

Unified Architectural Support for Soft-Error Protection or Software Bug Detection

Martin Dimitrov Huiyang Zhou
School of Electrical Engineering and Computer Science

University of Central Florida

{dimitrov, zhou}@cs.ucf.edu

Abstract

In this paper we propose a unified architectural

support that can be used flexibly for either soft-error

protection or software bug detection. Our approach is

based on dynamically detecting and enforcing instruction-

level invariants. A hardware table is designed to keep

track of run-time invariant information. During program

execution, instructions access this table and compare their

produced results against the stored invariants. Any

violation of the predicted invariant suggests a potential

abnormal behavior, which could be a result of a soft error

or a latent software bug.

In case of a soft error, monitoring invariant violations

provides opportunistic soft-error protection to multiple

structures in processor pipelines. Our experimental

results show that invariant violations detect soft errors

promptly and as a result, simple pipeline squashing is able

to fix most of the detected soft errors. Meanwhile, the

same approach can be easily adapted for software bug

detection. The proposed architectural support eliminates

the substantial performance overhead associated with

software-based bug-detection approaches and enables

continuous monitoring of production code.

1. Introduction

It is a great challenge to build reliable computer
systems with unreliable hardware and buggy software. On
one hand, software bugs account for as much as 40% of
system failures [10] and incur high cost, an estimate of
$59.5B a year, on US economy [12]. On the other hand,
under the current trends of technology scaling, transient
faults (also known as soft errors) in the underlying
hardware are predicted to grow at least in proportion to the
number of devices being integrated [19],[20], which
further exacerbates the problem of system reliability.

While software bugs and soft-errors have unrelated
origins, they share common traits of manifestation. Both
soft-errors and software bugs can cause a program to
behave unexpectedly, to crash, or even to silently corrupt
the output data. Even though both types of errors manifest
in similar ways, previous work has treated the problems
separately. In this paper, we realize that by exploiting
program localities, we can detect abnormal behavior in

order to either protect processors from soft errors or to
hunt down software bugs.

Historically, program localities have been studied
extensively and widely used in high performance
processor design. In this work we observe that program
localities also enable exceptional behavior detection: if an
instruction satisfies a certain pattern or a locality, any
diversion from this pattern could indicate abnormal
behavior. In this paper we focus on a value locality,
named limited variance in data values (LVDV), to detect
either soft-errors or software bugs. LVDV is based on the
observation that the execution results of many instructions
vary only within a certain, predictable range. In other
words, if we compute the data variance of a static
instruction by XORing its last two dynamic execution
results, the variance is usually small, indicating that only a
limited fraction of the result bits vary among different
execution instances. The range of variance can be encoded
as a signature of instruction execution. If the instruction
produces a result, for which the variance exceeds the
encoded one, we can speculate that an exceptional event
has occurred. The cause of the exceptional event can be a
soft error induced by natural radiation sources or it can be
a latent software bug introduced by programmers. We
propose a simple, unified architectural support, which can
be used flexibly to either opportunistically protect the
processor pipeline from soft errors, or to help developers
track down the root causes of software bugs.

The proposed architectural support contains a hardware
table, which tracks the variance of instructions’ execution
results. During program execution, instructions update the
table with their computed results, while detecting whether
the computed results violate the predicted variance. We
allow different sets of instructions to update the table
depending on whether soft-error or software bug detection
is desired. In the first case, if the predicted variance is
violated, we speculate that a soft error has occurred and
squash the processor pipeline. The offending instruction,
as well as the other squashed instructions, is re-executed
in an attempt to correct the soft error transparently. In the
second case, the persistent violations are logged to
facilitate software debugging.

Compared to traditional soft-error protection
approaches, which utilize space or time redundancy
[1][7][11][15], we consider our approach an information
redundancy scheme, which encodes the proper instruction

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

execution to protect processor logic. Since it does not
require any redundant execution, it eliminates much of the
power and performance overhead associated with space or
time redundancy approaches. Our design opportunistically
protects multiple processor structures including: decode
logic, rename tables, the register file, issue queues, and
functional units.

For software bug detection, our architecture
approximates the software-based bug detection approach
DIDUCE [5]. However it also provides unique advantages
compared to software-based bug-tracking approaches:

• Performance efficiency: Our approach is implemented
in hardware and incurs minor performance degradation
due to bug monitoring.
• Binary compatibility: Since it is a pure hardware
scheme, our approach is language independent and
works directly with the binary code without the need for
recompilation.
• Runtime monitoring: Since our approach has very
limited impact on performance, it is possible to use it
after the software construction phase, or after the
product has been released. In this scenario, invariant
violation reports can be incorporated into tools such as
Windows Error Reporting (WER) [22], to provide
developers with additional information about program
behavior or possible causes of an application failure.
The rest of the paper is organized as follows. Section 2

defines the LVDV locality. Section 3 discusses the related
work on soft-error detection and software bug detection.
Section 4 describes our proposed architectural support.
Section 5 shows how our design protects processor
pipelines from soft-errors and Section 6 shows how it is
possible to track down software bugs with the same
architectural support. Section 7 concludes the paper.

2. Limited variance in data values

In this work we use the term Limited Variance in Data
Values (LVDV) to describe the locality of instruction-
level invariants. Variance between two values is simply
defined as the result of XORing the two values. LVDV
extends the traditional/classical value localities [8][16]
and can be exploited for higher coverage and lower false-
positive rates in terms of locality violations.

LVDV is based on the observation that for many
instructions, even if they don’t show predictable value
patterns, the variance among their execution results is
usually limited. For example, for an instruction with
outputs: 1, 60, 122, 40, 402, 7, etc, although there seems
to be no apparent value pattern, an output of
100000000014 still hints a high possibility of exceptional
behavior. LVDV also captures the region locality, which
refers to the fact that memory operations tend to access
data in a fixed (or bounded) region. For example, a load
accesses a certain data structure in the heap space and it
generates the following address sequence that has no
stride locality: 0x11112654, 0x11117838,…, 0x11111200,

0x11119088, …. Then, an out-of-place address such as
0x01117854 (an address accessing the text segment) or
0x71117800 (a stack address) or 0x1191c014 (a seemingly
out-of-range heap address) would indicate a likely error.

For instructions with traditional value localities, LVDV
provides a more effective way of encoding their
characteristics for violation detection. For example, for an
instruction with a repeating stride pattern, 1, 2, 3, …100,
1, 2, 3, …,100, etc, the variance of the results is
constrained to the lower 7 bits and any result showing a
larger variance would signal a potential violation.
Compared to the traditional stride value locality, although
any error in the lower 7 bits can not be detected by LVDV,
the majority of data computation, which produces the
upper 25 bits of the results, is protected (assuming a 32-bit
machine). More importantly, LVDV eliminates all the
false positives that would have been signaled using the
stride value locality as the stride fails to characterize
transition values (i.e. as the value changes from 100 to 1)
correctly. Since soft errors / software bugs in production
code happen rather infrequently, LVDV presents a more
desirable tradeoff between protection coverage and
performance overhead.

3. Related work

3.1. Locality-based soft-error detection

Implicit redundancy through reuse (IRTR) [6] utilizes
instruction reuse [18] for soft-error protection. IRTR
stores both operation inputs and outputs in a reuse buffer
(RB). When an instruction hits in the RB, its inputs are
compared to the inputs stored from the previous execution
of the same instruction. If the inputs match, then the result
stored in the RB and the currently computed result can be
compared for error detection. With IRTR, the error
detection is un-speculative and there are no false alarms if
ignoring any possible soft errors in the RB. However,
corruption of the input values, either in the RB or in the
currently executing instruction will cause the input
comparison to fail, resulting in a loss of coverage.
Therefore, IRTR is not suitable for protecting input-
related logic, such as the rename table or source operand
decode logic. Our scheme protects more logic units since
only the instruction PC is needed to check the expected
variance. The storage overhead is also reduced compared
to IRTR, since we do not need to keep input values.

Exploiting value locality for soft error detection bears
similarity to symptom-based soft error detection, in which
mispredictions of high confidence branches are used as
symptoms of soft errors [19]. The advantage of exploiting
value locality is that an error can be detected more
promptly and simple pipeline squashing is likely to fix the
error as shown from our experimental results.

Compared to our preliminary study on utilizing LVDV
locality for soft-error protection [2], this paper refines the
experimental methodology to perform more accurate fault

74747474

injection and provides a more complete set of
experimental results. Concurrently to our study, a similar
idea was independently proposed by Racunas el at. [14].
Racunas et al. uses a more generic approach and evaluates
the tradeoffs of utilizing different events for soft-error
detection. An architectural implementation, similar to
ours, is also proposed and evaluated. In this paper, we also
advocate the use of program localities to detect errors, but
we focus on one particular locality, namely LVDV. We
provide an in-depth analysis of the protection coverage
provided to different hardware structures, including Issue
Queues and Functional Units, and compare our approach
to three other approaches.

3.2. Locality-based software bug detection

Program localities, invariants in particular, have
previously been exploited by software-based approaches
such as DAIKON [3][4] and DIDUCE [5] to discover
software bugs. It has been shown that invariant violations
are especially helpful to pinpoint latent code errors [5]. In
these approaches, the program’s source code or object
code is instrumented and the results of selected static
instructions or expressions are monitored in order to learn
the invariants. Learning the invariants is accomplished by
initially hypothesizing the strictest invariants, and then
gradually relaxing the hypothesis as invariants are being
violated. To minimize the overhead of tracking the
invariant information, DIDUCE uses a single bit mask for
each tracked expression. The bit mask indicates which bits
of the expression have changed, compared to the previous
executions of the same expression. The bit mask is
computed by an XOR operation between the results of the
current and the previous execution of the expression.

Our proposed approach can be viewed as a hardware
implementation of DIDUCE. It requires no program
instrumentation/recompilation, thereby being binary
compatible. It also eliminates the substantial performance
overhead associated with the software-based approaches.
Thus, it is capable of providing transparent and run-time
bug monitoring.

Oplinger et al. [13] proposed to speed up the execution
of monitoring functions (invariance checking or any other
monitoring function) by executing the monitoring code in
parallel to the main program using thread-level
speculation (TLS). Compared to [13] our approach is more
lightweight as it does not require binary instrumentation or
significant hardware changes required by TLS.

Another approach taking advantage of architectural
support to detect software bugs is AccMon [21]. AccMon
exploits the store set locality of load instructions, i.e., a
memory location is usually updated only by certain store
instructions, to detect abnormal memory operations. Since
AccMon and our proposed approach exploit different
program localities, they are complementary to each other
although some bugs can be detected by both approaches.

4. Proposed architectural support

We propose a hardware structure, named the LVDV
table, to keep track of instruction-level invariants. As
shown in Figure 1, the LVDV table is a cache structure.
Each data entry in the table contains a variance field, a
last-value field, and a K-bit saturating confidence counter.
To reduce the storage overhead, we propose the following
encoding mechanism for variances. A 32-bit variance is
first divided into N equal chunks. If all the bits in a chunk
are zeros, a bit ‘0’ is used to encode the entire chunk. If
any of the bits in a chunk is ‘1’, a bit ‘1’ is used to encode
the chunk. In this way, any variance can be encoded in N
instead of 32 bits. The decode process is straightforward.
For example, when N equals to 4, the encoded value
‘001x’ is simply decoded to a 32-bit variance
0x0000FFFF, meaning that the variance should be
constrained within the lower 16 bits or lower two chunks.

Instructions access the LVDV table with their program
counter (PC). The variance between the instruction’s last
two results is obtained by XORing the current execution
result and the last value from the LVDV table. The
variance is then compared with the encoded variance. If
the current variance is larger than the encoded one and the
confidence counter is above a set threshold, a violation is
detected. If the current variance is larger than the encoded
one and the confidence is low, that means that the LVDV
table is still learning the proper range of the variance. The
current larger variance then replaces the stored one and the
confidence counter is reset. If the current variance is
smaller than or equal to the encoded one, the confidence
counter is incremented by one and there is no update to the
stored variance. As a last step, the last value is replaced
with the current execution result.

Figure 1. The architecture to exploit LVDV for soft
error detection or software bug detection.

5. Soft-error protection

5.1. Soft-error recovery mechanism

In this section we address how we use the LVDV
locality to detect/recover from soft-errors. We also present
our experimental results to show the effectiveness of the
proposed approach compared to other soft error detection
schemes.

Fetch Dispatch Issue
 Reg Read Execution Write Back Retire

PC

Error
detected

Tag
 Encoded Variance Last Value

XOR

>

Execution
result

LVDV Table

Confident

75757575

The LVDV table maintains the variances of value-
producing instructions, except memory operations, for
which the variances of the addresses are encoded.
Although load values are not protected directly in this
way, immediately dependent operations offer indirect
protection if they exhibit limited variances. When a likely
soft error is detected by the LVDV table, the processor can
fall back to a previous checkpoint as proposed in [19].
Alternatively, it may squash the pipeline and resume
execution from the instruction that resides at the head of
the re-order buffer (ROB). In this paper, we adopt pipeline
squashing for its simplicity and our experimental results
show that pipeline squashing is capable of fixing many
errors, which occur in the issue queue or functional units.
The reason is that an error is promptly detected if the
faulting instruction or one of its immediately dependent
instructions has limited variance. In such cases, pipeline
squashing is sufficient to prevent the error from being
committed to the architectural state and the re-execution
of the faulting instruction ensures correctness. In case the
detected error is a false positive, pipeline squashing incurs
performance overhead but does not affect correct program
execution.

The LVDV table captures instruction-level execution
behavior. Therefore, a single LVDV table is capable of
detecting any soft error which occurs in the pipeline as
long as the altered execution results lead to a higher-than-
expected variance. Besides the computational logic in the
execution stage, control logic such as the decoder,
renaming table, issue queue, and operand selection logic
are protected. In our experiments (Section 5.4), the
protection of the issue queue and functional units are
examined in detail.

Soft errors in the LVDV table itself are not critical for
correctness and can only cause a false-positive violation,
or loss of error protection. The LVDV is also not on the
critical path of the processor, because it only needs the PC
to start the access. The instruction PC is available as early
as the fetch stage, while the only requirement on the
LVDV table is that the access is complete by the end of
execution stage. A more detailed discussion on the
reliability and complexity impact of the LVDV table is
presented in [2].

5.2. Fault injection methodology

We evaluate the effectiveness of our mechanism using
fault injection. Errors are injected into the issue queue
(IQ) and the functional units (FUs) of our microprocessor
model. The protection level of either structure is evaluated
separately by performing 10 runs and injecting at least
10000 errors per run into the structure under study.
According to the analysis in [19], 10000 per run is a large
enough number of injections to make our results
statistically significant. Similar to [19] we pre-compute a
list of random cycles at which to cause a single-event
upset. Upon reaching a designated cycle, a random bit is

flipped into the target structure. After injecting a fault, we
let the error propagate using execution-driven timing
simulation. We simulate 10000 cycles after the fault is
injected based on the condition that the control flow is not
altered and there are no exceptions such as memory access
violations. At the end of the 10000-cycle trial period, the
architectural state including the program counter, the
architected register file, and memory are compared against
a fault-free model. If a mismatch is detected, then we
assume that the error will not be masked and is critical. On
the other hand, if no mismatch is detected, then the error
must have been either masked during normal program
execution (i.e., a dead or unused bit is flipped) or fixed by
some fault protection mechanism. During the trial period,
if the control flow deviates from the fault-free model (i.e.,
a retiring branch jumps to the wrong target) or a memory
access violation is detected, the error is determined to be
unmasked and critical. After exiting the trial period, the
timing simulator restores the architectural state from the
fault-free model and resumes normal simulation until it
reaches the next designated fault-injection cycle.

When injecting errors into the issue queue (IQ), we
target all the instructions' source and destination operands
and opcode. Errors are not injected in any of the additional
state bits kept in the IQ, such as bits which indicate if an
operand is ready. A soft-error which marks an operand as
not-ready may cause a deadlock, which is easily detected
by a watchdog timer and thus we ignore such errors. Due
to lack of circuit implementation details in our timing
simulator, we cannot properly model error propagation
within combinational logic units. Therefore, when
injecting faults into the functional units, we flip a bit in the
final computed result. This is sufficient for our purposes,
because we are only interested in determining how many
of the errors which propagate from the FUs can be
removed by the proposed mechanisms.

In order to evaluate the effectiveness of a fault
protection scheme, we first perform fault injections
without any error protection (i.e., the base case) and
record the number of critical faults (i.e., faults that are not
masked). Then, with a fault-protection mechanism
enabled, we repeat the fault injection campaign and record
the number critical faults again. The difference in the
number of critical faults shows the effectiveness of the
fault-protection scheme.

Compared to our preliminary study [2], we perform a
larger number of injection runs in this paper. This is
because the number of reported critical faults may vary by
up to 10-13% between runs as a result of random fault
injection. By averaging the results of multiple runs, we
eliminate much of this random effect. In addition, the
injections in this work are more accurate since every bit in
the structures under study is accounted for.

76767676

5.3. Processor model

Our simulator models an MIPS R10000 style
superscalar processor and its configuration is shown in
Table 1. All the experiments are performed using SPEC
CPU 2000 benchmarks with the reference inputs.
Representative simulation points are determined using the
SimPoint [17] with the program phase size as 600M
instructions given the requirements set by our fault
injection methodology.

Table 1. The configuration of processor model.
Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-cycle

issue stage, 1-cycle register access stage, 1-cycle
retire stage. Minimum branch misprediction penalty
= 9 cycles

Instruction
Cache

Size=32 kB; Assoc.=2-way; Replacement = LRU;
Line size=16 instructions; Miss penalty=10 cycles.

Data Cache

Size=32 kB; Assoc.=2-way; Replacement=LRU;
Line size = 64 bytes; Miss penalty=10 cycles.

Unified L2
Cache
(shared)

Size=1024kB; Assoc.=8-way; Replacement = LRU;
Line size=128 bytes; Miss penalty=220 cycles.
Stream buffer hardware prefetcher.

Branch
Predictor

64k-entry G-share; 32k-entry BTB

Superscalar
Core

Reorder buffer: 128 entries; Dispatch/issue/retire
bandwidth: 4-way superscalar; 4 fully-symmetric
function units; Data cache ports: 4. Issue queue: 64
entries. LSQ: 64 entries. Rename map table
checkpoints: 32

Execution
Latencies

Address generation: 1 cycle; Memory access: 2
cycles (hit in data cache); Integer ALU ops = 1
cycle; Complex ops = MIPS R10000 latencies

The LVDV table has a default size of 2048 entries and
is configured as 4-way set-associative. Each entry in its
data store takes 43 bits, including a 3-bit confidence
counter, an 8-bit variance value (i.e., we use 8 chunks to
encode the 32-bit variance), and a 32-bit field for the last
value. Therefore, the overall size of the LVDV table is
88k bits (or 11.008 k Bytes).

5.4. Experimental results

5.4.1 Strength of the LVDV locality

We first examine the strength of the LVDV locality by
checking the fraction of bits in execution results that are
protected using our LVDV scheme. For a result with
variance constrained within the lower k bits, the remaining

(32-k) bits of the result are protected. We varied the
LVDV table size from 1K entries to 8K entries and used 8
chunks to encode the 32-bit variance. We also
experimented with different chunk sizes and determined
that 8 chunks provide a good balance between protection
coverage and low false-positive rate. The ratio of all the
protected bits over the overall result bits is reported for
each benchmark, as shown in Figure 2. From the figure,
we can see that the proposed LVDV protects a significant
portion of execution results, up to 80% in mesa and 50%
on average for an 8K entries LVDV table. Second, we
observe that for some benchmarks, such as perl, twolf, vpr
and mesa, LVDV provides much better protection once
the working set of the application fits into the LVDV
table. In mesa, protection varies from 15% to 80% for a
1K and 8K entries table respectively. However, it is
interesting to observe, that in some cases such as parser
and gap, increasing the LVDV table size results in slightly
decreased protection. This happens because some entries
are rarely evicted from a large table and once the variance
of a static instruction is learned, it is never reset. We
observed that in some cases it is beneficial to periodically
reset the learned variance, which may becomes overly
conservative due to wide variations in execution results. A
small LVDV table will frequently replace entries due to
conflicts and thus refresh their variance information and
enable more execution result bits to be protected. Among
all the examined sizes, we observe that for most
benchmarks a 2K-entry LVDV table provides comparable
protection to an 8K LVDV table. Therefore, we use a 2K
entries table with 8 chunks as default configuration for our
soft-error protection experiments.

While effective at capturing localities for integer or
address computation, it is harder for LVDV to capture
localities for floating-point computations. Such
computations are usually performed with 64-bit doubles,
which consist of 1 sign bit, 11 exponent bits and 52
mantissa bits. In our LVDV table, we keep track of only
32-bit execution results, and therefore we choose to
protect only the top 32 bits of large floating point values.
This way, we keep track of the variance of the sign bit, the
exponent and 20 of the mantissa bits. In our experiments,
we observed that the variance of the mantissa is quite
unpredictable and in most cases no protection is provided.
On the other hand, LVDV is able to protect 3 out of 11

Percentage of Protected Result Bits

0%

10%

20%

30%

40%

50%

60%

70%

80%

gap bzip2 gzip perl tw olf vpr gcc mcf parser vortex ammp art equake mesa sw im w upw ise Average

1K entries 2K entries

4K entries 8K entries

Figure 2. The fraction of protected bits using LVDV locality

77777777

exponent bits on average for the floating point
benchmarks, and up to 10 out of 11 for equake and mesa.

 5.4.2 Analysis of performance overhead

We first evaluate the performance overheads
introduced by different protection mechanisms in fault-
free environment. We compare our approach to Squash on
L2-miss (SL2) [20] and Branch-miss Squash (BR-squash)
[19]. The Instruction Redundancy through Reuse (IRTR)
[6] approach, detailed in Section 3.1, is un-speculative and
does not incur performance overheads. The idea of SL2 is
to keep critical data away from vulnerable structures. SL2
provides partial protection to the IQ by squashing
instructions when a long latency L2-cache miss is being
repaired. The rational is that instructions in the IQ are
unnecessarily exposed to soft errors while the pipeline is
essentially idle. We implemented SL2 by performing a
complete pipeline squash whenever the ROB is full and
the instruction at the head of the ROB is detected to be an
L2 cache miss. The pipeline resumes fetching instructions
as soon as the L2 cache miss has been repaired. In [2],
SL2 is implemented by squashing the pipeline as soon as
the instruction at the head of the ROB is known to be an
L2 cache miss (without waiting for the ROB to become
full). Such more aggressive squashing resulted in higher
protection coverage for some benchmarks, but also led to
larger performance penalties due to more frequent
squashing. BR-squash is a modified version of the
symptom based protection mechanism proposed in [19]. In
the original symptom mechanism, when a confident
branch is mispredicted, the processor is rolled back to a
previous checkpoint. In this work, we do not implement
the checkpointing mechanism and simply squash the
pipeline when a misprediction of a confident branch is

resolved. The reason is to show how promptly the impact
of a soft error can manifest in program execution. The
branch prediction confidence is modeled by a 4k-entry
table and each entry is a 3-bit saturating counter.

The performance results are show in Figure 3. Here, the
average performance is computed by the harmonic mean
of the IPCs and then normalized to the baseline processor
(labeled as H_Mean). In SL2, instruction execution can be
significantly delayed since squashing on an L2 cache miss
may nullify many instructions, which are independent of
the cache miss. For the benchmark ammp, many
completed long-latency floating-point operations are
squashed because of an independent cache miss, resulting
in 31% performance degradation. On average, 0.5%
slowdown is incurred by the SL2 approach. BR-squash
also reports relatively high performance overheads for
some benchmarks, up to 16.6% for gap and an average of
1.8%. BR-squash incurs higher overheads for the integer
benchmarks due to their relatively high branch
misprediction rates. The floating-point benchmarks have
low branch misprediction rates and so the overhead is
much lower as seen in Figure 3. The proposed LVDV
scheme incurs very limited performance overhead, up to
2.3% in the benchmark perl and an average of 0.02%.

5.4.3 Soft-error protection to issue queues

In Figure 4, we compare the protection provided to the
Issue Queues by our approach to SL2 and BR-squash.
LVDV performs the best by removing 28% of critical
errors on average, compared to 7% and 14% for SL2 and
BR-squash respectively. Removing 28% of critical errors
translates to 39% improvement of MTTF (Mean Time to
Failure), which is calculated as 1 / (1- % errors removed).

Notice that the LVDV locality is very general since it is

Protection to Issue Queue

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

gap bzip2 gzip perl tw olf vpr gcc mcf parser vortex ammp art equake mesa sw im wupw ise G_Mean

Percent Errors Removed by LVDV Percent Errors Removed by SL2 Percent Errors Removed by BR-squash

Figure 4. Protection to IQ by LVDV, SL2 and BR-squash

Performance Overheads

0%

5%

10%

15%

20%

25%

30%

35%

gap bzip2 gzip perl tw olf vpr gcc mcf parser vortex ammp art equake mesa sw im wupw ise H_Mean

LVDV

SL2

BR-squash

0.3%

0.0% 0.0%
2.3% 0.5%

0.0% 0.7% 0.0% 0.6%

2.1%
0.0% 0.0% 0.0%

2.1%

0.7%

0.0% 0.0%

Figure 3. Performance overheads of different error protection schemes

78787878

able to provide reasonable protection across all the
benchmarks. On the other hand, both SL2 and BR-squash
are highly application specific, providing significant
protection to some benchmarks (twolf, vpr) and almost no
protection to others (gcc). In general, BR-squash is
effective on benchmarks with a relatively high number of
branch mispredictions, such as gap, parser, twolf, vpr, and
vortex. For benchmarks with low branch misprediction
rates, e.g., gzip and gcc, although many injected errors
result in control flow errors, BR-squashing cannot fix
them since it is too late to prevent the error from
propagating to the architectural state when the
misprediction is detected. Therefore, a checkpoint
mechanism is necessary for BR-squashing to restore the
architectural state. In comparison, LVDV detects errors
more promptly and a simple pipeline squash can fix them
in time. Similarly, SL2 is very effective in protecting those
benchmarks, whose progress is frequently blocked by an
L2 cache miss such as twolf and vpr, and offers almost no
protection to other benchmarks such as gzip, vortex,

equake and wupwise.
In our experiments, IRTR did not protect the IQ well.

The reason is that our simulator models a MIPS R10000
style pipeline and its IQ does not contain the operand
values. As errors are only injected to the opcode and
operands, IRTR only protects the opcode. In a
microarchitecture that models the issue logic using
reservation stations, IRTR will be more effective.

5.4.4 Soft-error protection to functional units

In this experiment, we evaluate the effectiveness of
LVDV on FUs as compared to IRTR and the protection
coverage achieved by both schemes is reported in Figure
5. We implement IRTR as a 2048 entry, 4-way table. Each
entry contains two inputs and one output, for a total of
192k bits. We do not include SL2 and BR-squash in this
experiment as these mechanisms did not protect well from
the faults injected into the FUs. From Figure 5 we see that
the proposed LVDV removes many more critical errors
than IRTR. It achieves a reduction of critical errors of up
to 61% for gap and 42% on average. Considering the
MTTF of the FUs, our opportunistic error protection
provides up to 156% improvement of MTTF for gap, and
72% improvement of MTTF on average. LVDV performs
better than IRTR because it is able to extract useful
locality information from every benchmark and protect a
fraction of the result bits. On the other hand, IRTR

protects all-or-none of the results bits and thus performs
poorly for benchmarks with low instruction reuse locality.

6. Software bug detection

In this section, we elaborate on our proposed
architectural support for software bug detection, including
the implementation details and the experimental results
with several applications.

6.1. Software bug detection mechanism

As addressed in Section 3.2, the proposed architectural
support can be viewed as a hardware implementation of
the statistics-rule-based software approach DIDUCE. In
general, statistic-rule-based approaches [3][4][5][21] rely
on extracting invariance information (or statistical rules)
automatically from multiple successful program runs, or
from the continuous execution of a single long run. Once
the invariants have been obtained, they can be used to
detect violations in subsequent runs. The invariants can
also be used to detect violations within the same long
program run once the rules are established. Statistic-rule-
based approaches are promising because they can detect
bugs that do not violate any programming rules [21].

Similar to other statistic-rule-based approaches, the
usage of our proposed mechanism contains two phases:
the training phase and the bug-detection phase. In the
training phase, our LVDV table learns the invariant
information from successful program runs or during a long
execution run. To preserve invariance information across
multiple program runs, we require the LVDV table to be
written to a file at the end of each program run, and
reloaded at the beginning of a new run. During the bug-
detection phase, the LVDV table is used to detect
violations of the inferred invariance rules and any
invariant violations will be output to a log file. The log for
each violation includes the PC (program counter) of the
faulting instruction, the previous and currently produced
values, the predicted variance, and confidence. Also, any
misses in the LVDV table can be reported as “new code”,
or instructions not executed during the training phase.

Due to the limited capacity of the LVDV table, it is
possible for entries to be evicted and replaced from the
table, which can result in two potential adverse effects: an
increased number of false-positive alerts and a reduction
in detection coverage. The first effect can be explained as

Protection to Functional Units

0%

10%

20%

30%

40%

50%

60%

70%

gap bzip2 gzip perl tw olf vpr gcc mcf parser vortex ammp art equake mesa sw im w upw ise G_Mean

Percent errors removed by LVDV Percent error removed by IRTR

Figure 5. Protection to FUs by LVDV and IRTR

79797979

follows. When new code is encountered, false positives
are common since the proper range of variance has not
been established. The replacement of entries from the
LVDV table can create a similar effect, because the
variance information of the replaced instruction has been
discarded. In this case, it is possible to receive multiple
violations with the same variance for the same static
instruction. Fortunately, such replicate violations can be
easily detected and removed by a simple post processing
of the bug report. The second concern originating from the
limited LVDV table size is the loss of detection coverage.
When the variance information of a static instruction is
replaced from the LVDV table, it is possible that this
information will not be available again in the table at the
time of bug manifestation. To address the issue of limited
table sizes, we allow only store instructions to access the
LVDV table, and we track the variance of their addresses.
The reason why this approach is effective is that most
bugs manifest through memory operations [9]. Moreover,
if the memory operation is at the end of a dependence
chain, violations in previous dependent instructions are
likely to propagate to the tracked memory operation. In
our experiments, every store instruction updates the
LVDV table, including instructions from external
libraries. However, if the code footprint causes too many
replacements in the LVDV table we can optionally restrict
the range of instructions which are allowed to access it, by
excluding external libraries for example. In addition, to
achieve the desired fault coverage, multiple experiments
can be performed with different portions of the code being
tracked, as suggested by Hangal et al. [5].

6.2. Experimental methodology

To evaluate the effectiveness of our approach, we use
four applications from the BugBench benchmark suite [9],
bc-1.06, ncompress-4.2.4, gzip-1.2.4 and polymorph-0.4.0,
with a total of eight bugs. The applications that we use are
representative, real applications with significant use in
practice. The bugs in those applications are also real bugs
rather than purposely injected ones. We were not able to
test our approach on some of the other applications
included in the BugBench suite because we were not able
to compile or run those applications on our simulator.

In our experiments, we compare the hardware LVDV
table to the software approach DIDUCE, in terms of bug-
detection capabilities as well as number of generated
false-positive alerts. To carry out the comparison, we
performed two sets of experiments for each of the selected
applications. In the first set of experiments, we used an
infinite size LDVD table. The infinite size table tracks the
addresses and values of memory operations, as well as the
variance for all arithmetic instructions. With this idealistic
setup, we mimic the software approach DIDUCE, where
no hardware restrictions are imposed on the number of
tracked expressions. In the second set of experiments, we
used a single, realistic LVDV table with 4K entries 4-way

set associative, which only keeps track of addresses
generated by store instructions. In both experiments, we
used a single-bit precision variance (i.e. we did not use the
chunks approach described in Section 2).

6.3. Experimental results

In this section we use the four buggy applications to
evaluate how our 4K LVDV table compares to DIDUCE.
We also give a detailed analysis for some of the bugs and
provide interesting insights about the strengths and
limitations of our mechanism and DIDUCE. To facilitate
discussion and to be able to contrast and compare our
results, we grouped the bugs by their nature. The bugs in
the first group are due to incorrect or missing bounds
checking (of the loop bounds for example). Thus, a loop
may execute too many times and either overflow or
underflow a buffer. In the second group, the bugs are due
to improper use of library calls, such as sprintf and strcpy.

6.3.1 Incorrect bounds checking

We first analyze two of the bugs from bc-1.06. BC is an
arbitrary precision calculator language and it is also the
largest application in our test suite with over 17000 lines
of code. We trained our LVDV tables using several
example programs such as computing prime numbers,
square roots, etc. Then, we executed a specially crafted
input program, which was able to trigger both bugs. The
specially crafted input program was largely different from
our training set and thus the LVDV tables signaled a large
number of violations: 45 and 54 for DIDUCE and for the
4K LVDV respectively (after eliminating duplicate
violations with the same PC, and violations from external
libraries). Thus, bc-1.06 exposed a general weakness in
DIDUCE, as well as any other statistic rule-based
approach: the quality of the reported results is related to
the quality of the training set. However, even though the
number of reported variance violations was large, those
violations were clustered in several specific functions.
Some of those violations were new-code violations, which
indicated that these regions of code were rarely exercised.
As noted by Hangal et al. [5], revealing such rarely
executed code and corner cases is also useful to
developers.

One of the bugs in bc is an interesting off-by-one bug
as shown in Figure 6. The idea of the code is that
whenever the next_array counter reaches the end of the
a_names array, the function more_arrays() is called to
increase the capacity of a_names. However, in this buggy
code, the function more_arrays() is called one iteration
too late and the array a_names is over-flown, as shown at
line 4 in the figure. In other words, the correct condition
should be “if (next_array >= a_count)” instead of “if (id-

>a_name >= a_count)”.
In the assembly code of this program, a store word

instruction is used at line 2 to overflow the array. Both the
4K LVDV and DIDUCE detected a larger than usual

80808080

variance in the address of this store instruction and
signaled a violation. In fact, two variance violations were
signaled for the same store instruction: once, when the
variance of the store address was increased from bit 6 to
bit 7, and again when the variance was increased from bit
7 to bit 8. However, it is interesting to observe that such
larger than usual address would be signaled even if we
fixed the bug with the above suggestion. Therefore, both
DIDUCE and the 4K LVDV do not literally detect this
off-by-one bug, but rather they detect the unusually large
address range of the store instruction. What makes
DIDUCE or the 4K LVDV effective is that frequently
such unusual behavior can point to the root cause of a real
bug, as in this case.

1 id->a_name = next_array++;
2 a_names[id->a_name] = name; /*detection*/
3 if (id->a_name < MAX_STORE){
4 if (id->a_name >= a_count){ /* bug */
5 more_arrays ();
6 }
7 return (-id->a_name);
8 }

Figure 6. An off-by-one bug in bc-1.06

In the bug from Figure 7, the loop condition variable
v_count is mistaken for a different variable a_count.
Therefore, whenever v_count happens to be larger then
a_count, the loop will continue executing and overflow
the buffer arrays. Both 4K LVDV and DIDUCE detect the
unusually large variance in the address of the store
instruction writing to the buffer arrays.

/* Initialize the new elements. */
for (; indx < v_count; indx++){ /* bug*/
 arrays[indx] = NULL; /*detection*/
}

Figure 7. Incorrect loop condition in bc-1.06

For the benchmark polymorph-0.4.0, DIDUCE was
very effective in detecting the defect, with no false-
positives. The buggy part of the benchmark is shown in
Figure 8. Polymorph is a filesystem “unixizer” [23]. It
converts uppercase characters in a filename to lower case.
It also removes unnecessary characters, such as “C:\\”,
which certain programs append to the beginning of
filenames. The code in Figure 8 is from the function
convert_fileName in polymorph.c. The for-loop iterates
through all the characters in the original filename,
converts them to lower case and stores them into the new
filename: newname. However, if the original filename is
longer than MAX, it can overflow the newname array and
overwrite the stack return address. Originally, MAX was
set to 2048. For ease of trigging the bug, we changed it to
64.

We trained the LVDV tables by running polymorph on
several short filenames. After the training step, we
provided a filename slightly longer than 64 characters and
both 4K LVDV and DIDUCE signaled two variance
violations. The first violation corresponds to the store byte
instruction, which stores a character from array original[i]
to array newname[i]. The second violation corresponds to

the store byte instruction which appends the string
terminating character ‘\0’to the array newname[i]. From
this example, we can see that multiple alerts do not
necessarily mean false positives since they may all point
to the same bug.

char newname[MAX];
/* convert the filename */
for(i=0;i<strlen(original);i++){ /*bug*/
 if(isupper(original[i])){
 newname[i]= tolower(original[i]);
 continue;
 }
 newname[i] = original[i]; /*detection*/
}
newname[i] = '\0'; /*detection*/

Figure 8. Buffer overflow in polymorph-0.4.0

Lack of bounds checking causes the next bug in
ncompress-4.2.4. The defect is in the decompression

function as shown in Figure 9. The loop in Figure 9
performs no bounds checking and a carefully crafted input
can underflow the variable stackp. The 4K entries LVDV
table tracking store addresses was very effective in
pointing out the exact defect location, with no false-
positive alerts.

while((cmp_code_int)code >=(cmp_code_int)256)
{ /* Generate output characters in reverse order */
 *--stackp = tab_suffixof(code); /*bug*/ /*detection*/
 code = tab_prefixof(code);
 }

Figure 9. Buffer underflow in ncompress-4.2.4

6.3.2 Misuse of library functions, sprintf and strcpy

The next four bugs are very similar in that they all
misuse the library calls sprintf or strcpy. There was one
such bug in each of the four evaluated applications.
DIDUCE and our 4K LVDV were less effective in
detecting those bugs as we elaborate next.

Due to the similarity of these bugs, we present an
example of only one of them, in Figure 10. In the figure,
fileptr corresponds to the filename of the input argument.
A filename larger than MAXPATHLEN can overflow the
tempname buffer and cause the stack return address to be
overwritten. Neither 4K LVDV nor DIDUCE were able to
directly identify this type of bug. However, for gzip both
4K LVDV and DIDUCE signaled violations originating
from a function called “name_too_long”. In addition to
that, for the benchmarks ncompress and gzip, DIDUCE
(but not 4K LVDV) signaled multiple violations to
function calls strlen() which computed the length of the
input filename elsewhere in the code. Such violations
provide a very helpful hint that the bugs are related to the
length on the input string. Because our 4K LVDV
monitored only store addresses, it did not produce the
strlen() violations. However, by allowing the flexibility to
specify the types of instructions to monitor (such as
arithmetic, or memory operations), the 4K LVDV would
also output those helpful violations. Polymorph and BC,
on the other hand, did not test the length of the input

81818181

elsewhere in the code, and dynamic variance checking did
not signal any helpful violations to track those bugs.

void comprexx(char **fileptr)
{ char tempname[MAXPATHLEN];
 strcpy(tempname,*fileptr); /*Bug String copy without
checking the length of the source and target buffers */
 }

Figure 10. Buffer overflow in ncompress-4.2.4

DIDUCE as well as LVDV would be much more
effective at pointing out the location of such a buffer
overflow if there was an access of variables surrounding
the buffer. Any overflow, which results in a high variance
of those variables, would be easily detected by DIDUCE.
This approach is similar to adding canaries to protect
buffers. As part of our future work, the compiler is to
insert load accesses to canaries at strategic locations in the
code. These load accesses will then be automatically
monitored by the LVDV table for enhanced buffer
overflow protection.

In summary, we demonstrate that the limited size 4K
LVDV successfully approximates the software approach
DIDUCE. In particular, the 4K LVDV detected all four
bugs which DIDUCE detected. Some helpful violations
signaled by DIDUCE (variance in strlen()) can also be
signaled by 4K LVDV when it is allowed the flexibility to
select the types of instructions to monitor (arithmetic or
memory).

In terms of false-positive alerts, the 4K LVDV signaled
a larger number (54 vs. 45) of violations only in the
application bc, compared to DIDUCE. For the rest of the
applications, the number of signaled violations was
identical as shown in Table 2. The total number of
signaled violations is shown after eliminating duplicate
violations from the same instruction and violations from
external libraries. Since ncompress requires different
inputs to trigger the bugs, we provide the number of
violations signaled for each input. For the rest of the
benchmarks, a single input was sufficient to trigger all
bugs.

Table 2. Total number of variance violations signaled
by DIDUCE and 4K LVDV

 polymo
rph

bc ncompress
(input 1)

ncompress
(input 2)

gzip

DIDUCE 2 45 1 0 6

4K LVDV 2 54 1 0 6

7. Conclusions

In this paper we realize that both soft-errors and
software bugs manifest in similar ways during execution.
We propose a unified approach to target both problems by
exploiting a program locality called Limited Variance in
Data Values (LVDV). We design a simple hardware
structure to track instruction-level invariants and to detect
abnormal execution behavior. In terms of soft error
detection/recovery, our experimental results show that the
proposed scheme significantly improves the MTTF of
both the issue queue and the functional units, by an

average of 39% and 72% respectively. Negligible
performance overheads are incurred for such reliability
enhancements. For software bug detection, we
demonstrate that our realistic LVDV mechanism is able to
provide similar bug detection capabilities to the software
tool DIDUCE while eliminating the performance overhead
associated with software approaches, making it possible to
monitor production code for bug detection.

8. Acknowledgements

We thank Shan Lu from UIUC for providing us with
source code, scripts and inputs of the BugBench
applications. We also thank the anonymous reviewers for
their helpful suggestions on improving our paper.

9. References

[1] T. Austin, “DIVA: a reliable substrate for deep submicron
microarchitecture design”, MICRO-32, 1999
[2] M. Dimitrov and H. Zhou, “Locality-based information redundancy
for processor reliability”, WAR-2 workshop in conjunction with MICRO-

39, 2006
[3] M. Ernst, et. al., “Dynamically discovering likely program invariants
to support program evolution”, IEEE TSE, Vol.27, No. 2, February 2001.
[4] M. Ernst, et. al., “Quickly detecting relevant program invariants”,
ICSE, 2000
[5] S. Hangal and M. Lam, “Tracking down software bugs using
automatic anomaly detection”, ICSE, 2002
[6] M. Gomaa and T. Vijaykumar, “Opportunistic Transient-Fault
Detection”, ISCA-32, 2005.
[7] M. Gomma et. al., “Transient-fault recovery for chip
multiprocessors”, ISCA-30, 2003.
[8] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value locality and
load value prediction,” ASPLOS-7, 1996.
[9] S. Lu, et. al., “Bugbench: Benchmarks for evaluating bug detection
tools”, Workshop on the Evaluation of Software Defect Detection Tools,
2005.
[10] E. Marcus and H. Stern, “Blueprints for high availability”, John
Willey and Sons, 2000.
[11] S. Mukherjee, et. al., “Detailed design and evaluation of redundant
multithreading alternatives”, ISCA-29, 2002.
[12] National Institute of Standards and Technology (NIST), Department
of Commerce, “Software errors cost U.S. economy $59.5 billion
annually”, NIST news release 2002-10, 2002.
[13] J. Oplinger and M. Lam “Enhancing software reliability with
speculative threads”, ASPLOS-10, 2002.
[14] P. Racunas, K. Constantinides, S. Manne and S. Mukherjee,
“Perturbation-based fault screening”, HPCA-13, 2007.
[15] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault
tolerance in microprocessors”, FTCS-29, 1999.
[16] Y. Sazeides and J. E. Smith, “The predictability of data values,”
MICRO-30, 1997.
[17] T. Sherwood, et. al., “Automatically characterizing large scale
program behavior”, ASPLOS-X, 2002
[18] A. Sodani and G. Sohi, “Dynamic instruction reuse”, ISCA-24, 1997.
[19] N. Wang and S. Patel, “ReStore: Symptom Based Soft Error
Detection in Microprocessors”, DSN, 2005.
[20] C. Weaver, et. al., “Techniques to reduce the soft error rate of a
high-performance microprocessor”, ISCA-31, 2004.
[21] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff and J.
Torrellas, “AccMon: Automatically detecting memory-related bugs via
program counter-based invariants”, MICRO-37, 2004
[22] Developers Guide to WER,
https://winqual.microsoft.com/help/default.htm#Developers_Guide_to_W
ER.htm, 2006
[23] Polymorph,http://polymorph.sourceforge.net/,2006

82828282

