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Abstract 

In this paper we propose a unified architectural 

support that can be used flexibly for either soft-error 

protection or software bug detection. Our approach is 

based on dynamically detecting and enforcing instruction-

level invariants. A hardware table is designed to keep 

track of run-time invariant information. During program 

execution, instructions access this table and compare their 

produced results against the stored invariants. Any 

violation of the predicted invariant suggests a potential 

abnormal behavior, which could be a result of a soft error 

or a latent software bug.   

In case of a soft error, monitoring invariant violations 

provides opportunistic soft-error protection to multiple 

structures in processor pipelines. Our experimental 

results show that invariant violations detect soft errors 

promptly and as a result, simple pipeline squashing is able 

to fix most of the detected soft errors. Meanwhile, the 

same approach can be easily adapted for software bug 

detection. The proposed architectural support eliminates 

the substantial performance overhead associated with 

software-based bug-detection approaches and enables 

continuous monitoring of production code. 

1. Introduction 

It is a great challenge to build reliable computer 
systems with unreliable hardware and buggy software. On 
one hand, software bugs account for as much as 40% of 
system failures [10] and incur high cost, an estimate of 
$59.5B a year, on US economy [12]. On the other hand, 
under the current trends of technology scaling, transient 
faults (also known as soft errors) in the underlying 
hardware are predicted to grow at least in proportion to the 
number of devices being integrated [19],[20], which 
further exacerbates the problem of system reliability.    

While software bugs and soft-errors have unrelated 
origins, they share common traits of manifestation. Both 
soft-errors and software bugs can cause a program to 
behave unexpectedly, to crash, or even to silently corrupt 
the output data. Even though both types of errors manifest 
in similar ways, previous work has treated the problems 
separately. In this paper, we realize that by exploiting 
program localities, we can detect abnormal behavior in 

order to either protect processors from soft errors or to 
hunt down software bugs.   

Historically, program localities have been studied 
extensively and widely used in high performance 
processor design. In this work we observe that program 
localities also enable exceptional behavior detection: if an 
instruction satisfies a certain pattern or a locality, any 
diversion from this pattern could indicate abnormal 
behavior. In this paper we focus on a value locality, 
named limited variance in data values (LVDV), to detect 
either soft-errors or software bugs. LVDV is based on the 
observation that the execution results of many instructions 
vary only within a certain, predictable range. In other 
words, if we compute the data variance of a static 
instruction by XORing its last two dynamic execution 
results, the variance is usually small, indicating that only a 
limited fraction of the result bits vary among different 
execution instances. The range of variance can be encoded 
as a signature of instruction execution. If the instruction 
produces a result, for which the variance exceeds the 
encoded one, we can speculate that an exceptional event 
has occurred. The cause of the exceptional event can be a 
soft error induced by natural radiation sources or it can be 
a latent software bug introduced by programmers. We 
propose a simple, unified architectural support, which can 
be used flexibly to either opportunistically protect the 
processor pipeline from soft errors, or to help developers 
track down the root causes of software bugs.  

The proposed architectural support contains a hardware 
table, which tracks the variance of instructions’ execution 
results. During program execution, instructions update the 
table with their computed results, while detecting whether 
the computed results violate the predicted variance. We 
allow different sets of instructions to update the table 
depending on whether soft-error or software bug detection 
is desired. In the first case, if the predicted variance is 
violated, we speculate that a soft error has occurred and 
squash the processor pipeline. The offending instruction, 
as well as the other squashed instructions, is re-executed 
in an attempt to correct the soft error transparently. In the 
second case, the persistent violations are logged to 
facilitate software debugging.  

Compared to traditional soft-error protection 
approaches, which utilize space or time redundancy 
[1][7][11][15], we consider our approach an information 
redundancy scheme, which encodes the proper instruction 

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73

16th International Conference on Parallel Architecture and Compilation Techniques

1089-795X/07 $25.00 © 2007 IEEE
DOI 10.1109/PACT.2007.15

73



execution to protect processor logic. Since it does not 
require any redundant execution, it eliminates much of the 
power and performance overhead associated with space or 
time redundancy approaches. Our design opportunistically 
protects multiple processor structures including: decode 
logic, rename tables, the register file, issue queues, and 
functional units.  

For software bug detection, our architecture 
approximates the software-based bug detection approach 
DIDUCE [5]. However it also provides unique advantages 
compared to software-based bug-tracking approaches:  

• Performance efficiency: Our approach is implemented 
in hardware and incurs minor performance degradation 
due to bug monitoring.  
• Binary compatibility: Since it is a pure hardware 
scheme, our approach is language independent and 
works directly with the binary code without the need for 
recompilation.  
• Runtime monitoring: Since our approach has very 
limited impact on performance, it is possible to use it 
after the software construction phase, or after the 
product has been released. In this scenario, invariant 
violation reports can be incorporated into tools such as 
Windows Error Reporting (WER) [22], to provide 
developers with additional information about program 
behavior or possible causes of an application failure.    
The rest of the paper is organized as follows. Section 2 

defines the LVDV locality. Section 3 discusses the related 
work on soft-error detection and software bug detection. 
Section 4 describes our proposed architectural support. 
Section 5 shows how our design protects processor 
pipelines from soft-errors and Section 6 shows how it is 
possible to track down software bugs with the same 
architectural support. Section 7 concludes the paper.  

2. Limited variance in data values  

In this work we use the term Limited Variance in Data 
Values (LVDV) to describe the locality of instruction-
level invariants. Variance between two values is simply 
defined as the result of XORing the two values. LVDV 
extends the traditional/classical value localities [8][16] 
and can be exploited for higher coverage and lower false-
positive rates in terms of locality violations.  

LVDV is based on the observation that for many 
instructions, even if they don’t show predictable value 
patterns, the variance among their execution results is 
usually limited. For example, for an instruction with 
outputs: 1, 60, 122, 40, 402, 7, etc, although there seems 
to be no apparent value pattern, an output of 
100000000014 still hints a high possibility of exceptional 
behavior. LVDV also captures the region locality, which 
refers to the fact that memory operations tend to access 
data in a fixed (or bounded) region. For example, a load 
accesses a certain data structure in the heap space and it 
generates the following address sequence that has no 
stride locality: 0x11112654, 0x11117838,…, 0x11111200, 

0x11119088, …. Then, an out-of-place address such as 
0x01117854 (an address accessing the text segment) or 
0x71117800 (a stack address) or 0x1191c014 (a seemingly 
out-of-range heap address) would indicate a likely error.  

For instructions with traditional value localities, LVDV 
provides a more effective way of encoding their 
characteristics for violation detection.  For example, for an 
instruction with a repeating stride pattern, 1, 2, 3, …100, 
1, 2, 3, …,100, etc, the variance of the results is 
constrained to the lower 7 bits and any result showing a 
larger variance would signal a potential violation. 
Compared to the traditional stride value locality, although 
any error in the lower 7 bits can not be detected by LVDV, 
the majority of data computation, which produces the 
upper 25 bits of the results, is protected (assuming a 32-bit 
machine). More importantly, LVDV eliminates all the 
false positives that would have been signaled using the 
stride value locality as the stride fails to characterize 
transition values (i.e. as the value changes from 100 to 1) 
correctly. Since soft errors / software bugs in production 
code happen rather infrequently, LVDV presents a more 
desirable tradeoff between protection coverage and 
performance overhead. 

3. Related work 

3.1. Locality-based soft-error detection 

Implicit redundancy through reuse (IRTR) [6] utilizes 
instruction reuse [18] for soft-error protection. IRTR 
stores both operation inputs and outputs in a reuse buffer 
(RB). When an instruction hits in the RB, its inputs are 
compared to the inputs stored from the previous execution 
of the same instruction. If the inputs match, then the result 
stored in the RB and the currently computed result can be 
compared for error detection. With IRTR, the error 
detection is un-speculative and there are no false alarms if 
ignoring any possible soft errors in the RB. However, 
corruption of the input values, either in the RB or in the 
currently executing instruction will cause the input 
comparison to fail, resulting in a loss of coverage. 
Therefore, IRTR is not suitable for protecting input-
related logic, such as the rename table or source operand 
decode logic. Our scheme protects more logic units since 
only the instruction PC is needed to check the expected 
variance. The storage overhead is also reduced compared 
to IRTR, since we do not need to keep input values.  

Exploiting value locality for soft error detection bears 
similarity to symptom-based soft error detection, in which 
mispredictions of high confidence branches are used as 
symptoms of soft errors [19]. The advantage of exploiting 
value locality is that an error can be detected more 
promptly and simple pipeline squashing is likely to fix the 
error as shown from our experimental results. 

Compared to our preliminary study on utilizing LVDV 
locality for soft-error protection [2], this paper refines the 
experimental methodology to perform more accurate fault 
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injection and provides a more complete set of 
experimental results. Concurrently to our study, a similar 
idea was independently proposed by Racunas el at. [14]. 
Racunas et al. uses a more generic approach and evaluates 
the tradeoffs of utilizing different events for soft-error 
detection. An architectural implementation, similar to 
ours, is also proposed and evaluated. In this paper, we also 
advocate the use of program localities to detect errors, but 
we focus on one particular locality, namely LVDV. We 
provide an in-depth analysis of the protection coverage 
provided to different hardware structures, including Issue 
Queues and Functional Units, and compare our approach 
to three other approaches. 

3.2. Locality-based software bug detection 

Program localities, invariants in particular, have 
previously been exploited by software-based approaches 
such as DAIKON [3][4] and DIDUCE [5] to discover 
software bugs. It has been shown that invariant violations 
are especially helpful to pinpoint latent code errors [5]. In 
these approaches, the program’s source code or object 
code is instrumented and the results of selected static 
instructions or expressions are monitored in order to learn 
the invariants. Learning the invariants is accomplished by 
initially hypothesizing the strictest invariants, and then 
gradually relaxing the hypothesis as invariants are being 
violated. To minimize the overhead of tracking the 
invariant information, DIDUCE uses a single bit mask for 
each tracked expression. The bit mask indicates which bits 
of the expression have changed, compared to the previous 
executions of the same expression. The bit mask is 
computed by an XOR operation between the results of the 
current and the previous execution of the expression.  

Our proposed approach can be viewed as a hardware 
implementation of DIDUCE. It requires no program 
instrumentation/recompilation, thereby being binary 
compatible. It also eliminates the substantial performance 
overhead associated with the software-based approaches. 
Thus, it is capable of providing transparent and run-time 
bug monitoring.  

Oplinger et al. [13] proposed to speed up the execution 
of monitoring functions (invariance checking or any other 
monitoring function) by executing the monitoring code in 
parallel to the main program using thread-level 
speculation (TLS). Compared to [13] our approach is more 
lightweight as it does not require binary instrumentation or 
significant hardware changes required by TLS. 

Another approach taking advantage of architectural 
support to detect software bugs is AccMon [21]. AccMon 
exploits the store set locality of load instructions, i.e., a 
memory location is usually updated only by certain store 
instructions, to detect abnormal memory operations. Since 
AccMon and our proposed approach exploit different 
program localities, they are complementary to each other 
although some bugs can be detected by both approaches. 

4. Proposed architectural support 

We propose a hardware structure, named the LVDV 
table, to keep track of instruction-level invariants. As 
shown in Figure 1, the LVDV table is a cache structure. 
Each data entry in the table contains a variance field, a 
last-value field, and a K-bit saturating confidence counter. 
To reduce the storage overhead, we propose the following 
encoding mechanism for variances. A 32-bit variance is 
first divided into N equal chunks. If all the bits in a chunk 
are zeros, a bit ‘0’ is used to encode the entire chunk. If 
any of the bits in a chunk is ‘1’, a bit ‘1’ is used to encode 
the chunk. In this way, any variance can be encoded in N 
instead of 32 bits. The decode process is straightforward. 
For example, when N equals to 4, the encoded value 
‘001x’ is simply decoded to a 32-bit variance 
0x0000FFFF, meaning that the variance should be 
constrained within the lower 16 bits or lower two chunks. 

Instructions access the LVDV table with their program 
counter (PC). The variance between the instruction’s last 
two results is obtained by XORing the current execution 
result and the last value from the LVDV table. The 
variance is then compared with the encoded variance. If 
the current variance is larger than the encoded one and the 
confidence counter is above a set threshold, a violation is 
detected. If the current variance is larger than the encoded 
one and the confidence is low, that means that the LVDV 
table is still learning the proper range of the variance. The 
current larger variance then replaces the stored one and the 
confidence counter is reset. If the current variance is 
smaller than or equal to the encoded one, the confidence 
counter is incremented by one and there is no update to the 
stored variance. As a last step, the last value is replaced 
with the current execution result. 

 
Figure 1. The architecture to exploit LVDV for soft 
error detection or software bug detection. 

5. Soft-error protection 

5.1. Soft-error recovery mechanism 

In this section we address how we use the LVDV 
locality to detect/recover from soft-errors. We also present 
our experimental results to show the effectiveness of the 
proposed approach compared to other soft error detection 
schemes.  
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The LVDV table maintains the variances of value-
producing instructions, except memory operations, for 
which the variances of the addresses are encoded. 
Although load values are not protected directly in this 
way, immediately dependent operations offer indirect 
protection if they exhibit limited variances. When a likely 
soft error is detected by the LVDV table, the processor can 
fall back to a previous checkpoint as proposed in [19]. 
Alternatively, it may squash the pipeline and resume 
execution from the instruction that resides at the head of 
the re-order buffer (ROB). In this paper, we adopt pipeline 
squashing for its simplicity and our experimental results 
show that pipeline squashing is capable of fixing many 
errors, which occur in the issue queue or functional units. 
The reason is that an error is promptly detected if the 
faulting instruction or one of its immediately dependent 
instructions has limited variance. In such cases, pipeline 
squashing is sufficient to prevent the error from being 
committed to the architectural state and the re-execution 
of the faulting instruction ensures correctness. In case the 
detected error is a false positive, pipeline squashing incurs 
performance overhead but does not affect correct program 
execution.  

The LVDV table captures instruction-level execution 
behavior. Therefore, a single LVDV table is capable of 
detecting any soft error which occurs in the pipeline as 
long as the altered execution results lead to a higher-than-
expected variance. Besides the computational logic in the 
execution stage, control logic such as the decoder, 
renaming table, issue queue, and operand selection logic 
are protected. In our experiments (Section 5.4), the 
protection of the issue queue and functional units are 
examined in detail.  

Soft errors in the LVDV table itself are not critical for 
correctness and can only cause a false-positive violation, 
or loss of error protection. The LVDV is also not on the 
critical path of the processor, because it only needs the PC 
to start the access. The instruction PC is available as early 
as the fetch stage, while the only requirement on the 
LVDV table is that the access is complete by the end of 
execution stage. A more detailed discussion on the 
reliability and complexity impact of the LVDV table is 
presented in [2].  

5.2. Fault injection methodology 

We evaluate the effectiveness of our mechanism using 
fault injection. Errors are injected into the issue queue 
(IQ) and the functional units (FUs) of our microprocessor 
model. The protection level of either structure is evaluated 
separately by performing 10 runs and injecting at least 
10000 errors per run into the structure under study. 
According to the analysis in [19], 10000 per run is a large 
enough number of injections to make our results 
statistically significant. Similar to [19] we pre-compute a 
list of random cycles at which to cause a single-event 
upset. Upon reaching a designated cycle, a random bit is 

flipped into the target structure. After injecting a fault, we 
let the error propagate using execution-driven timing 
simulation. We simulate 10000 cycles after the fault is 
injected based on the condition that the control flow is not 
altered and there are no exceptions such as memory access 
violations. At the end of the 10000-cycle trial period, the 
architectural state including the program counter, the 
architected register file, and memory are compared against 
a fault-free model. If a mismatch is detected, then we 
assume that the error will not be masked and is critical. On 
the other hand, if no mismatch is detected, then the error 
must have been either masked during normal program 
execution (i.e., a dead or unused bit is flipped) or fixed by 
some fault protection mechanism. During the trial period, 
if the control flow deviates from the fault-free model (i.e., 
a retiring branch jumps to the wrong target) or a memory 
access violation is detected, the error is determined to be 
unmasked and critical. After exiting the trial period, the 
timing simulator restores the architectural state from the 
fault-free model and resumes normal simulation until it 
reaches the next designated fault-injection cycle. 

When injecting errors into the issue queue (IQ), we 
target all the instructions' source and destination operands 
and opcode. Errors are not injected in any of the additional 
state bits kept in the IQ, such as bits which indicate if an 
operand is ready. A soft-error which marks an operand as 
not-ready may cause a deadlock, which is easily detected 
by a watchdog timer and thus we ignore such errors. Due 
to lack of circuit implementation details in our timing 
simulator, we cannot properly model error propagation 
within combinational logic units. Therefore, when 
injecting faults into the functional units, we flip a bit in the 
final computed result. This is sufficient for our purposes, 
because we are only interested in determining how many 
of the errors which propagate from the FUs can be 
removed by the proposed mechanisms. 

In order to evaluate the effectiveness of a fault 
protection scheme, we first perform fault injections 
without any error protection (i.e., the base case) and 
record the number of critical faults (i.e., faults that are not 
masked). Then, with a fault-protection mechanism 
enabled, we repeat the fault injection campaign and record 
the number critical faults again. The difference in the 
number of critical faults shows the effectiveness of the 
fault-protection scheme.  

Compared to our preliminary study [2], we perform a 
larger number of injection runs in this paper. This is 
because the number of reported critical faults may vary by 
up to 10-13% between runs as a result of random fault 
injection. By averaging the results of multiple runs, we 
eliminate much of this random effect. In addition, the 
injections in this work are more accurate since every bit in 
the structures under study is accounted for.  
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5.3. Processor model 

Our simulator models an MIPS R10000 style 
superscalar processor and its configuration is shown in 
Table 1. All the experiments are performed using SPEC 
CPU 2000 benchmarks with the reference inputs. 
Representative simulation points are determined using the 
SimPoint [17] with the program phase size as 600M 
instructions given the requirements set by our fault 
injection methodology. 

Table 1. The configuration of processor model. 
Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-cycle 

issue stage, 1-cycle register access stage, 1-cycle 
retire stage. Minimum branch misprediction penalty 
= 9 cycles  

Instruction 
Cache 

Size=32 kB; Assoc.=2-way; Replacement = LRU; 
Line size=16 instructions; Miss penalty=10 cycles. 

Data Cache 
 

Size=32 kB; Assoc.=2-way; Replacement=LRU; 
Line size = 64 bytes; Miss penalty=10 cycles. 

Unified L2 
Cache 
(shared) 

Size=1024kB; Assoc.=8-way; Replacement = LRU; 
Line size=128 bytes; Miss penalty=220 cycles. 
Stream buffer hardware prefetcher.  

Branch 
Predictor 

64k-entry G-share; 32k-entry BTB 

Superscalar 
Core 

Reorder buffer: 128 entries; Dispatch/issue/retire 
bandwidth: 4-way superscalar; 4 fully-symmetric 
function units; Data cache ports: 4. Issue queue: 64 
entries. LSQ: 64 entries. Rename map table 
checkpoints: 32 

Execution 
Latencies 

Address generation: 1 cycle; Memory access: 2 
cycles (hit in data cache); Integer ALU ops = 1 
cycle; Complex ops = MIPS R10000 latencies 

The LVDV table has a default size of 2048 entries and 
is configured as 4-way set-associative. Each entry in its 
data store takes 43 bits, including a 3-bit confidence 
counter, an 8-bit variance value (i.e., we use 8 chunks to 
encode the 32-bit variance), and a 32-bit field for the last 
value. Therefore, the overall size of the LVDV table is 
88k bits (or 11.008 k Bytes). 

5.4. Experimental results 

5.4.1 Strength of the LVDV locality  

We first examine the strength of the LVDV locality by 
checking the fraction of bits in execution results that are 
protected using our LVDV scheme. For a result with 
variance constrained within the lower k bits, the remaining 

(32-k) bits of the result are protected. We varied the 
LVDV table size from 1K entries to 8K entries and used 8 
chunks to encode the 32-bit variance. We also 
experimented with different chunk sizes and determined 
that 8 chunks provide a good balance between protection 
coverage and low false-positive rate. The ratio of all the 
protected bits over the overall result bits is reported for 
each benchmark, as shown in Figure 2. From the figure, 
we can see that the proposed LVDV protects a significant 
portion of execution results, up to 80% in mesa and 50% 
on average for an 8K entries LVDV table. Second, we 
observe that for some benchmarks, such as perl, twolf, vpr 
and mesa, LVDV provides much better protection once 
the working set of the application fits into the LVDV 
table. In mesa, protection varies from 15% to 80% for a 
1K and 8K entries table respectively.  However, it is 
interesting to observe, that in some cases such as parser 
and gap, increasing the LVDV table size results in slightly 
decreased protection. This happens because some entries 
are rarely evicted from a large table and once the variance 
of a static instruction is learned, it is never reset. We 
observed that in some cases it is beneficial to periodically 
reset the learned variance, which may becomes overly 
conservative due to wide variations in execution results. A 
small LVDV table will frequently replace entries due to 
conflicts and thus refresh their variance information and 
enable more execution result bits to be protected. Among 
all the examined sizes, we observe that for most 
benchmarks a 2K-entry LVDV table provides comparable 
protection to an 8K LVDV table. Therefore, we use a 2K 
entries table with 8 chunks as default configuration for our 
soft-error protection experiments.  

While effective at capturing localities for integer or 
address computation, it is harder for LVDV to capture 
localities for floating-point computations. Such 
computations are usually performed with 64-bit doubles, 
which consist of 1 sign bit, 11 exponent bits and 52 
mantissa bits. In our LVDV table, we keep track of only 
32-bit execution results, and therefore we choose to 
protect only the top 32 bits of large floating point values. 
This way, we keep track of the variance of the sign bit, the 
exponent and 20 of the mantissa bits. In our experiments, 
we observed that the variance of the mantissa is quite 
unpredictable and in most cases no protection is provided. 
On the other hand, LVDV is able to protect 3 out of 11 
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Figure 2. The fraction of protected bits using LVDV locality 
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exponent bits on average for the floating point 
benchmarks, and up to 10 out of 11 for equake and mesa.  

 5.4.2 Analysis of performance overhead 

We first evaluate the performance overheads 
introduced by different protection mechanisms in fault-
free environment. We compare our approach to Squash on 
L2-miss (SL2) [20] and Branch-miss Squash (BR-squash) 
[19]. The Instruction Redundancy through Reuse (IRTR) 
[6] approach, detailed in Section 3.1, is un-speculative and 
does not incur performance overheads. The idea of SL2 is 
to keep critical data away from vulnerable structures. SL2 
provides partial protection to the IQ by squashing 
instructions when a long latency L2-cache miss is being 
repaired. The rational is that instructions in the IQ are 
unnecessarily exposed to soft errors while the pipeline is 
essentially idle. We implemented SL2 by performing a 
complete pipeline squash whenever the ROB is full and 
the instruction at the head of the ROB is detected to be an 
L2 cache miss. The pipeline resumes fetching instructions 
as soon as the L2 cache miss has been repaired. In [2], 
SL2 is implemented by squashing the pipeline as soon as 
the instruction at the head of the ROB is known to be an 
L2 cache miss (without waiting for the ROB to become 
full). Such more aggressive squashing resulted in higher 
protection coverage for some benchmarks, but also led to 
larger performance penalties due to more frequent 
squashing. BR-squash is a modified version of the 
symptom based protection mechanism proposed in [19]. In 
the original symptom mechanism, when a confident 
branch is mispredicted, the processor is rolled back to a 
previous checkpoint. In this work, we do not implement 
the checkpointing mechanism and simply squash the 
pipeline when a misprediction of a confident branch is 

resolved. The reason is to show how promptly the impact 
of a soft error can manifest in program execution. The 
branch prediction confidence is modeled by a 4k-entry 
table and each entry is a 3-bit saturating counter. 

The performance results are show in Figure 3. Here, the 
average performance is computed by the harmonic mean 
of the IPCs and then normalized to the baseline processor 
(labeled as H_Mean). In SL2, instruction execution can be 
significantly delayed since squashing on an L2 cache miss 
may nullify many instructions, which are independent of 
the cache miss. For the benchmark ammp, many 
completed long-latency floating-point operations are 
squashed because of an independent cache miss, resulting 
in 31% performance degradation. On average, 0.5% 
slowdown is incurred by the SL2 approach. BR-squash 
also reports relatively high performance overheads for 
some benchmarks, up to 16.6% for gap and an average of 
1.8%. BR-squash incurs higher overheads for the integer 
benchmarks due to their relatively high branch 
misprediction rates. The floating-point benchmarks have 
low branch misprediction rates and so the overhead is 
much lower as seen in Figure 3. The proposed LVDV 
scheme incurs very limited performance overhead, up to 
2.3% in the benchmark perl and an average of 0.02%.   

5.4.3 Soft-error protection to issue queues 

In Figure 4, we compare the protection provided to the 
Issue Queues by our approach to SL2 and BR-squash. 
LVDV performs the best by removing 28% of critical 
errors on average, compared to 7% and 14% for SL2 and 
BR-squash respectively. Removing 28% of critical errors 
translates to 39% improvement of MTTF (Mean Time to 
Failure), which is calculated as 1 / (1- % errors removed).  

Notice that the LVDV locality is very general since it is 
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Figure 4. Protection to IQ by LVDV, SL2 and BR-squash  
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Figure 3. Performance overheads of different error protection schemes  
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able to provide reasonable protection across all the 
benchmarks. On the other hand, both SL2 and BR-squash 
are highly application specific, providing significant 
protection to some benchmarks (twolf, vpr) and almost no 
protection to others (gcc). In general, BR-squash is 
effective on benchmarks with a relatively high number of 
branch mispredictions, such as gap, parser, twolf, vpr, and 
vortex. For benchmarks with low branch misprediction 
rates, e.g., gzip and gcc, although many injected errors 
result in control flow errors, BR-squashing cannot fix 
them since it is too late to prevent the error from 
propagating to the architectural state when the 
misprediction is detected. Therefore, a checkpoint 
mechanism is necessary for BR-squashing to restore the 
architectural state. In comparison, LVDV detects errors 
more promptly and a simple pipeline squash can fix them 
in time. Similarly, SL2 is very effective in protecting those 
benchmarks, whose progress is frequently blocked by an 
L2 cache miss such as twolf and vpr, and offers almost no 
protection to other benchmarks such as gzip, vortex, 

equake and wupwise.   
In our experiments, IRTR did not protect the IQ well. 

The reason is that our simulator models a MIPS R10000 
style pipeline and its IQ does not contain the operand 
values. As errors are only injected to the opcode and 
operands, IRTR only protects the opcode. In a 
microarchitecture that models the issue logic using 
reservation stations, IRTR will be more effective.  

5.4.4 Soft-error protection to functional units 

In this experiment, we evaluate the effectiveness of 
LVDV on FUs as compared to IRTR and the protection 
coverage achieved by both schemes is reported in Figure 
5. We implement IRTR as a 2048 entry, 4-way table. Each 
entry contains two inputs and one output, for a total of 
192k bits. We do not include SL2 and BR-squash in this 
experiment as these mechanisms did not protect well from 
the faults injected into the FUs. From Figure 5 we see that 
the proposed LVDV removes many more critical errors 
than IRTR. It achieves a reduction of critical errors of up 
to 61% for gap and 42% on average. Considering the 
MTTF of the FUs, our opportunistic error protection 
provides up to 156% improvement of MTTF for gap, and 
72% improvement of MTTF on average. LVDV performs 
better than IRTR because it is able to extract useful 
locality information from every benchmark and protect a 
fraction of the result bits. On the other hand, IRTR 

protects all-or-none of the results bits and thus performs 
poorly for benchmarks with low instruction reuse locality.  

6. Software bug detection 

In this section, we elaborate on our proposed 
architectural support for software bug detection, including 
the implementation details and the experimental results 
with several applications.  

6.1. Software bug detection mechanism 

As addressed in Section 3.2, the proposed architectural 
support can be viewed as a hardware implementation of 
the statistics-rule-based software approach DIDUCE. In 
general, statistic-rule-based approaches [3][4][5][21] rely 
on extracting invariance information (or statistical rules) 
automatically from multiple successful program runs, or 
from the continuous execution of a single long run. Once 
the invariants have been obtained, they can be used to 
detect violations in subsequent runs. The invariants can 
also be used to detect violations within the same long 
program run once the rules are established. Statistic-rule-
based approaches are promising because they can detect 
bugs that do not violate any programming rules [21]. 

Similar to other statistic-rule-based approaches, the 
usage of our proposed mechanism contains two phases: 
the training phase and the bug-detection phase. In the 
training phase, our LVDV table learns the invariant 
information from successful program runs or during a long 
execution run. To preserve invariance information across 
multiple program runs, we require the LVDV table to be 
written to a file at the end of each program run, and 
reloaded at the beginning of a new run. During the bug-
detection phase, the LVDV table is used to detect 
violations of the inferred invariance rules and any 
invariant violations will be output to a log file. The log for 
each violation includes the PC (program counter) of the 
faulting instruction, the previous and currently produced 
values, the predicted variance, and confidence. Also, any 
misses in the LVDV table can be reported as “new code”, 
or instructions not executed during the training phase.  

Due to the limited capacity of the LVDV table, it is 
possible for entries to be evicted and replaced from the 
table, which can result in two potential adverse effects: an 
increased number of false-positive alerts and a reduction 
in detection coverage. The first effect can be explained as 
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follows. When new code is encountered, false positives 
are common since the proper range of variance has not 
been established. The replacement of entries from the 
LVDV table can create a similar effect, because the 
variance information of the replaced instruction has been 
discarded. In this case, it is possible to receive multiple 
violations with the same variance for the same static 
instruction. Fortunately, such replicate violations can be 
easily detected and removed by a simple post processing 
of the bug report. The second concern originating from the 
limited LVDV table size is the loss of detection coverage. 
When the variance information of a static instruction is 
replaced from the LVDV table, it is possible that this 
information will not be available again in the table at the 
time of bug manifestation. To address the issue of limited 
table sizes, we allow only store instructions to access the 
LVDV table, and we track the variance of their addresses. 
The reason why this approach is effective is that most 
bugs manifest through memory operations [9]. Moreover, 
if the memory operation is at the end of a dependence 
chain, violations in previous dependent instructions are 
likely to propagate to the tracked memory operation. In 
our experiments, every store instruction updates the 
LVDV table, including instructions from external 
libraries. However, if the code footprint causes too many 
replacements in the LVDV table we can optionally restrict 
the range of instructions which are allowed to access it, by 
excluding external libraries for example. In addition, to 
achieve the desired fault coverage, multiple experiments 
can be performed with different portions of the code being 
tracked, as suggested by Hangal et al. [5]. 

6.2. Experimental methodology 

To evaluate the effectiveness of our approach, we use 
four applications from the BugBench benchmark suite [9], 
bc-1.06, ncompress-4.2.4, gzip-1.2.4 and polymorph-0.4.0, 
with a total of eight bugs. The applications that we use are 
representative, real applications with significant use in 
practice. The bugs in those applications are also real bugs 
rather than purposely injected ones. We were not able to 
test our approach on some of the other applications 
included in the BugBench suite because we were not able 
to compile or run those applications on our simulator.  

In our experiments, we compare the hardware LVDV 
table to the software approach DIDUCE, in terms of bug-
detection capabilities as well as number of generated 
false-positive alerts. To carry out the comparison, we 
performed two sets of experiments for each of the selected 
applications. In the first set of experiments, we used an 
infinite size LDVD table. The infinite size table tracks the 
addresses and values of memory operations, as well as the 
variance for all arithmetic instructions. With this idealistic 
setup, we mimic the software approach DIDUCE, where 
no hardware restrictions are imposed on the number of 
tracked expressions. In the second set of experiments, we 
used a single, realistic LVDV table with 4K entries 4-way 

set associative, which only keeps track of addresses 
generated by store instructions. In both experiments, we 
used a single-bit precision variance (i.e. we did not use the 
chunks approach described in Section 2). 

6.3. Experimental results 

In this section we use the four buggy applications to 
evaluate how our 4K LVDV table compares to DIDUCE. 
We also give a detailed analysis for some of the bugs and 
provide interesting insights about the strengths and 
limitations of our mechanism and DIDUCE. To facilitate 
discussion and to be able to contrast and compare our 
results, we grouped the bugs by their nature. The bugs in 
the first group are due to incorrect or missing bounds 
checking (of the loop bounds for example). Thus, a loop 
may execute too many times and either overflow or 
underflow a buffer. In the second group, the bugs are due 
to improper use of library calls, such as sprintf and strcpy. 

6.3.1 Incorrect bounds checking 

We first analyze two of the bugs from bc-1.06. BC is an 
arbitrary precision calculator language and it is also the 
largest application in our test suite with over 17000 lines 
of code. We trained our LVDV tables using several 
example programs such as computing prime numbers, 
square roots, etc. Then, we executed a specially crafted 
input program, which was able to trigger both bugs. The 
specially crafted input program was largely different from 
our training set and thus the LVDV tables signaled a large 
number of violations: 45 and 54 for DIDUCE and for the 
4K LVDV respectively (after eliminating duplicate 
violations with the same PC, and violations from external 
libraries). Thus, bc-1.06 exposed a general weakness in 
DIDUCE, as well as any other statistic rule-based 
approach: the quality of the reported results is related to 
the quality of the training set. However, even though the 
number of reported variance violations was large, those 
violations were clustered in several specific functions. 
Some of those violations were new-code violations, which 
indicated that these regions of code were rarely exercised. 
As noted by Hangal et al. [5], revealing such rarely 
executed code and corner cases is also useful to 
developers.  

One of the bugs in bc is an interesting off-by-one bug 
as shown in Figure 6. The idea of the code is that 
whenever the next_array counter reaches the end of the 
a_names array, the function more_arrays() is called to 
increase the capacity of a_names. However, in this buggy 
code, the function more_arrays() is called one iteration 
too late and the array a_names is over-flown, as shown at 
line 4 in the figure. In other words, the correct condition 
should be “if (next_array >= a_count)” instead of “if (id-

>a_name >= a_count)”.  
In the assembly code of this program, a store word 

instruction is used at line 2 to overflow the array.  Both the 
4K LVDV and DIDUCE detected a larger than usual 
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variance in the address of this store instruction and 
signaled a violation. In fact, two variance violations were 
signaled for the same store instruction: once, when the 
variance of the store address was increased from bit 6 to 
bit 7, and again when the variance was increased from bit 
7 to bit 8. However, it is interesting to observe that such 
larger than usual address would be signaled even if we 
fixed the bug with the above suggestion. Therefore, both 
DIDUCE and the 4K LVDV do not literally detect this 
off-by-one bug, but rather they detect the unusually large 
address range of the store instruction. What makes 
DIDUCE or the 4K LVDV effective is that frequently 
such unusual behavior can point to the root cause of a real 
bug, as in this case. 

 
1     id->a_name = next_array++; 
2     a_names[id->a_name] = name;  /*detection*/ 
3     if (id->a_name < MAX_STORE){ 
4        if (id->a_name >= a_count){     /* bug */ 
5          more_arrays (); 
6        }  
7     return (-id->a_name); 
8     }    

Figure 6. An off-by-one bug in bc-1.06 

In the bug from Figure 7, the loop condition variable 
v_count is mistaken for a different variable a_count. 
Therefore, whenever v_count happens to be larger then 
a_count, the loop will continue executing and overflow 
the buffer arrays. Both 4K LVDV and DIDUCE detect the 
unusually large variance in the address of the store 
instruction writing to the buffer arrays. 

 
/* Initialize the new elements. */ 
for (; indx < v_count; indx++){ /* bug*/ 
   arrays[indx] = NULL;  /*detection*/ 
} 

Figure 7. Incorrect loop condition in bc-1.06 

For the benchmark polymorph-0.4.0, DIDUCE was 
very effective in detecting the defect, with no false-
positives. The buggy part of the benchmark is shown in 
Figure 8. Polymorph is a filesystem “unixizer” [23]. It 
converts uppercase characters in a filename to lower case. 
It also removes unnecessary characters, such as “C:\\”, 
which certain programs append to the beginning of 
filenames. The code in Figure 8 is from the function 
convert_fileName in polymorph.c. The for-loop iterates 
through all the characters in the original filename, 
converts them to lower case and stores them into the new 
filename: newname. However, if the original filename is 
longer than MAX, it can overflow the newname array and 
overwrite the stack return address. Originally, MAX was 
set to 2048. For ease of trigging the bug, we changed it to 
64.  

We trained the LVDV tables by running polymorph on 
several short filenames. After the training step, we 
provided a filename slightly longer than 64 characters and 
both 4K LVDV and DIDUCE signaled two variance 
violations. The first violation corresponds to the store byte 
instruction, which stores a character from array original[i] 
to array newname[i]. The second violation corresponds to 

the store byte instruction which appends the string 
terminating character ‘\0’to the array newname[i]. From 
this example, we can see that multiple alerts do not 
necessarily mean false positives since they may all point 
to the same bug. 

 
char newname[MAX];  
/* convert the filename */  
for(i=0;i<strlen(original);i++){ /*bug*/ 
  if( isupper( original[i] ) ){ 
    newname[i]= tolower(original[i]); 
    continue; 
  } 
  newname[i] = original[i]; /*detection*/ 
} 
newname[i] = '\0'; /*detection*/ 

Figure 8. Buffer overflow in polymorph-0.4.0 

Lack of bounds checking causes the next bug in 
ncompress-4.2.4. The defect is in the decompression 

function as shown in Figure 9. The loop in Figure 9 
performs no bounds checking and a carefully crafted input 
can underflow the variable stackp. The 4K entries LVDV 
table tracking store addresses was very effective in 
pointing out the exact defect location, with no false-
positive alerts. 

 
while((cmp_code_int)code >=(cmp_code_int)256) 
{ /* Generate output characters in reverse order */ 
     *--stackp = tab_suffixof(code);  /*bug*/ /*detection*/ 
     code = tab_prefixof(code); 
 } 

Figure 9. Buffer underflow in ncompress-4.2.4 

6.3.2 Misuse of library functions, sprintf and strcpy 

The next four bugs are very similar in that they all 
misuse the library calls sprintf or strcpy. There was one 
such bug in each of the four evaluated applications. 
DIDUCE and our 4K LVDV were less effective in 
detecting those bugs as we elaborate next.  

Due to the similarity of these bugs, we present an 
example of only one of them, in Figure 10. In the figure, 
fileptr corresponds to the filename of the input argument. 
A filename larger than MAXPATHLEN can overflow the 
tempname buffer and cause the stack return address to be 
overwritten. Neither 4K LVDV nor DIDUCE were able to 
directly identify this type of bug. However, for gzip both 
4K LVDV and DIDUCE signaled violations originating 
from a function called “name_too_long”.  In addition to 
that, for the benchmarks ncompress and gzip, DIDUCE 
(but not 4K LVDV) signaled multiple violations to 
function calls strlen( ) which computed the length of the 
input filename elsewhere in the code. Such violations 
provide a very helpful hint that the bugs are related to the 
length on the input string. Because our 4K LVDV 
monitored only store addresses, it did not produce the 
strlen( ) violations. However, by allowing the flexibility to 
specify the types of instructions to monitor (such as 
arithmetic, or memory operations), the 4K LVDV would 
also output those helpful violations. Polymorph and BC, 
on the other hand, did not test the length of the input 
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elsewhere in the code, and dynamic variance checking did 
not signal any helpful violations to track those bugs. 
 
void comprexx(char **fileptr)  
{ char tempname[MAXPATHLEN]; 
   strcpy(tempname,*fileptr); /*Bug String copy without 
checking the length of the source and target buffers */ 
 } 

Figure 10. Buffer overflow in ncompress-4.2.4 

DIDUCE as well as LVDV would be much more 
effective at pointing out the location of such a buffer 
overflow if there was an access of variables surrounding 
the buffer. Any overflow, which results in a high variance 
of those variables, would be easily detected by DIDUCE. 
This approach is similar to adding canaries to protect 
buffers. As part of our future work, the compiler is to 
insert load accesses to canaries at strategic locations in the 
code. These load accesses will then be automatically 
monitored by the LVDV table for enhanced buffer 
overflow protection. 

In summary, we demonstrate that the limited size 4K 
LVDV successfully approximates the software approach 
DIDUCE. In particular, the 4K LVDV detected all four 
bugs which DIDUCE detected. Some helpful violations 
signaled by DIDUCE (variance in strlen( )) can also be 
signaled by 4K LVDV when it is allowed the flexibility to 
select the types of instructions to monitor (arithmetic or 
memory).    

In terms of false-positive alerts, the 4K LVDV signaled 
a larger number (54 vs. 45) of violations only in the 
application bc, compared to DIDUCE. For the rest of the 
applications, the number of signaled violations was 
identical as shown in Table 2. The total number of 
signaled violations is shown after eliminating duplicate 
violations from the same instruction and violations from 
external libraries. Since ncompress requires different 
inputs to trigger the bugs, we provide the number of 
violations signaled for each input.  For the rest of the 
benchmarks, a single input was sufficient to trigger all 
bugs.  

Table 2. Total number of variance violations signaled 
by DIDUCE and 4K LVDV 

 polymo
rph 

bc ncompress 
(input 1) 

ncompress 
(input 2) 

gzip 

DIDUCE 2 45 1 0 6 

4K LVDV 2 54 1 0 6 

7. Conclusions 

In this paper we realize that both soft-errors and 
software bugs manifest in similar ways during execution. 
We propose a unified approach to target both problems by 
exploiting a program locality called Limited Variance in 
Data Values (LVDV). We design a simple hardware 
structure to track instruction-level invariants and to detect 
abnormal execution behavior. In terms of soft error 
detection/recovery, our experimental results show that the 
proposed scheme significantly improves the MTTF of 
both the issue queue and the functional units, by an 

average of 39% and 72% respectively. Negligible 
performance overheads are incurred for such reliability 
enhancements. For software bug detection, we 
demonstrate that our realistic LVDV mechanism is able to 
provide similar bug detection capabilities to the software 
tool DIDUCE while eliminating the performance overhead 
associated with software approaches, making it possible to 
monitor production code for bug detection. 

8. Acknowledgements 

We thank Shan Lu from UIUC for providing us with 
source code, scripts and inputs of the BugBench 
applications. We also thank the anonymous reviewers for 
their helpful suggestions on improving our paper.   

9. References 

[1] T. Austin, “DIVA: a reliable substrate for deep submicron 
microarchitecture design”, MICRO-32, 1999 
[2] M. Dimitrov and H. Zhou, “Locality-based information redundancy 
for processor reliability”, WAR-2 workshop in conjunction with MICRO-

39, 2006 
[3] M. Ernst, et. al., “Dynamically discovering likely program invariants 
to support program evolution”, IEEE TSE, Vol.27, No. 2, February 2001. 
[4] M. Ernst, et. al., “Quickly detecting relevant program invariants”, 
ICSE, 2000 
[5] S. Hangal and M. Lam, “Tracking down software bugs using 
automatic anomaly detection”, ICSE, 2002 
[6] M. Gomaa and T. Vijaykumar, “Opportunistic Transient-Fault 
Detection”, ISCA-32, 2005. 
[7] M. Gomma et. al., “Transient-fault recovery for chip 
multiprocessors”, ISCA-30, 2003. 
[8] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value locality and 
load value prediction,” ASPLOS-7, 1996. 
[9] S. Lu, et. al., “Bugbench: Benchmarks for evaluating bug detection 
tools”, Workshop on the Evaluation of Software Defect Detection Tools, 
2005. 
[10] E. Marcus and H. Stern, “Blueprints for high availability”, John 
Willey and Sons, 2000. 
[11] S. Mukherjee, et. al., “Detailed design and evaluation of redundant 
multithreading alternatives”, ISCA-29, 2002. 
[12] National Institute of Standards and Technology (NIST), Department 
of Commerce, “Software errors cost U.S. economy $59.5 billion 
annually”, NIST news release 2002-10, 2002. 
[13] J. Oplinger and M. Lam “Enhancing software reliability with 
speculative threads”, ASPLOS-10, 2002. 
[14] P. Racunas, K. Constantinides, S. Manne and S. Mukherjee, 
“Perturbation-based fault screening”, HPCA-13, 2007. 
[15] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault 
tolerance in microprocessors”, FTCS-29, 1999. 
[16] Y. Sazeides and J. E. Smith, “The predictability of data values,” 
MICRO-30, 1997. 
[17] T. Sherwood, et. al., “Automatically characterizing large scale 
program behavior”, ASPLOS-X, 2002 
[18] A. Sodani and G. Sohi, “Dynamic instruction reuse”, ISCA-24, 1997. 
[19] N. Wang and S. Patel, “ReStore: Symptom Based Soft Error 
Detection in Microprocessors”, DSN, 2005. 
[20] C. Weaver, et. al., “Techniques to reduce the soft error rate of a 
high-performance microprocessor”, ISCA-31, 2004.  
[21]  P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff and J. 
Torrellas, “AccMon: Automatically detecting memory-related bugs via 
program counter-based invariants”, MICRO-37, 2004 
[22]  Developers Guide to WER, 
https://winqual.microsoft.com/help/default.htm#Developers_Guide_to_W
ER.htm, 2006 
[23]  Polymorph,http://polymorph.sourceforge.net/,2006 

 

82828282


