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Abstract 

Lower threshold voltages in deep sub-micron 
technologies cause more leakage current, increasing 
static power dissipation. This trend, combined with the 
trend of larger/more cache memories dominating die 
area, has prompted circuit designers to develop SRAM 
cells with low-leakage operating modes (e.g., sleep 
mode). Sleep mode reduces static power dissipation but 
data stored in a sleeping cell is unreliable or lost. So, at 
the architecture level, there is interest in exploiting sleep 
mode to reduce static power dissipation while 
maintaining high performance. 

Current approaches dynamically control the operating 
mode of large groups of cache lines or even individual 
cache lines. However, the performance monitoring 
mechanism that controls the percentage of sleep-mode 
lines, and identifies particular lines for sleep mode, is 
somewhat arbitrary. There is no way to know what the 
performance could be with all cache lines active, so 
arbitrary miss rate targets are set (perhaps on a per-
benchmark basis using profile information) and the 
control mechanism tracks these targets. We propose 
applying sleep mode only to the data store and not the tag 
store. By keeping the entire tag store active, the hardware 
knows what the hypothetical miss rate would be if all data 
lines were active and the actual miss rate can be made to 
precisely track it. Simulations show an average of 73% of 
I-cache lines and 54% of D-cache lines are put in sleep 
mode with an average IPC impact of only 1.7%, for 64KB 
caches. 

1. Introduction 

Power dissipation is becoming an important design 
constraint for high-performance processors. Projected 
increases in static power dissipation – power dissipated 
continuously, even when transistors are not switching – 
are particularly alarming. Borkar [2] estimates that with 
each new processor generation, leakage current and 
leakage power increase by a factor of 7.5 and 5.0, 
respectively. This is due to scaling down the threshold 
voltage of deep sub-micron technologies. 

Caches consume a significant fraction of total die area, 
especially in high-performance embedded processors, 
e.g., 60% of the StrongARM die area is cache [1]. 

Therefore, among individual hardware components, 
caches potentially provide the greatest opportunity for 
static power reduction. Recently, two approaches have 
been proposed to reduce static power dissipation in 
caches: DRI cache [5] and cache line decay [6]. Both 
approaches exploit a circuit technique called Gated-Vdd 
[4], in which SRAM cells are isolated from the power 
and/or ground rails so that almost no static power is 
drawn. We refer to isolated cells as being in sleep mode or 
deactivated. A cache line in sleep mode loses its data and 
will cause a cache miss when re-accessed. However, 
caches tradeoff efficiency for robustness – caches are 
large enough to perform well on both large and small 
working sets. So, with careful performance monitoring, 
many cache lines can be deactivated most of the time with 
minimal performance impact. 

DRI [5] dynamically activates/deactivates large groups 
of cache lines. The total number of sleep-mode cache 
lines is controlled by periodically examining the cache 
miss rate. The observed cache miss rate is compared to a 
pre-determined value, called the miss bound. If the 
observed miss rate is lower than the miss bound, then 
another large chunk of the cache is placed in sleep mode, 
since the observed miss rate is still within tolerated levels. 
If the observed miss rate exceeds the miss bound, then a 
large chunk of the cache currently in sleep mode is re-
activated to help reduce the observed miss rate. 

Cache line decay [6] activates/deactivates individual 
cache lines. The finer granularity with respect to DRI 
provides greater flexibility and is potentially more 
effective. A cache line is placed in sleep mode if it has not 
been accessed for a pre-determined amount of time, and is 
re-activated only when it is re-accessed. 

A limitation of both DRI and cache line decay is their 
control mechanisms depend on arbitrary parameters that 
must be tuned per application to minimize the 
performance impact of static power reduction. In the case 
of DRI, miss bound is chosen based on the typical miss 
rate of an application, since ideally DRI should deactivate 
as many cache lines possible without exceeding the 
application’s typical miss rate. So, DRI may require cache 
profiling. Cache line decay uses a different parameter, 
decay time (time that must elapse since the last access to a 
line before deactivating the line), but it too should be 



tuned per application. Evidence that decay time should be 
tuned is shown in Figure 1. By trial and error, a decay 
time was found for each benchmark that reduced 
performance by no more than 4% (the experiment was 
performed for a 64KB 4-way set-associative data cache). 
As can be seen in Figure 1, the tuned decay time varies 
from 14,000 cycles for jpeg to 98,000 cycles for li. In 
addition, tuning parameters does not always guarantee 
best results because (1) tuning reflects the behavior of 
profiled runs whereas any given run may behave 
differently and (2) static parameters cannot capture 
variations within a single run of the program. 
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Figure 1. Per-benchmark cache line decay times, tuned 
to reduce performance by no more than 4%. 

We propose deactivating only the data portion of cache 
lines, and not the tag portion. By keeping the entire tag 
store active, hardware can measure the hypothetical cache 
miss rate if we were to keep all lines active. Pre-
determined parameters such as miss bound and decay time 
are no longer needed. Instead, hardware dynamically 
monitors the hypothetical miss rate using the tag store, 
and controls the total percentage of sleep-mode lines to 
achieve an actual miss rate that closely tracks the 
hypothetical miss rate. The method is able to self-adjust to 
variations among different applications and changes in 
cache requirements as a program executes. 

Our method is called Adaptive Mode Control (AMC). 
Similar to cache line decay, AMC controls the mode 
(sleep vs. active) of individual cache lines according to a 
turn-off interval. The turn-off interval is the time that 
must elapse since the last access to a line before 
deactivating the line. The key difference is the turn-off 
interval is dynamically adjusted to ensure performance 
closely tracks the performance of an equivalent cache 
without sleep mode. That is, the turn-off interval is 
variable, and its value is periodically adjusted based on 
the number of extra misses caused by sleep-mode cache 

lines. Because the tags remain active, hardware is able to 
distinguish between two types of misses. 
1.Ideal miss: This is a miss in the tag store, i.e., the line is 

not in the cache in either active or sleep mode. This 
miss would have occurred in a conventional cache of 
equivalent complexity. 

2.Sleep miss: A sleep miss occurs when there is a hit in 
the tag store but the data portion of the cache line is in 
sleep mode. The line is in the cache, but it is unusable 
and results in a cache miss. 
A variety of simple control systems are possible. In 

this paper, we develop an effective control system that 
examines the ratio of sleep misses to ideal misses. If the 
ratio is “too small”, AMC can be more aggressive in 
deactivating cache lines, so the turn-off interval is 
reduced. If the ratio is “too large”, AMC must be more 
conservative in deactivating cache lines, so the turn-off 
interval is increased. If the ratio is “just right”, the turn-off 
interval is kept the same. 

Our results show that for the SPECint95 benchmarks, 
an average of 73% of instruction cache lines and 54% of 
data cache lines can be deactivated during program 
execution time with an average performance loss of only 
1.7%, for 64KB instruction and data caches. 

The remainder of this paper is organized as follows. 
Section 2 describes the AMC architecture and hardware 
mechanism for controlling the turn-off interval. The 
SRAM cell circuit with sleep mode, developed by others 
and used in this work, is reviewed in Section 3. The 
simulation methodology and results are presented in 
Sections 4 and 5, respectively. Section 6 discusses related 
work, and Section 7 concludes the paper. 

2. Adaptive Mode Control 

2.1. AMC Cache Architecture 

In order to make efficient use of sleep-mode-capable 
SRAMs, we need the ability to monitor accesses to 
individual cache lines. We do this by associating a counter 
with each tag in the tag store, as shown in Figure 2 for a 
direct mapped cache (the same applies for set-associative 
caches). These counters are called Line Idle Counters 
(LICs), because they keep track of how long a cache line 
has not been accessed. If a cache line has been idle (i.e., 
not accessed) for a sufficient period of time, it will be 
placed in sleep mode. Below, we first describe how LICs 
are maintained (reset and incremented), and then describe 
how LICs are monitored to deactivate lines (LIC 
compared to a threshold). 



A LIC is reset when the corresponding line is accessed. 
All LICs in the tag store are simultaneously incremented 
after a certain number of cycles have elapsed, called the 
LIC update interval. The LIC update interval is constant 
and implementation-dependent, the choice of which 
depends on a straightforward tradeoff between the 
hardware area/power overhead of LIC counters and 
aggressiveness in deactivating cache lines. A sufficiently 
long LIC update interval (1) results in a small number of 
bits for each LIC counter since a single increment 
represents a longer time interval and (2) reduces the 
frequency of incrementing the counters, keeping their 
dynamic power contribution quite low. However, if the 
LIC update interval is too long, then AMC is slower to 
deactivate cache lines, squandering opportunities to save 
static power [6]. Detailed analysis in Section 5.4 shows a 
LIC update interval of 2048 cycles yields effective results 
with small counter area overhead and negligible dynamic 
power overhead (LICs increment infrequently – once 
every 2048 cycles) [23]. 

Also associated with each tag/LIC is a small 
comparator logic block called the Mode Control Logic 
(MCL), as shown in Figure 2. The MCL associated with 
each LIC compares the LIC value to the turn-off interval 
stored in the Global Control Register (GCR).  If the LIC 
value is greater than or equal to the turn-off interval in the 
GCR, the MCL will place the corresponding data line into 
sleep mode (this is achieved with a control wire, labeled 
“mode control” in Figure 2). Otherwise, the line remains 
in active mode. 

Note, for write-back data caches, dirty data needs to be 
written back to the L2 cache/main memory before a line is 
placed in sleep mode because data is not retained in sleep 
mode. This may impact performance either positively or 

negatively; in some sense, the LIC/MCL logic is an 
implementation of eager writeback [22] which suggests it 
is possible for performance to improve. 

Finally, miss detection is modified slightly in an AMC 
cache because there are two types of misses (as described 
in Section 1), ideal misses and sleep misses. An ideal miss 
occurs when the tag(s) do not match. A sleep miss occurs 
when a matching tag is found but the data portion is in 
sleep mode. A sleep miss is handled like any other cache 
miss, i.e., data must be fetched from the L2 cache and the 
cache line is re-activated to hold the fetched data. So, 
ideal misses are misses that would occur in a conventional 
cache of equivalent size/associativity and sleep misses are 
additional misses introduced by AMC. The goal of AMC 
is to maximize the number of deactivated lines while 
minimizing the number of sleep misses. 

The turn-off interval, stored in the GCR, determines 
how aggressively cache lines are deactivated. When the 
GCR is too small, many soon-to-be-accessed cache lines 
will prematurely deactivate, resulting in many sleep 
misses. In this case, performance suffers and dynamic 
power (due to miss servicing) may increase. On the other 
hand, if the GCR is too large, AMC is slow to deactivate 
lines. Lines that are unused before being evicted are not 
deactivated early enough to reap any static power savings. 
It is the job of the adaptive mechanism shown at the 
bottom of Figure 2 to monitor the overall system and tune 
the GCR to achieve maximum static power savings with 
little or no performance loss. 

2.2. Adaptive Mechanism 

The fact that cache tags are never put into sleep mode 
allows hardware to separate overall misses into those that 
would have occurred regardless of a line’s sleep/active 
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Figure 2. AMC cache architecture (direct mapped cache shown). 



status (ideal misses), and extra misses specifically caused 
by sleep-mode lines (sleep misses). (Note: overall misses 
= ideal misses + sleep misses.) 

Ideal and sleep misses are counted during a sense 
interval, a fixed period of time. At the end of the sense 
interval, the adaptive algorithm examines the gathered 
miss counts and updates the GCR. Then, the miss 
counters are reset and counting begins anew for the next 
sense interval. 

The adaptive mechanism is shown in Figure 3. The 
ideal miss counter is incremented when there is a tag miss 
(tag_miss). The sleep miss counter is incremented when 
there is a tag hit and the data is in sleep mode (tag_hit & 
data_sleep). The inputs to the GCR update logic are (1) 
the ideal miss count, (2) the sleep miss count, (3) the end-
of-sense-interval signal, and (4) the performance factor 
(PF). The end-of-sense-interval signal simply indicates 

when the GCR update logic should examine the miss 
counts and update the GCR. We will show in Section 5.4 
that the duration of the sense interval has little impact on 
AMC results (both performance and power savings). 

The diagram in Figure 4 illustrates how our proposed 
adaptive mechanism works. The bold line closest to the x-
axis represents the number of ideal misses. Thus, the 
distance between the x-axis and the first bold line is 
labeled “ideal misses”. Sleep misses are considered error 
in the system since they add to the ideal misses. Targeting 
an error of 0 with our control system is rather 
conservative (although not impossible), so we show a 
second bold line above the first and the distance between 
the two bold lines is the amount of error – this distance is 
labeled “target error”. Moreover, rather than define the 
target error as an absolute number, it makes more intuitive 
sense to define the target error as a fraction/percentage of 
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Figure 3. Adaptive mechanism for dynamically updating the turn-off interval stored in the GCR. 
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Figure 4. Diagram explaining control system in terms of target error. In AMC, error = sleep misses. 



the base quantity, in this case the number of ideal misses 
(like tolerances in discrete resistors). We call this fraction 
the performance factor, PF. So, the target error (or 
targeted number of sleep misses) is equal to PF*(ideal 
misses). 

Now that there is a target error, we can make a control 
system. If the observed error is less than the target error, 
the GCR is decreased (more lines go to sleep mode, 
creating more error but getting more power savings). If 
the observed error is greater than the target error, the GCR 
is increased (fewer lines go to sleep mode, bringing the 
error back down). This approach is too simplistic because 
it is unlikely the target error will ever be met exactly, so 
the system reacts to even the smallest deviations. 

To improve on the above, we define a target error 
range that is centered around the target error. This range 
is shown in Figure 4 with two dashed lines above and 
below the top bold line. So, we still target an error of 
PF*(ideal misses), but we only need to get within a 
certain range of it to not change the GCR. The range is the 
same size as the target error itself, or PF*(ideal misses), 
so the two dashed lines are 0.5*PF*(ideal misses) above 
and below the top bold line, as labeled in Figure 4. 
Therefore, the target error range is expressed as: 
PF*(ideal misses) ± 0.5*PF*(ideal misses). Making the 
target error and its tolerance similar in magnitude is 
intuitively appealing and, as will be described below, it 
also simplifies the hardware implementation of the 
algorithm – it uses only a few shifts, adds, and compares 
as a result. 

The GCR update algorithm (shown in Figure 4 and 
codified in Figure 5) is based on the target error range 
described above. The GCR is decreased when the number 
of sleep misses is less than 0.5*PF*(ideal misses). The 
GCR is decreased via right-shifting it by one bit (see 
Figure 3). This reduces the turn-off interval, in turn more 
aggressively deactivating cache lines, since the error is 
below the target error range. As an example, the GCR is 
decreased twice for the miss curve shown in Figure 4, 
since the curve dips below the lower dashed line twice. 
The GCR is increased when the number of sleep misses 
exceeds 1.5*PF*(ideal misses). The GCR is increased via 
left-shifting it by one bit (see Figure 3). This increases the 
turn-off interval, in turn less aggressively deactivating 
cache lines, since the error is above the target error range. 
For the example miss curve in Figure 4, the GCR is 
increased once where the curve peaks above the upper 
dashed line. If the number of sleep misses is within the 
target error range, the GCR is not changed. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. The GCR update algorithm. 

The GCR update algorithm can be implemented in 
hardware using shifts, adds, and compares (subtracts). PF 
is set to a power-of-2 such as 2, 1, ½, ¼, etc. Therefore, 
0.5*PF is a power-of-2 fraction, and the right-hand side of 
the first if-expression in Figure 5 is implemented via a 
right-shift of the ideal miss counter. The right-hand side 
of the second if-expression is implemented in two steps: 
1.0*PF*(ideal misses) is implemented as a right-shift of 
the ideal miss counter, and this result is added to the result 
computed in the first if-expression to obtain 1.5*PF*(ideal 
misses). The two if-conditions are then evaluated via two 
magnitude-comparators, where the above quantities and 
the number of sleep misses are operands. 

Due to the nature of our negative feedback algorithm, 
the average ratio of sleep misses to ideal misses settles 
close to the desired PF [23]. 

It should be noted that any control system necessarily 
has pre-defined constants, PF in the case of AMC, miss 
bound and size bound in the case of DRI [5], and decay 
time in the case of cache line decay [6]. All of these 
schemes dynamically track performance. AMC’s 
distinction is it tracks a dynamic and accurate 
performance target (ideal misses) instead of a pre-defined 
and potentially less accurate performance target. PF, 
albeit a pre-defined parameter, is a multiplicative 
coefficient and determines how closely AMC performance 
tracks hypothetical performance. 

3. Review of SRAM Cell with Sleep Mode 
Capability 

Recently, researchers in the VLSI community have 
proposed several techniques for reducing the static power 
dissipated in memory cells due to leakage current [3,4,8-
10]. The design assumed in this work is shown in Figure 
6.  

The cell can be isolated from the power and ground 
rails. Two additional nodes, virtual vdd (vvdd) and virtual 
gnd (vgnd), are introduced, and the voltage at these two 
nodes is controlled by transistors Q1 and Q2, which are 
high-Vt (threshold voltage) or long-channel devices. 
When the circuit is in active mode, both Q1 and Q2 are on 
and the circuit operates as usual. When in the sleep mode, 
Q1 and Q2 are turned off and the leakage current through 
the SRAM cell is reduced dramatically due to the 

if ((sleep misses) < ((ideal misses)*0.5*PF)) { 
   decrease GCR: shift GCR right by one bit 
}  
else if ((sleep misses) > ((ideal misses)*1.5*PF)) {   
   increase GCR: shift GCR left by one bit 
} 
else { 
   do not change GCR 
} 



transistor stacking effect [7]. Several variants of this 
implementation and the implications on power, area, and 
performance are discussed in [4]. 

The cell can be improved by placing diodes between 
vgnd-gnd and vvdd-vdd, retaining data in sleep-mode [8]. 
Sleep-mode lines hit, but with long latency to turn on. So, 
AMC and this cell mutually benefit: AMC minimizes 
slow sleep-hits and the new cell eliminates the need to 
consume power fetching from the L2 cache. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. SRAM cell with sleep mode support. 

4. Methodology 

This section describes our simulation environment, 
including the underlying processor architecture, 
benchmarks, and baseline AMC parameters. 

4.1. Simulation Environment 

We developed a cache simulator that fully models the 
AMC architecture and integrated it into a timing simulator 
developed using the Simplescalar toolset [16]. The 
underlying processor organization is based on the MIPS 
R10000 processor, configured as indicated in Table 1. The 
SPECint95 benchmarks, listed in Table 2, were run to 
completion. 

Table 1. Processor configuration. 
Size = 16/32/64 kB 
Associativity = direct-mapped/4-way 
Replacement = LRU 
Line size = 16 instructions (64 bytes) 

 
Instruction 

Cache 

Miss penalty = 12 cycles 
Size = 16/32/64 kB 
Associativity = direct-mapped/4-way 
Replacement = LRU 
Line size = 64 bytes 

 
Data Cache 

Miss penalty = 14 cycles 
Reorder buffer: 64 entries 
Dispatch/issue/retire bandwidth: 4-way superscalar 
4 fully-symmetric function units 

 
Superscalar 

Core 
Data cache ports: 4 
Address generation: 1 cycle 
Memory access: 2 cycles (hit in data cache) 
Integer ALU ops = 1 cycle 

 
Execution 
Latencies 

Complex ops = MIPS R10000 latencies 

   

Table 2. Benchmarks. 
Benchmark Input dataset Instruction Count 

compress compress95.ref 24 million 
gcc -O3 genrecog.i –o genrecog.s 117 million 
go 9 9 133 million 
jpeg Vigo.ppm 166 million 
li Test.lsp (queens 7) 202 million 
m88ksim -c < ctl.in (dcrand.big) 120 million 
perl scrabble.pl < scrabble.in 

(dictionary) 
108 million 

vortex vortex.in (persons.250, 
bendian.*) 

101 million 

4.2.  Default AMC Parameters 

     Throughout the remainder of the paper we use default 
values for three primary AMC parameters: the 
performance factor (PF) is set at ½, the sense interval is 
set at 1 million cycles, and the LIC update interval is set 
at 2048 cycles. The combination of these default settings 
provides the best trade-off between static power savings 
and performance in our studies.  In Section 5.4 we 
examine the impact of varying each of these parameters 
individually on static power and performance. 

5. Results 

In this section, we apply AMC to L1 instruction caches 
(I-caches) and data caches (D-caches), separately and 
together.  Specifically, we examine the performance 
impact of AMC and the percentage of cache lines that are 
placed in sleep mode. Performance is measured as 
instructions-per-cycle (IPC), and we present the % IPC 
degradation. The percentage of cache lines that are placed 
in sleep mode is called the turn-off ratio. Turn-off ratio is 
measured by recording the fraction of cache lines in sleep-
mode each cycle, and averaging over all cycles. We 
assume static power savings is proportional to the turn-off 
ratio. 

5.1. AMC Instruction Caches 

We studied 16kB, 32kB, and 64kB instruction caches, 
for each of direct-mapped and 4-way set-associativity. 
The D-cache in all experiments is 64kB 4-way set-
associative without AMC. 

Figure 7 shows % IPC degradation over all 
benchmarks and I-cache configurations. The primary 
result, as expected, is that performance is never degraded 
by more than 6.5%, and performance is never worsened 
by more than 3% on average. 

Figure 7 also shows that the performance impact of 
AMC is sensitive to I-cache size and associativity. Firstly, 
performance impact is less with higher associativity. 
There are fewer ideal misses with 4-way set-associative 
caches than with direct-mapped caches, and our control 
system targets a number of sleep misses proportional to 
the number of ideal misses via PF. This is a small price 
we pay for using a multiplicative coefficient rather than 

 bitline bitline 

wordline 

vvdd 

vgnd 

gnd 

vdd 

sleep 

sleep 

Q2 

Q1 



an arbitrarily set, absolute bound on the number of sleep 
misses. In Section 5.4, we study the effects of varying PF 
on both static power and performance. 
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 Figure 7.  AMC I-cache: performance degradation. 

Secondly, with 4-way set-associative caches, 
increasing cache size results in less performance 
degradation (except for a small deviation in gcc for the 
32kB cache), for the same reason just described: larger 
caches have fewer ideal misses and our control system 
will generate fewer sleep misses as a result. 

Thirdly, for direct mapped caches, the performance 
trend with cache size is somewhat more unusual than with 
4-way set-associative caches. For gcc, go, perl, and 
vortex, performance degradation with a 16kB direct-
mapped cache is lower than with a 32kB direct-mapped 
cache, yet we would expect it to be higher: more ideal 
misses with 16kB than with 32kB, therefore, more sleep 
misses too. Ideal miss rate is higher, e.g., for gcc, 10% for 
16kB and 6% for 32kB.  But the sleep miss rate does not 
behave as expected.  For gcc, the 16kB cache has a 2.2% 
sleep miss rate and the 32kB cache has a 2.7% miss rate.  
We conclude that, with too small a cache to fit the 
working set (16kB), lines are almost always re-accessed 
before having a chance to turn-off.  For these results, the 
minimum turn-off interval is 4K cycles.  Most lines in the 
16kB cache are re-accessed within 4K cycles.  If the turn-
off interval could dip below 4K cycles, 16kB IPC 
degradation and turn-off ratio would both be higher.  But, 
it is encouraging that the lower bound on turn-off interval 
also bounds the sleep miss rate when ideal miss rate 
becomes too high (a built-in safety mechanism).  
Interestingly, in gcc (our largest benchmark), the 16kB 4-
way set-associative cache shows slightly the same trend as 
the 16kB direct-mapped cache. 

Figure 8 shows the I-cache turn-off ratio for all 
benchmarks and cache configurations. The first 
conclusion is that AMC provides significant static power 
savings, from 40% (16kB 4-way cache) to 77% (64kB 

direct-mapped cache) turned-off cache-lines, justifying 
the relatively small performance degradation. 

Two other trends are evident from Figure 8. Turn-off 
ratios (1) decrease with decreasing cache size and (2) 
decrease with increasing associativity. The first trend is 
expected since, as cache size decreases, an application’s 
working set consumes a larger percentage of the cache. 
The second trend is less intuitive and can be explained via 
a contrived example. Consider a direct-mapped cache and 
a fully-associative cache, and suppose all accesses map to 
the same line in the direct-mapped cache but obviously 
not so in the fully-associative cache. All but that single 
line will be turned off in the direct mapped cache; none of 
the lines in the fully-associative cache will be turned off. 
So, even though a 32kB 4-way cache is effectively larger 
than a 32kB direct mapped cache, that does not mean the 
turn-off ratio will be higher for the associative cache. In 
fact, the utilization of the 32kB space improves with 
associativity so fewer lines are deactivated. It is precisely 
because the direct mapped cache performs substantially 
worse to begin with that deactivating more of it is 
possible. 

Finally, from Figure 8 it is apparent that AMC is able 
to dynamically adjust to different behavior among 
benchmarks. Specifically, the turn-off ratio varies 
substantially while performance degradation is kept fairly 
low across all benchmarks. Turn-off ratios for a 32kB 4-
way set-associative instruction cache are: 94% 
(compress), 41% (gcc), 55% (go), 73% (jpeg), 66% (li), 
56% (m88ksim), 48% (perl), and 37% 
(vortex).
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             Figure 8.  AMC I-Cache: Turn-off Ratio. 

Another interesting result can be deduced by 
examining Figures 7 and 8 together. Notice gcc, go, perl, 
and vortex have relatively higher performance degradation 
and relatively lower turn-off ratio, compared to the other 
four benchmarks. Again, these benchmarks have 
relatively larger working sets. 



5.2. AMC Data Caches 

We also studied 16kB, 32kB, and 64kB direct-mapped 
and 4-way set-associative data caches. The I-cache in 
these experiments is 64kB 2-way set-associative without 
AMC. 

Figure 9 shows the % IPC degradation for each 
benchmark and cache configuration. The AMC D-cache 
degrades IPC as much as 8.3% among individual 
benchmarks and 4.6% on average, compared with 6.5% 
and 3%, respectively, for AMC I-caches. D-cache ideal 
miss rates are higher, therefore, its sleep miss rates are 
higher. 
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Figure 9. AMC D-cache: performance degradation. 

From Figure 9, the AMC D-cache has the same 
performance trends with cache size and set-associativity 
as the AMC I-cache in the previous section.  First, IPC 
degradation decreases with increasing set-associativity. 
Second, IPC degradation decreases with cache size, 
although again we see the same phenomenon with the 
16kB caches.  That is, the 16kB direct mapped cache is 
too small for compress, gcc, go, li, and vortex, such that 
the turn-off interval saturates at its lower limit and 
performance degrades less than expected.  For compress 
and vortex, this is even true for the 16kB 4-way set-
associative cache.  (We even see the same trend for a 
32kB direct mapped cache in vortex.) 

Figure 10 shows the D-cache turn-off ratio for all 
benchmarks and cache configurations. The main 
conclusion is that AMC D-caches provide somewhat less 
static power savings than AMC I-caches, from 38% 
(16kB 4-way cache) to 75% (64kB direct-mapped cache). 

Again, similar to AMC I-caches, we see from the 
average results in Figure 10 that AMC D-cache turn-off 
ratios tend to decrease with decreasing cache size and 
decrease with increasing associativity.  However, for D-
caches, there are more deviations from these average 
trends among individual benchmarks. 
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Figure 10. AMC D-cache: Turn-off Ratio. 

5.3. AMC I-cache and D-cache 

AMC can be applied simultaneously to both the 
instruction cache and data cache, with significant static 
power savings but only minor performance loss. For a 
64kB 2-way I-cache and 64kB 4-way D-cache, we get a 
turn-off ratio of 73% for the I-cache and 56% for the D-
cache.  The performance degradation is only 1.8%, which 
interestingly turns out to be equal to the sum of the 
performance degradations measured individually in 
Sections 5.1 and 5.2.  Note, PF = ½ for both D-cache and 
I-cache, and each has a separate GCR. 

5.4. Sense interval, performance factor, and LIC 
update interval 

The AMC sense interval determines how often the 
GCR should be updated. In our studies we used a fixed 
value of 1 million cycles for both I-caches and D-caches. 
Although a time-varying value capable of detecting 
distinct execution phases is ideal, our studies do not show 
a significant difference when the sense interval is varied 
from 250000 to 4000000 cycles. The variation in 
performance is less than 1% and the variation in power 
saving is less than 2% for I-caches and D-caches, with 
compress being the only exception. In compress, the 
performance variation is 1.3% (IPC from 1.49 to 1.51) 
and the variation in power savings in the D-cache is 9% 
(from 48.1% to 39.0%). 

The performance factor PF determines the trade-off 
between performance degradation and static power 
savings by controlling the sleep-to-ideal miss ratio. A 
smaller PF implies that we are more sensitive to an 
increase in sleep misses. In the extreme, by setting the 
performance factor to zero, we effectively turn AMC off. 
Table 3 shows results for each benchmark using a 64kB 2-
way I-cache and 64kB 4-way D-cache, in which we varied 
PF from 1/8 to 1 (again, PF is the same for both caches 



and each cache has its own GCR).  As expected, 
increasing PF tends to decrease IPC and increase turn-off 
ratio.  IPC for li and m88ksim, however, is insensitive to 
PF.  The ideal miss rates of both caches for li and 
m88ksim are quite low, so both GCRs saturate at the 
maximum value most of the time (to keep sleep miss rate 
also very low). 

Finally, we study the impact of LIC update interval. As 
discussed in Section 2.1, a finer interval granularity 
provides more opportunity for cache lines to be put into 
sleep mode. However, a coarser interval granularity 
results in smaller area cost and dynamic power 
consumption of the LICs. Simulations showed variations 
of 0.5% and 2.0% in IPC and turn-off ratio, respectively, 
as the LIC granularity varies from 256 to 4096 cycles. We 
conclude a 2048-cycle interval provides a good trade-off 
between counter overhead (area and dynamic power) and 
aggressiveness in deactivating cache lines. 

6. Related work 

Recently, as power has become a first-order design 
constraint, there has been a deluge of research in 
architectural power modeling and optimization of on-chip 
caches. Several techniques have been proposed to reduce 
the switching power of on-chip caches. With support from 
the compiler, selective cache ways [11] enables an 
appropriate number of ways based on the cache 
requirements of the current application. The unused ways 
are disabled by the cache controller through the Cache 
Way Select Register (CWSR). The L-Cache [12] and 
Filter cache [13] attempt to reduce L1 cache activity by 
placing a small L0 cache between the L1 and the 
processor. With the compiler taking the responsibility of 
code modification and allocation of instructions into the 
L-Cache, much smaller performance degradations result 
as compared to the Filter cache. Block buffering [14] is 
similar in concept, but, instead of an additional cache 
level, it places recently requested words into a block 
buffer inside the cache. With the use of two-phase 
clocking, the additional access latency can be minimized. 
Sub-banking in the data array [14] and multiple-divided 
modules (MDM) [15] also reduce the power consumption 
by accessing only part of the cache line. In addition to 

these techniques, several analytical energy models [14, 
18, 19] have been proposed to estimate and evaluate cache 
power and power saving techniques. 

The primary goal of the approaches discussed 
previously is to reduce dynamic power dissipation. The 
DRI I-cache [5], as mentioned in Section 1, is a 
mechanism for reducing static power consumption by 
dynamically resizing and turning-off unused sections by 
way of the Gated-Vdd technique [4]. As the I-cache size 
changes over time, an index re-mapping mechanism is 
necessary which incurs a resizing penalty. In order to 
obtain optimal power-performance trade-off results, the 
control parameters, such as miss bound and size bound, 
must be pre-tuned for different applications. Cache Line 
Decay [6] targets static power reductions through the use 
of the Gated-Vdd technique by turning off individual 
cache lines that have not been accessed for some pre-
defined interval – the decay interval. Since the decay 
interval is statically fixed, it cannot be updated 
dynamically to accommodate changes in cache 
requirements within and across applications. 

Cache Line Decay was recently improved upon to 
make it more dynamic, without keeping the tag store 
active [24].  An interesting future study would be to 
compare the two alternative dynamic approaches, AMC 
cache and the Cache Decay approach. 

In this paper, we only presented turn-off ratio results.  
A detailed static and dynamic power analysis of the AMC 
cache can be found in the companion technical report 
[23]. 

7. Conclusions 

We proposed a microarchitecture technique that 
dynamically adapts to evolving cache requirements in 
order to conserve static power while maintaining 
performance. The main contributions of this study are as 
follows. 
• The tag store is always kept active. This enables 

hypothetical performance without sleep mode to be 
determined and used to control real performance. 
Dynamically monitoring hypothetical performance is 
an improvement over setting arbitrary and static 
performance targets. 

Table 3.  Simulation results with different performance factors (PFs). 
IPC I-cache turn-off ratio D-cache turn-off ratio Benchmarks 

Ideal PF=1/8 PF=1/4 PF=1 PF=1/8 PF=1/4 PF=1 PF=1/8 PF=1/4 PF=1 
Compress 1.56 1.53 1.53 1.49 97.0% 97.0% 97.0% 35.0% 36.3% 46.8% 

Gcc 1.84 1.83 1.81 1.74 45.2% 52.9% 66.0% 36.5% 44.3% 60.3% 
Go 1.64 1.63 1.62 1.58 15.8% 31.3% 73.4% 40.1% 42.2% 53.3% 

Jpeg 1.97 1.96 1.95 1.94 83.8% 83.8% 83.9% 48.0% 51.9% 62.3% 

Li 2.19 2.18 2.18 2.18 82.9% 82.9% 83.0% 36.4% 36.4% 36.4% 
M88ksim 1.74 1.74 1.74 1.74 78.1% 78.3% 78.7% 63.7% 63.8% 79.7% 

Perl 1.91 1.91 1.91 1.91 70.2% 70.3% 70.3% 65.8% 66.1% 66.7% 
Vortex 2.35 2.32 2.30 2.21 40.5% 43.6% 57.6% 45.7% 55.6% 76.8% 

Average 1.868 1.855 1.848 1.817 64.2% 67.5% 76.2% 46.4% 49.6% 60.3% 



• We proposed a control system that keeps the number 
of sleep misses within a certain factor of ideal misses. 
Using a relative factor instead of an arbitrary, 
absolute number is a key contribution. 

• We presented extensive results, including multiple I-
cache and D-cache configurations and sensitivity to 
AMC parameters. Previously unknown, interesting 
results emerged. Just one interesting example is 
higher associativity results in lower cache turn-off 
ratios. This was initially counter-intuitive but the 
explanation is associative caches utilize a fixed 
amount of space better than direct-mapped caches. 

• We demonstrated that AMC is overall a very 
effective means for improving static-power-efficiency 
in caches while maintaining good performance. Our 
overall results show that an average of 73% of I-
cache lines and 54% of D-cache lines can be turned 
off with only a 1.8% performance loss. 
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