], which shows up to 2.34X and an average of 1.53X
performance enhancement.

Our work makes the following contributions. (1) We characterize
shared memory usage among GPGPU applications and highlight
that many GPGPU applications utilize shared memory only for a
limited portion (an average of 25.6%) of the execution time of a
TB; (2) we propose three software approaches to time multiplex
shared memory among TBs; (3) we propose a simple hardware
approach to support dynamic shared memory management; and (4)
we show that our proposed software- and hardware-based shared
memory multiplexing approaches are highly effective and
significantly improve the performance.

The remainder of the paper is organized as follows. In Section 2,
we present a brief background on GPGPU architecture and
highlight the importance of shared memory. We characterize the
shared memory usage of GPGPU applications in Section 3. In
Section 4, we present our three software approaches to multiplex
shared memory. Section 5 discusses our hardware solution. The
experimental methodology is addressed in the Section 6 and the
results are presented in Section 7. Related work is discussed in
Section 8. Section 9 concludes our paper.

2. BACKGROUND
State-of-art GPUs use many-core architecture to deliver high
computational throughput. One GPU consists of multiple
streaming multiprocessors (SMs) in NVIDIA GPU architecture or
computer units (CUs) in AMD GPU architecture. Each SM/CU in
turn includes multiple streaming processors (SPs) or thread
processors (TPs). Threads running on GPUs follow the single
program multiple data (SPMD) model and are organized in a
hierarchy. A GPU kernel is launched to a GPU with a grid of
thread blocks (TBs) using the NVIDIA CUDA terminology [10],
which are called workgroups in OpenCL [12]. Threads in a TB
form multiple warps, with each running in the Single Instruction
Multiple Data (SIMD) mode. One or more TBs run concurrently
on one SM, depending on the resource requirement of a TB.

On-chip shared memory is a critical resource for GPGPU
applications. The shared memory provides a mechanism for
threads in the same TB to communicate with each other. It also
serves as a software managed cache so as to reduce the impact of
long latency memory accesses. Since each SM has limited amount
of shared memory, for many GPGPU applications, the usage of
shared memory of a TB determines how many TBs can run
concurrently, i.e., the degree of thread level parallelism (TLP).
Besides shared memory, the register usage of each thread is
another critical factor to determine the number of threads that can
run concurrently. In state-of-art GPUs, both shared memory and
register files (RFs) are managed similarly. When a TB is to be
dispatched to an SM, the TB dispatcher allocates the shared
memory and registers based on the aggregate usage of all the
threads in the TB. The allocated shared memory and registers are
released when the TB finishes execution. When there is not
sufficient resource available in either shared memory or RF in an
SM, the resource is not allocated and no TB will be dispatched to
the SM.

Between shared memory and RFs, current GPUs have higher
capacity in RFs. For example, on NVIDIA GTX285 GPUs, each

SM has 16kB shared memory and a 64kB RF. On NVIDIA
GTX480 GPUs (i.e., the Fermi architecture), each SM has a
128kB RF and a 64kB hybrid storage that can be configured as a
16kB L1 cache+48kB shared memory or a 48kB L1cache+16kB
shared memory. The latest NVIDIA GPU, GTX680 (i.e., the
Kepler architecture), has the same size of shared memory per SM
as GTX480 and a 256kB RF. With a high number of SPs and a
larger RF in each SM, the Kepler architecture is designed to host
more concurrent thread blocks/threads in each SM than the Fermi
architecture, thereby increasing the pressure on shared memory.
On AMD HD5870 GPUs, each CU contains 32kB shared memory
(called local data share) and a 256kB RF. As a result, for many
GPGPU applications, shared memory presents a more critical
resource to limit the number of TBs/threads to run concurrently on
an SM.

3. CHARACTERIZATION OF SHARED
MEMORY USAGE
To understand how GPGPU applications utilize shared memory,
we select and study ten benchmarks, which have shared memory
variables in the source code, as shown in Table 1. Among the
benchmarks, MC, SP, MM, CV, RD and TP are from NVIDIA
SDK [11]. FFT and HG are from AMD SDK [2]. STO [13] is
from the GPGPUSim infrastructure [1]. We implemented the
GPU kernel for MV, which has similar performance to CUBLAS
4.0 [8]. For each benchmark, the shared memory usage of a TB as
well as the number of threads in a TB is reported in Table 1. Also
included is the number of TBs that can run concurrently in an SM
with 16kB shared memory.

Table 1. Benchmarks used in experiments

Benchmarks Shared
memory
size per

TB
(Bytes)

Thread
s per
TB

Thread
s (TBs)
per SM

Actual shared
memory usage
per SM (Bytes)

Matrix vector
multiplication (MV)

4268 32 96 (3) 4268x3 = 12804

Fast Fourier
Transform (FFT)

8736 64 64 (1) 8736x1 = 8736

MarchingCubes
(MC)

9324 32 32 (1) 9324x1 = 9324

StoreGPU (STO) 16304 128 128 (1) 16304x1 =
16304

ScalarProd (SP) 4144 64 192 (3) 4144x3 = 12432
Histogram (HG) 8224 64 64 (1) 8224x1 = 8224
Convolution(CV) 8300 128 128 (1) 8300x1 = 8300

Matrix
Multiplication (MM)

2084 256 1024 (4) 2084x4 = 8336

Transpose (TP) 4260 128 384 (3) 4260x3 = 12870
Reduction (RD) 540 128 1024 (8) 540x8 = 4320

From Table 1, we can classify the benchmarks into two categories.
The first category, including MV, FFT, MC, STO, SP, HG and
CV, has the characteristics that the number of threads, which can
execute concurrently in a SM, is severely limited by the shared
memory capacity. The second category, including MM, TP, and
RD, has the characteristics that either the shared memory usage of
each TB is small or each TB has a large number of threads. For
the benchmarks in the second category, the shared memory is not
a bottleneck for TLP. Therefore, the target of our proposed
approaches is the workloads in the first category. Another
interesting observation from Table 1 is that for all workloads in

the first category, except STO, the shared memory can be severely
underutilized, as shown in the last column of Table 1, although
the limited shared memory size is the cause for limited thread-
level parallelism (TLP). The reason is that when a TB is to be
dispatched, all its required shared memory needs to be available.
Therefore, if the remaining shared memory is not enough for a TB,
it is always wasted.

Next, for all the benchmarks in Table 1, we use simulation to
determine how long the shared memory is utilized in a TB (see
Section 6 for the detailed experimental methodology). Since the
compiler may schedule the shared memory accesses to interleave
with other type instructions to improve instruction-level
parallelism (ILP), if we simply consider the lifetime of shared
memory usage as between the first instruction writing to the
shared memory and the last instruction reading from the shared
memory, we may find that the shared memory is used for almost
the entire lifetime of kernel execution. To isolate the usage of
shared memory from other parts of the kernel code, we insert
‘__syncthreads()’ instructions before the first write/define to and
after the last read/use from the shared memory. We denote a code
region surrounded by our inserted ‘__syncthreads()’ as a shared
memory access region. A redefine of the shared memory variables
will start a new shared memory access region. Here, any define or
use of shared memory variables is based on all the threads in a TB.
Then, we use the accumulated execution time of all shared
memory access regions as the duration for shared memory usage.
In Figure 1, we show the ratio of the duration of shared memory
usage over the overall execution time of a TB. For each
benchmark, this ratio is an average across all its TBs.

Figure 1. The portion of the execution time, during which the
allocated shared memory is actually utilized, of a thread block

for GPGPU applications.

As shown in Figure 1, using the geometric mean (GM) for all the
benchmarks, the shared memory is only used in 25.6% of the
execution time, which means that TBs do not need to use the
allocated shared memory during the 74.4% of their execution time.
Among these benchmarks, MM and TP have high TLP and they
use the shared memory often during the lifetime of a TB. RD has
high TLP but its performance bottleneck is global memory
accesses; therefore the shared memory is idle most of the time.
HG spends most of the execution time on accessing data in the
shared memory, thereby showing the high ratio in Figure 1. For
the remaining benchmarks, the TLP is limited by the shared
memory capacity although their allocated shared memory is only
used for a very limited amount of time compared to the lifetime of
a TB.

4. SHARED MEMORY MULTIPLEXING:
SOFTWARE APPROACHES
As discussed in Section 3, many GPGPU applications suffer from
insufficient TLP due to the limited shared memory capacity. In
this section, we propose three software approaches to time
multiplex shared memory to boost TLP. The key idea of these
three approaches is the same: we combine multiple original TBs
into a larger one and introduce control flow to manage how the
shared memory is accessed among the original TBs. The
difference among the three approaches lies in how to overlap
shared memory accesses with other parts of the code and whether
the combined TB will use more shared memory than an original
TB. To illustrate the proposed approaches, we use the FFT as a
running example. Figure 2 shows the pseudo code of the kernel
function, which implements a 1K-point FFT through a sequence
of 4-point FFT (FFT4 functions) and data interchange through
shared memory (loadFromSM and saveToSM functions). In
loadFromSM, threads load data from shared memory. In
saveToSM threads save data to the shared memory.
‘__syncthreads()’ is used to ensure the order of the shared
memory accesses. We also include the sequence number as a
parameter of FFT4, loadFromSM and saveToSM functions to
show the different parts of the code. With this implementation,
each TB has 64 threads and uses 8736-Byte shared memory (8192
Bytes for data, additional bytes for padding to avoid bank
conflicts and a few bytes reserved by CUDA). This shared
memory usage is obtained from the NVCC compiler.

Figure 2. The pseudo code of a 1k-point FFT implementation,
which uses 8736-Byte shared memory per thread block and

there are 64 threads per thread block.

4.1 Virtual Thread Block (VTB)
In this approach, we first isolate the part(s) of a kernel function
that accesses shared memory variables. Second, we combine two
original TBs into a new one. Here, we refer to an original TB as a
virtual TB. In other words, after TB combination, one TB contains
two virtual TBs. Third, we introduce the control flow
“if(v_tb_id==0)” and “if(v_tb_id ==1)” to manage which virtual
TB will access the shared memory at a time. The amount of the
required shared memory of the combined TB remains the same as
either of the virtual TBs.

For the FFT code example, the code after we apply VTB is shown
in Figure 3. The ‘if-statements’ on lines 4, 6, 8, and 10 are
introduced to ensure that only one virtual TB is accessing the
allocated shared memory at a time. The ‘syncthreads()’ function
on line 7 implicitly marks the last use of the shared memory of

0%

10%

20%

30%

40%

50%

60%

70%

MV FFT MC STO SP HG CV MM TP RD GM

Pe
rc

en
ta

ge

loadFromGlobal();
FFT4(0);
saveToSM(0); //define by multiple threads in a TB
__syncthreads();
loadFromSM(0); //use by multiple threads in a TB
FFT4(1);
__syncthreads();
saveToSM(1); //(re)define by multiple threads in a TB
__syncthreads();
loadFromSM(1); //use by multiple threads in a TB
….
FFT4(4);

 writeToGlobal();

virtual TB 0 so that virtual TB 1 can use the shared memory
immediately afterwards.

Figure 3. The pseudo code of a 1k-point FFT implementation
using VTB. Each thread block uses 8736-Byte shared memory

and there are 128 threads in each thread block.

Next, we illustrate the reason why our proposed VTB can improve
the GPU throughput and also highlight its overhead. Assuming a
GPU with 16kB shared memory in each SM, since each TB
requires more than 8kB shared memory, two TB dispatched to the
same SM have to execute back to back with the code in Figure 2.
This execution process is shown in Figure 4a. For the purpose of
clarity, in Figure 4 we only show the execution time
corresponding to the global memory access, the first 4-point FFT
and the data exchange via the shared memory. The remaining
code in the kernel function simply repeats 4-point FFT and data
exchange multiple times. With the code in Figure 3, the combined
TB is equivalent to the two original TBs. Due to the increased
TLP, the execution time of the function loadFromGlobal() and
FFT4() of 128 threads is significantly less than the back-to-back
execution of the same functions for 64 threads, as shown in Figure
4b. However, to control the accesses to shared memory between
the two virtual TBs, additional synchronization functions are
added to ensure correctness. Besides the latency to perform such
‘__syncthread()’ functions, the barrier also limits the compiler’s
capability to schedule instructions across the barriers, which may
result in reduced instruction-level parallelism (ILP) and additional
register usage. The added control flow instruction “if(v_tb_id==0)”
has minimal overhead as it does not generate any control
divergence within a warp since all 64 threads in the same virtual
TB will follow the same direction and each warp has 32 threads
on NVIDIA GPUs. The global memory access functions
‘loadFromGlobal’ and ‘writeToGlobal’ benefit from VTB as the
increased TLP translate to increased memory-level parallelism
(MLP).

From Figure 4, we can also see that when a virtual TB accesses
the shared memory, the other virtual TB is forced to be idle due to
the control flow and the ‘__syncthread()’ functions. Our proposed
second and third software approaches address this limitation and
we include the execution time information of these approaches in
Figure 4c and 4d for comparison. We discuss these two
approaches in detail in Sections 4.2 and 4.3.

Note that although Figure 3 and Figure 4 show the case of
combining two original TBs into one, we can apply the same
principle to combine more than two TBs. The optimal number of
TBs to combine is dependent on how many concurrent threads can
run on an SM. Typically, combining two TBs is sufficient to reap

most performance benefits. Among all the benchmarks in our
study, only MarchingCubes (MC) benefits from combining more
than two TBs (we combined 4 TBs for MC using our proposed
VTB approach).

Figure 4. A comparison of execution time of the baseline to
our proposed software approaches: (a) the baseline, (b) VTB,

(c) VTB_pipe, and (d) CO-VTB.

4.2 Pipelined Virtual Thread Block
(VTB_PIPE)
As discussed in Section 4.1, VTB combines two virtual TBs into a
larger one and it ensures that only one virtual TB is accessing the
shared memory by forcing the other virtual TB to be idle. To
reduce such idle cycles, we propose to overlap computation with
shared memory accesses. To do so, we make the first virtual TB to
run faster than the second one using an ‘if(v_tb_id==0)’ statement.
Then, when the first virtual block reaches the code section of
shared memory access, the second virtual TB continues its
computation instead of being forced idle. When the second virtual
block reaches the code section of shared memory accesses, the
first will continue to run ahead. This process is similar to letting
the two virtual TBs to go through a pipeline. Therefore, we refer
to this approach as pipelined VTB (VTB_pipe).

For the FFT example, the code after we apply our proposed
VTB_pipe is shown in Figure 5. From Figure 5, we can see that
initially the two virtual TBs will both execute the
‘loadFromGlobal()’ function. Then, the ‘if(v_td_id==0)’
statements on lines 3 and 4 as well as the ‘__syncthreads()’ on
line 5 enable virtual TB 0 to execute the ‘FFT4()’ and ‘saveToSM’

1. int v_tb_id = threadIdx.x/64; //virtual thread block id
2. loadFromGlobal();
3. FFT4(0);
4. if (v_tb_id==0) saveToSM(0); //def. from threads in v_tb_0
5. __syncthreads();
6. if (v_tb_id==0) loadFromSM(0);//use. from threads in v_tb_0
7. __syncthreads();
8. if (v_tb_id==1) saveToSM(0); //def. from threads in v_tb_1
9. __syncthreads();
10.if (v_tb_id==1) loadFromSM(0);//use. from threads in v_tb_1
11.FFT4(1);
12. ….
13.FFT4(4);
14.writeToGlobal();

Execution time

TB0

TB1

 VTB0

VTB1

 VTB0

VTB1

__syncthreads()

(a) Two thread blocks (TB0 and TB1) use one copy of shared memory
(baseline)

(b) Two virtual thread blocks (VTB0 and VTB1) multiplex one copy
of shared memory (VTB)

(c) Two virtual thread blocks (VTB0 and VTB1) multiplex one copy
of shared memory with a pipelined schedule (VTB_pipe)

 VTB0

VTB1

(d) Two virtual thread blocks (VTB0 and VTB1) multiplex a copy of
the public shared memory (CO-VTB)

Shared memory
access region

Non-shared
memory regions

functions, making it running ahead of virtual TB1. The code on
line 6 and line 7 shows the overlapping between the function
‘loadFromSM()’ of virtual TB0 and the ‘FFT4()’ function of
virtual TB1. Since virtual TB1 is lagging behind, when it reads
from the shared memory via ‘loadFromSM()’ on line 11, the
virtual TB0 proceeds to compute its next 4-point FFT, the ‘FFT4()’
on line 12. The execution process is shown in Figure 4b. Due to
the overlapping between shared memory accesses and
computation, we can reduce the idle cycles experienced by virtual
TBs.

Figure 5. The pseudo code of a 1k-point FFT implementation
using VTB_pipe. Each thread block uses 8736-Byte shared

memory and there are 128 threads in each thread block.

The complexity of VTB_pipe, however, is that we may need to
partition the non-shared memory access code section to create
small computational/global memory access tasks so that they can
overlap with shared memory accesses. The ideal case is that the
small computational tasks have similar execution latency to the
shared memory accesses and can completely utilize the otherwise
idle cycles. In the FFT example, the FFT4 is a convenient choice
and does not require such partition. For other benchmarks such as
Histogram (HG), loop peeling is used to create such a
computational/global memory access task to overlap with the
shared memory accesses. Similar to the VTB approach, we can
choose to combine more than two original TBs. However,
synchronization among more than two TBs becomes difficult to
manage. Therefore, we choose not to combine more than two TBs
for our VTB_pipe approach.

4.3 Collaborative Virtual Thread Block
(CO_VTB)
In both VTB and VTB_pipe, a few original TBs are combined to
time multiplex the allocated shared memory, thereby significantly
improving TLP. For some applications, the TLP improvement is
sufficient to hide instruction execution latencies. For others, there
exist additional opportunities. As discussed in Section 3, if the
shared memory size is not a multiple of the shared memory usage
of a TB, part of shared memory is always wasted. Neither VTB
nor VTB_pipe addresses this issue as they do not alter the shared
memory usage of a TB. To effectively utilize such otherwise
wasted shared memory, we propose to let two TBs to

collaboratively utilize the shared memory and refer to this
approach as collaborative virtual thread blocks (CO-VTB). In CO-
VTB, we partition the shared memory usage of a TB into two
parts, private and public, and apply the VTB (or VTB_pipe)
approach only on the public part. For example, if the original
shared memory usage of a TB is 9kB, an SM with 16kB shared
memory can only host 1 TB. If we partition the shared memory
usage of a TB into a 7kB private part and a 2kB public part, when
we combine two TBs, each uses 7kB private shared memory each
(a total of 14kB) and both time multiplex the 2kB public shared
memory, thereby utilizing the 16kB shared memory effectively.
Figure 4d illustrates the execution of our proposed CO-VTB
approach.

Next, we use the benchmark, MatchingCube, to show the code
changes for CO-VTB. For the benchmark FFT, CO-VTB involves
too much code change, which incurs high performance overhead.
The simplified pseudo code of the baseline MatchingCube kernel
is shown in Figure 6a. From the code, we can see that each TB has
32 threads and uses 9216-Byte (=24*32*3*4) shared memory.
The code after we apply CO-VTB is shown in Figure 6b. Now,
one TB has 2 virtual TBs and there are 64 threads in a TB. The
shared memory array is partitioned into two parts: the private
arrays ‘vertlist_v0’ and ‘vertlist_v1’, which are combined into a
single array ‘vertlist’, and the public array ‘vertlist2’, which is
multiplexed by the two virtual TBs. Either private array has the
size of 6144(=16*32*3*4) Bytes and the public array size is
3072(=8*32*3*4) Bytes. So, the overall shared memory usage of
a TB becomes 15360 (= 2*6144+3072) Bytes. The register
variable ‘reg’ is introduced to temporarily hold the data to be
written to the public part of the shared memory. Additional code
is inserted to check the array index (the variable ‘edge’) to
determine whether the data resides in the private or public part of
shared memory and then either the array ‘vertlist’ (private) or the
array ‘vertlist2’ (public) is used accordingly.

As shown from the code example in Figure 6, there is overhead
involved in the CO-VTB approach, including additional register
variables and additional code. For kernel functions like FFT, the
complex array access patterns introduce too much overhead when
a shared memory array is partitioned to private and public parts.
Therefore, CO-VTB is utilized selectively, only for arrays with
relatively simple access patterns. Due to this complexity, we also
choose not to combine more than two TBs.

5. SHARED MEMORY MULTIPLEXING:
A HARDWARE SOLUTION
As discussed in Section 4, our proposed software approaches
improve TLP by merging original TBs and explicitly managing
the shared memory accesses among them. The advantage of the
software approaches is that they work well with current GPUs.
The disadvantage, however, is the overhead introduced to manage
the shared memory. In this section, we propose a hardware
solution to managing shared memory.

In GPUs, the TB dispatcher dispatches TBs onto SMs. For each
SM, it maintains a shared memory management (SMM) table, as
shown in Figure 7. The SMM table has multiple entries and each
entry keeps three fields, the TB id, the size, and the starting
address. When a TB is to be dispatched to an SM, the TB
dispatcher goes through the SMM table of the SM to determine
whether there is enough free shared memory. If so, the dispatcher
allocates the required shared memory by filling an entry in the
SMM table with the TB id and setting its size field to the required
shared memory size of the TB. The starting address field is

1. int v_tb_id = threadIdx.x/64;
2. loadFromGlobal();
3. if (v_tb_id==0) FFT4(0);
4. if (v_tb_id==0) saveToSM(0);
5. __syncthreads();
6. if (v_tb_id==0) loadFromSM(0);
7. else FFT4(0);
8. __syncthreads();
9. if (v_tb_id==1) saveToSM(0);
10. __syncthreads();
11. if (v_tb_id==1) loadFromSM(0);
12. else FFT4(1);
13. __syncthreads();
14. if (v_tb_id==0) saveToSM(1);
15. __syncthreads();
16. if (v_tb_id==0) loadFromSM(1);
17. else FFT4(1);
18. ….
19. FFT4(4);
20. writeToGlobal();

determined and then passed to the TB so that every shared
memory access in the TB will use this starting address as the base
address. When a TB finishes execution, the dispatcher releases the
allocated shared memory by invalidate the corresponding SMM
table entry. Since the shared memory is allocated through the
lifetime of a TB, we refer to such shared memory management as
‘static’ allocation and de-allocation.

Figure 6. The simplified pseudo code of MarchingCubes, (a) the
baseline kernel code; (b) the code after we apply CO-VTB.

Figure 7. A shared memory management (SMM) table.

To enable dynamic shared memory management, we propose to
extend the TB dispatcher so that the shared memory management
is exposed to and can be controlled by software. Since shared
memory allocation and de-allocation affect all the threads in a TB,
we propose to associate shared memory management with the
existing ‘__syncthreads()’ function and the new syntax of the
function becomes ‘__syncthreads(int opt, unsigned &base_addr,
unsigned size)’. It still serves as a barrier to synchronize all the
threads in a TB. When the parameter ‘opt’ is 1, it invokes the TB
dispatcher to allocate the shared memory for ‘size’ bytes. The TB
dispatcher uses the same allocation process by going through the
corresponding SMM table. If there is enough free shared memory,
an entry in the SMM table is updated and its ‘starting address’
field is passed to the ‘base_addr’ variable to be used by
subsequent shared memory accesses. If there is no sufficient
shared memory to be allocated, the TB will be stalled until
another TB frees its allocated shared memory. If the parameter
‘opt’ is ‘-1’, the TB dispatcher performs shared memory de-
allocation using the ‘base_addr’ parameter. It searches the SMM
table entries to find the matching ‘starting address’ with the
‘base_addr’ and invalidates the table entry. If the parameter ‘opt’
is ‘0’, the other two parameters (‘base_addr’ and ‘size’) are
ignored and ‘__syncthreads’ operates as a regular barrier. To
simplify the design, we choose not to allow nested shared memory
allocation so as to avoid any potential deadlock issue. We also
require that for a kernel function, the size of dynamic allocation
and de-allocation to be the same so as to avoid fragmentation.

The code change to utilize our proposed dynamic shared memory
management is very little. It only needs a shared memory
allocation at the beginning and de-allocation at the end of each
memory access code region. For the FFT kernel, the code after
such changes is shown in in Figure 8.

Figure 8. The pseudo code for 1k-point FFT kernel using the
hardware supported dynamic shared memory management.

Each TB allocates and de-allocates 8376-byte shared memory
and contains 64 threads.

The dynamic shared memory allocation and de-allocation in the
FFT kernel shown in Figure 8 enables an SM to exploit higher
degrees of TLP. Figure 9 illustrates this effect with two TBs
running on an SM. Although the shared memory (16kB) on the
SM is not large enough for the aggregate requirement from the
two TBs (2x8376=16752B), our proposed dynamic allocation
enables them to run concurrently and ensures that the two
allocation calls will be served one after the other.

From Figure 9, it can be seen that the key performance advantages
of our dynamic shared memory management include: (1) higher
degrees of TLP to hide instruction latencies, and (2) reduced
overhead of ‘__syncthreads()’ as the barrier is limited to a TB and
doesn’t affect other TBs. In comparison, in our software

(b) The pseudo code of MarchingCubes using CO-VTB.
Each thread block uses 2*6144+3072=15360 Byte shared
memory and there are 64 threads in each thread block.

(a) The pseudo code of MarchingCubes, for which each
thread block uses 9216-Byte shared memory and has 32
threads.

#define NTHREADS 32
__global__ void generateTriangles() {
// each virtual TB uses 6144-byte private shared memory.
//__shared__ float3 vertlist_v0[16][NTHREADS];
//__shared__ float3 vertlist_v1[16][NTHREADS];
//Both private parts are combined into a single array vertlist
 __shared__ float3 vertlist[2][16][NTHREADS];
// accessing the private part of shared memory

for (i=0; i<16; i++) vertlist [v_tb_id][i][v_t_id]=f1(i);
float3 reg[8];
for (i=16; i<24; i++) reg[i-16] = f1(i);
__syncthreads();

// two virtual TBs multiplex 3072-byte public shared memory.
__shared__ float3 vertlist2[8][NTHREADS];
if (v_tb_id==0) {
 for(i=0; i<8; i++) vertlist2[i][v_t_id]= reg[i];

 for(i=0; i<numVerts; i++) {
 uint edge = tex1Dfetch(triTex, cubeindex*16 + i);
// check whether the data is in private or public shared memory
 if(edge<16) pos[index] =
 f2(vertlist[v_tb_id][edge][v_t_id])
 else pos[index] = f2(vertlist2[edge-16][v_t_id]); } }

__syncthreads();
 if (v_tb_id==1) { … }
}

#define NTHREADS 32
__global__ void generateTriangles() {
 //each TB uses 4*3*24*32 = 9216 byte share memory.

__shared__ float3 vertlist[24][NTHREADS];
// store the result of function f1 into shared memory
for (i=0; i<24; i++) vertlist [i][threadIdx.x]= f1(i);

 for(i=0; i<numVerts; i++) {
 uint edge = tex1Dfetch(triTex, cubeindex*16 + i);
 // use function f2 perform computation on shared memory
 pos[index] = f2(vertlist[edge][threadIdx.x]);
 }
}

Valid TB id Size Starting Address
1 6 4kB 0
1 10 4kB 4096
 … …

loadFromGlobal();
FFT4(0);
__syncthreads(1, &base_addr , 8376); //allocation
saveToSM(0); //define by multiple threads in a TB
__syncthreads(0, 0, 0); //synchronization
loadFromSM(0); //use by multiple threads in a TB
__syncthreads(-1, &base_addr , 8376); //de-allocation

FFT4(1);
….

 writeToGlobal();

approaches, such a barrier will affect both virtual TBs.
Furthermore, dynamic allocation and de-allocation naturally
enables overlap between shared memory accesses of one TB and
non-shared memory code in another as long as they do not reach
allocation at the same time. This is the reason why we do not need
the code changes of our VTB or VTB_pipe approaches.

Figure 9. Two TBs running concurrently on an SM using
dynamic shared memory management.

With the hardware supported shared memory management, we do
not need to combine TBs. A TB can be dispatched to an SM as
long as other resource requirements such as registers are satisfied.
As a result, there might be too many TBs dispatched to an SM.
We propose to use a counter to track how many TBs are running
on an SM and stall TB dispatching when this counter reaches a
threshold. If we denote the maximum number of TBs that can be
dispatched to an SM using the static shared memory management
as K, the threshold setting of K+2 or K+3 achieves good
performance (See Section 7.2). In other words, allowing an SM to
run 2 or 3 more TBs concurrently usually improves TLP
sufficiently.

With our proposed hardware solution, the TB dispatcher can
support both static and dynamic shared memory management. We
propose to let either the run-time or compiler to determine which
mechanism to be used. If the static management is selected for the
purpose of quality of service, the dynamic management
instructions are ignored. Static and dynamic shared memory
management can also be used together to support collaborative
TBs, similar to the idea exploited in CO-VTB. We refer to this
hardware supported collaborative TB approach as CO-HW. Like
CO-VTB, we need to change the kernel code to partition the
shared memory usage into the private part and the public part.
Unlike CO-VTB, we do not need to use VTB or CO-VTB on the
public part. Instead, we insert dynamic allocation and de-
allocation instruction to multiplex the public part. When a kernel
is launched to a GPU, the compiler or the run-time provides the
sizes of both the private part and the public part to the TB
dispatcher. Static shared memory management is used for the
private part and dynamic shared memory management is used to
multiplex the public part. For example, a TB originally uses 6kB
shared memory and an SM with 16kB shared memory can host
two such TBs using static shared memory management. After
partition, a TB uses 4kB private and 2kB public shared memory.
With 16kB shared memory, three TBs can run concurrently using
a total of 12kB (=4kBx3) private shared memory. The remaining
4kB is used as public shared memory among the three TBs. The
same SMM table is used to manage shared memory as shown in
Figure 10, where the first three entries are allocated when the
three TBs are dispatched and the last two are allocated/de-
allocated with the ‘__syncthreads(opt, &base_addr, size)’
instructions.

Figure 10. The SMM table manages shared memory usage for
collaborative TBs. The first three entries are for the private
shared memory of the 3 TBs. The last two entries are for the

public shared memory.

Due to static management, the private part is allocated when a TB
is dispatched and is de-allocated when it completes execution. The
public part is managed based on the dynamic allocation and de-
allocation instructions. The only constraint, which the TB
dispatcher enforces, is that when a TB is dispatched, the total
amount of the private parts of currently running TBs in an SM
cannot exceed (the size of overall shared memory – the size of the
public part of a TB). The purpose is to ensure that there is at least
one set of public shared memory available to be used among the
TBs.

Our proposed hardware solution simply exposes the existing
shared memory management in the TB dispatcher to the software
and enables it to be controlled by the extended ‘__syncthreads()’
instructions. The code change is to insert ‘__syncthreads(1,
&base_addr, size)’ at the beginning of shared memory access
regions and ‘__syncthreads(-1, &base_addr, size)’ at the end. For
CO-HW, this region is where the public shared memory part is
accessed. Therefore, we argue that this solution has low overhead
in both hardware and software changes. The effectiveness is
evaluated in Section 7.2.

6. EXPERIMENTAL METHODOLOGY
To evaluate our proposed software approaches, we use both
NVIDIA GTX 480 and NVIDIA GTX285 GPUs with CUDA
SDK 4.0. Because the shared memory size is configurable on
GTX 480 GPUs, we present two sets of results: one with 48kB
shared memory and the other with 16kB shared memory. As
discussed in Section 3, the focus of our proposed approaches is
the category of applications, which have low TLP due to the
limited capacity of shared memory in an SM. Therefore, among
all the workloads in Table 1, our experiments do not include MM,
TP, and RD as they have high TLP already and are not affected by
our approaches. We implemented our proposed VTB and
VTB_pipe using a source-to-source compiler, Cetus [14]. For
VTB, the compiler searches defines and uses of shared memory
variables among all the threads in a TB. The code between the
first define and the last use is treated as a shared memory access
region. Re-defines to shared memory variables are used to help to
determine the last uses in a region. Then, the compiler generates
the code for virtual TB ids and the control flow to determine
which virtual TB accesses the shared memory. For VTB_pipe, we
add annotations manually to denote the section of code to overlap
with shared memory access regions and the compiler generates
the final code. For CO-VTB, we generate the code manually due
to the complexity of partitioning shared memory variables into
private and public parts. Also, as discussed in Section 5.3, not all
workloads are suitable to CO-VTB due to the associated
overheads. Among the workloads, we applied CO-VTB to MC,
STO, and HG.

Execution time

TB0

TB1

Shared memory
access region

Non-shared
memory regions

syncthreads
(opt, &base_addr, size)

 TB2

 TB3

Valid TB id Size Starting Address
1 0 4kB 0
1 1 4kB 4096
1 2 4kB 8192
1 0 2kB 12288
1 1 2kB 14436

To model our proposed hardware support, we extend the
GPGPUsim V3.0 simulator [1] to support our proposed dynamic
shared memory management instructions (i.e., the extended
‘__syncthreads()’ instruction). The simulator models an NVIDIA
GTX285 GPU, which has 16kB shared memory and a 64kB
register file on each SM. The off-chip memory frequency is set to
1100MHz. We manually inserted the dynamic allocation and de-
allocation instructions in the workloads. For the CO-HW
approach, we used very similar code to CO-VTB except the part
using virtual TB ids as we do not need to combine two TBs. We
also inserted the dynamic allocation and de-allocation instructions
surrounding the code region that accesses the public shared
memory.

7. EXPERIMENTAL RESULTS
7.1 Evaluation of Software-Based Shared
Memory Multiplexing

In our first experiment, we evaluate the performance
improvements from our proposed software approaches, VTB,
VTB_pipe and CO-VTB. In Figure 11, we report the speedups of
these three approaches over the baseline implementation. For each
benchmark, we examine three GPU configurations, GTX 480 with
16kB shared memory (labeled “GTX480_SM_16K”), GTX 480
with 48kB shared memory (labeled “GTX480_SM_48K”) and
GTX 285 with 16kB shared memory (labeled
“GTX285_SM_16K”). From the figure, we can make some
interesting observations. First, among the three software
approaches, CO-VTB achieves highest performance on average,
using geometric mean (GM). However, as discussed in Section 6,
not all workloads are suitable for this approach. VTB_pipe
achieves higher performance than VTB on average as it can
overlap shared memory accesses with other parts of code. The
benchmark, MC, is an exception since the shared memory
accesses dominate its execution and the overlapping effect from
VTB_pipe fails to offset the overhead. Since different workloads
may favor different shared memory multiplexing approaches, in
order to achieve the best performance, we can generate three
versions of optimized code using VTB, VTB_pipe and CO-VTB
and select the best performing one. Second, among three GPU
configurations, highest performance gains are achieved on GTX
480 with 16kB shared memory and the average speedups are
1.42X, 1.60X, 1.61X for VTB, VTB_pipe and CO-VTB,
respectively. If we select the best version for each benchmark, the
average performance gain reaches 1.70X. The reason is that
compared to GTX285, GTX480 has a higher number of SPs. One

instruction from a warp will keep the SP busy for 4 cycles on
GTX285 compared 2 cycles on GTX480. Therefore, compared to
GTX285, TLP is more critical for GTX480. Third, the increased
shared memory capacity on GTX480 with 48kB shared memory
enables an SM to host more TBs. The improved TLP in turn
reduces the benefit of our proposed software schemes. For
example, for the benchmark CV, each TB has 128 threads and
uses 8300 Bytes of shared memory. As a result, 16kB shared
memory can only host 1 TB while 48kB shared memory can host
5TBs (or 640 threads). Nevertheless, our proposed approaches
remain effective and the achieved speedups are 1.09X, 1.22X,
1.14X on average for VTB, VTB_pipe, and CO-VTB,
respectively. Selecting the best version for each benchmark
provides a 1.26X speedup on average.

As two of our benchmarks, FFT and MV, are implemented in
NVIDIA libraries, we compare our implementation of FFT to
CUFFT4.0 and MV to CUBLAS4.0 on GTX480. For MV, we
keep the width of the input matrix as 1024 and vary the height
from 8K to 128K. The reason is that the height of the input matrix
determines the number of threads for MV. The throughput
comparison to CUBLAS4.0 is shown in Figure 12.

Figure 12. Performance comparison of MV among the
baseline (xK_BL), VTB_pipe (xK_VTB_pipe) and CUBLAS

4.0 on GTX 480. ‘xK’ denotes the size of shared memory.

In Figure 12, the results with label ‘16K_BL’ and ‘48K_BL’ are
our baseline implementation running on GTX480 with 16kB
shared memory and 48kB shared memory, respectively. Our
VTB_pipe results are labeled as ‘16K_VTB_pipe’ and
‘48K_VTB_pipe’ for the two shared memory configurations of
GTX480. From the results, we can see that our baseline
implementation running on GTX 480 with 48kB shared memory

0
10
20
30
40
50
60
70

128k 64k 32k 16k 8k

Pe
rf

or
m

an
ce

 (G
flo

ps
)

Height of input matrix

16K_BL 48K_BL 16K_VTB_pipe 48K_VTB_pipe CUBLAS 4.0

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

MV FFT MC STO SP HG CV GM MV FFT MC STO SP HG CV GM MV FFT MC STO SP HG CV GM

GTX480_SM_16K GTX480_SM_48K GTX285_SM_16K

Sp
ee

du
p

VTB VTB_pipe CO-VTB

Figure 11. Speedups of the proposed software approaches over the baseline for different GPUs.

has similar performance to CUBLAS. With our VTB_pipe
approach on GTX480 with 16kB shared memory, we can achieve
similar performance to CUBLAS. On the GTX480 configuration
with 48kB shared memory, our VTB_pipe approach outperforms
CUBLAS by up to 74% and 52% on average.

For 1K-point FFT, we use batch execution [7] to evaluate the
throughput and vary the batch size from 128 to 2048. The
throughput results are reported in Figure 13.

Figure 13. Performance comparison of FFT among the

baseline (xK_BL), VTB_pipe (xK_VTB_pipe) and CUFFT 4.0
on GTX 480. ‘xK’ denotes the size of shared memory.

From the figure, we can see that our baseline implementation
running on GTX480 with 16kB shared memory outperforms
CUFFT [9] for small batch sizes and not as good as CUFFT for
large batch sizes. With the 48kB shared configuration, our
baseline implementation consistently outperforms CUFFT. The
average throughput of ‘48K_BL’ is 168.3 GFLOPS compared to
the average of 72.4 GFLOPS throughput of CUFFT. Our
VTB_pipe further improves the throughput by up to 33% and
achieves the average throughput of 205.9 GFLOS (a 2.84X
speedup over CUFFT).

7.2 Evaluation of Hardware-Supported
Shared Memory Multiplexing

To evaluate the effectiveness of our proposed hardware solution,
we first measure the performance of the baseline implementation
(i.e., the static shared memory management) and the one with
hardware support for dynamic shared memory management. Here,
we use execution time (in the unit of cycles) rather than
instruction per cycle (IPC) since we insert the dynamic allocation
and de-allocation instructions into the code. The speedups of our
hardware-supported dynamic shared memory management
(labeled ‘HW’) over the baseline are shown in Figure 14. We also
report the performance results of CO-HW, in which the shared
memory usage is partitioned into statically managed private and
dynamically managed public parts, in the figure (labeled
‘CO_HW’).

From Figure 14, we can see that our hardware supported dynamic
allocation and de-allocation can significantly improve the
performance, up to 2.34X and 1.53X on average, over the baseline
static shared memory allocation. Similar to the software-based
CO-VTB approach, we manually modified the code of MC, STO
and HG for CO-HW. From Figure 14, it can be seen that CO-HW
achieves up to 1.88X and an average of 1.42X speedups over the
baseline. As discussed in Section 5, our hardware support
dynamic shared memory management (‘HW’) eliminates some
overheads of VTB or VTB_pipe. As a result, between HW and

CO-HW, CO-HW remains more effective for MC but not for STO
and HG. In contrast, for their software counterparts, CO-VTB
typically performs much better than VTB or VTB-pipe.

Figure 14. Speedups of hardware-supported dynamic shared
memory management over baseline.

As discussed in Section 5, using dynamic shared memory
management, many TBs can be dispatched to an SM if the shared
memory is the only resource bottleneck. This may generate too
much contention for multiplexing shared memory. A counter
scheme is proposed in Section 5 to control the number of
concurrent TBs that can be dispatched to an SM. If we use K to
denote the maximum number of TBs that can be supported using
the static shared memory management, we vary the upper bound
of this counter from K+1 to K+3 and show the performance
impact in Figure 15. In other words, we use dynamic shared
memory management to allow an SM to host 1~3 more TBs.
From the figure, we can see that on average, hosting 1 more TB
(‘K+1’) does not provide sufficient TLP. Although hosting 2 or 3
more TBs in an SM shows similar performance, individual
benchmarks show different trends. FFT and MC favor more TLP
while HG and MV do not. Overall, our results suggest that either
K+2 or K+3 is a fine choice as the maximum number of TBs to be
allowed to run concurrently on an SM.

Figure 15. The impact of the maximum number of TBs to be
allowed to run in an SM.

8. RELATED WORK
On-chip shared memory is a critical resource for GPGPU
applications. Previous works mainly focus on utilizing shared
memory to achieve coalesced memory accesses
[3][4][5][15][16][17][18][19][20], to provide data exchange
among threads [7], to use shared memory as software managed
cache [18], etc. Although it is well known that heavy usage of
shared memory may limit TLP [6][18], it is common that the

0

50

100

150

200

250

300

350

2048 1024 512 256 128

Pe
rf

or
m

an
ce

 (G
flo

ps
)

Batch size of 1K-point FFT

16K_BL 48K_BL 16K_VTB_pipe 48K_VTB_pipe CUFFT 4.0

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

MV FFT MC STO SP HG CV GM

Sp
ee

du
p

HW CO-HW

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

MV FFT MC STO SP HG CV GM

Sp
ee

du
p

K+1 K+2 K+3

benefits of using shared memory overweigh the shortcomings of
reduced TLP. As a result, many GPGPU workloads as shown in
Section 3 have exhibited high shared memory usage. This is also a
reason why the latest NVIDIA Fermi architecture (e.g., GTX 480
GPUs) provides larger shared memory and an L1 cache. However,
as shown in Section 7, the high number of SPs in an SM in
GTX480 (and even higher number of SPs in GTX680) makes TLP
more important to hide instruction execution latencies. In contrast,
our work improves TLP without sacrificing the usage of shared
memory.

9. CONCLUSION
In this paper, we propose novel software and hardware approaches
to multiplex shared memory. Our approaches are based on our
observation that for the GPGPU applications with heavy use of
shared memory, the duration of time, when the shared memory is
utilized, is actually low. Our experimental results confirm that the
shared memory is utilized for only 25.6% of the execution time of
a TB. Therefore, there exist significant opportunities to time
multiplex shared memory. Among our software approaches, VTB
is simplest and it combines two TBs into a new one and adds
control flow to ensure only one original TB accesses the shared
memory at a time. VTB_pipe reduces the performance overhead
of VTB by overlapping non-shared memory access regions (e.g.,
computation or global memory accesses) with shared memory
accesses. CO-VTB partitions the shared memory data into a
private part and a public part and only applies VTB/VTB_pipe
upon the public part. Our proposed hardware support essentially
exposes the existing shared memory management to software and
enables software to control when to perform allocation and de-
allocation. Our experimental results show that our proposed
software schemes improve the performance significantly on
current GPUs. We evaluate our hardware solution using the
GPGPUsim simulator and the results show that it improves the
performance remarkably with very little change in GPGPU code.

10. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments
to improve our paper. This work is supported by an NSF project
1216569, an NSF CAREER award CCF-0968667 and a gift fund
from AMD Inc.

11. REFERENCES
[1] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M.

Aamodt. Analyzing CUDA workloads using a detailed GPU
simulator. In IEEE International Symposium on Performance
Analysis of Systems and Software, April 2009.

[2] AMD Accelerated Parallel Processing SDK V2.3, 2011

[3] B. Jang, D. Schaa, P. Mistry and D. Kaeli. Exploiting
memory access patterns to improve memory performance in
data-parallel architectures. In IEEE Transactions on Parallel
and Distributed Systems, 2010.

[4] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-
fly elimination of dynamic irregularities for GPU computing.

In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2011.

[5] G. Ruetsch and P. Micikevicius, Optimize matrix transpose
in CUDA. NVIDIA, 2009.

[6] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, A Performance
Analysis Framework for Identifying Performance Benefits in
GPGPU Applications. In Proc. ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2012.

[7] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J.
Manferdelli. High performance discrete Fourier transforms
on graphics processors. In Proc. Supercomputing, 2008.

[8] NVIDIA CUDA Toolkit 4.0 CUBLAS Library, 2011

[9] NVIDIA CUDA Toolkit 4.0 CUFFT Library, 2011

[10] NVIDIA CUDA C Programming Guide 4.0, 2011.

[11] NVIDIA GPU Computing SDK 4.0, 2011.

[12] OpenCL, http://www.khronos.org/opencl/

[13] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and
M. Ripeanu. StoreGPU: exploiting graphics processing units
to accelerate distributed storage systems. In International
Symposium on High Performance Distributed Computing,
2008.

[14] S. I. Lee, T. Johnson, and R. Eigenmann. Cetus – an
extensible compiler infrastructure for source-to-source
transformation. In Workshops on Languages and Compilers
for Parallel Computing, 2003

[15] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.
Ueng, J. A. Stratton, and W. W. Hwu. Optimization space
pruning for a multi-threaded GPU. In Proc. International
Symposium on Code Generation and Optimization, 2008.

[16] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W.W. Hwu. Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA. In Proc. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008.

[17] V. Volkov and J. W. Benchmarking GPUs to tune dense
linear algebra. In Proc. Supercomputing, 2008.

[18] Y. Yang, P. Xiang, J. Kong and H. Zhou. A GPGPU
Compiler for Memory Optimization and Parallelism
Management. In ACM SIGPLAN conference on
Programming Language Design and Implementation, 2010.

[19] Y. Yang, P. Xiang, M. Mantor and H. Zhou. Fixing
Performance Bugs: An Empirical Study of Open-Source
GPGPU Programs. In International Conference on Parallel
Processing, 2012.

[20] Y. Zhang, J. Cohen, and J. D. Owens. Fast Tridiagonal
Solvers on the GPU. In Proc. ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2010.

