

Adaptive Mode Control: A Static-Power-Efficient Cache Design

Huiyang Zhou, Mark C. Toburen, Eric Rotenberg, Thomas M. Conte
Department of Electrical and Computer Engineering

North Carolina State University
{hzhou, mctobure, ericro, conte}@eos.ncsu.edu

Abstract

Lower threshold voltages in deep sub-micron
technologies cause more leakage current, increasing
static power dissipation. This trend, combined with the
trend of larger/more cache memories dominating die
area, has prompted circuit designers to develop SRAM
cells with low-leakage operating modes (e.g., sleep
mode). Sleep mode reduces static power dissipation but
data stored in a sleeping cell is unreliable or lost. So, at
the architecture level, there is interest in exploiting sleep
mode to reduce static power dissipation while
maintaining high performance.

Current approaches dynamically control the operating
mode of large groups of cache lines or even individual
cache lines. However, the performance monitoring
mechanism that controls the percentage of sleep-mode
lines, and identifies particular lines for sleep mode, is
somewhat arbitrary. There is no way to know what the
performance could be with all cache lines active, so
arbitrary miss rate targets are set (perhaps on a per-
benchmark basis using profile information) and the
control mechanism tracks these targets. We propose
applying sleep mode only to the data store and not the tag
store. By keeping the entire tag store active, the hardware
knows what the hypothetical miss rate would be if all data
lines were active and the actual miss rate can be made to
precisely track it. Simulations show an average of 73% of
I-cache lines and 54% of D-cache lines are put in sleep
mode with an average IPC impact of only 1.7%, for 64KB
caches.

1. Introduction

Power dissipation is becoming an important design
constraint for high-performance processors. Projected
increases in static power dissipation – power dissipated
continuously, even when transistors are not switching –
are particularly alarming. Borkar [2] estimates that with
each new processor generation, leakage current and
leakage power increase by a factor of 7.5 and 5.0,
respectively. This is due to scaling down the threshold
voltage of deep sub-micron technologies.

Caches consume a significant fraction of total die area,
especially in high-performance embedded processors,
e.g., 60% of the StrongARM die area is cache [1].

Therefore, among individual hardware components,
caches potentially provide the greatest opportunity for
static power reduction. Recently, two approaches have
been proposed to reduce static power dissipation in
caches: DRI cache [5] and cache line decay [6]. Both
approaches exploit a circuit technique called Gated-Vdd
[4], in which SRAM cells are isolated from the power
and/or ground rails so that almost no static power is
drawn. We refer to isolated cells as being in sleep mode or
deactivated. A cache line in sleep mode loses its data and
will cause a cache miss when re-accessed. However,
caches tradeoff efficiency for robustness – caches are
large enough to perform well on both large and small
working sets. So, with careful performance monitoring,
many cache lines can be deactivated most of the time with
minimal performance impact.

DRI [5] dynamically activates/deactivates large groups
of cache lines. The total number of sleep-mode cache
lines is controlled by periodically examining the cache
miss rate. The observed cache miss rate is compared to a
pre-determined value, called the miss bound. If the
observed miss rate is lower than the miss bound, then
another large chunk of the cache is placed in sleep mode,
since the observed miss rate is still within tolerated levels.
If the observed miss rate exceeds the miss bound, then a
large chunk of the cache currently in sleep mode is re-
activated to help reduce the observed miss rate.

Cache line decay [6] activates/deactivates individual
cache lines. The finer granularity with respect to DRI
provides greater flexibility and is potentially more
effective. A cache line is placed in sleep mode if it has not
been accessed for a pre-determined amount of time, and is
re-activated only when it is re-accessed.

A limitation of both DRI and cache line decay is their
control mechanisms depend on arbitrary parameters that
must be tuned per application to minimize the
performance impact of static power reduction. In the case
of DRI, miss bound is chosen based on the typical miss
rate of an application, since ideally DRI should deactivate
as many cache lines possible without exceeding the
application’s typical miss rate. So, DRI may require cache
profiling. Cache line decay uses a different parameter,
decay time (time that must elapse since the last access to a
line before deactivating the line), but it too should be

tuned per application. Evidence that decay time should be
tuned is shown in Figure 1. By trial and error, a decay
time was found for each benchmark that reduced
performance by no more than 4% (the experiment was
performed for a 64KB 4-way set-associative data cache).
As can be seen in Figure 1, the tuned decay time varies
from 14,000 cycles for jpeg to 98,000 cycles for li. In
addition, tuning parameters does not always guarantee
best results because (1) tuning reflects the behavior of
profiled runs whereas any given run may behave
differently and (2) static parameters cannot capture
variations within a single run of the program.

0

20

40

60

80

100

co
mp

gc
c go jpe

g li

m
88

k
pe

rl

vo
rte

xd
ec

ay
 t

im
e

(x
 1

02
4

cy
cl

es
)

best decay time

Figure 1. Per-benchmark cache line decay times, tuned
to reduce performance by no more than 4%.

We propose deactivating only the data portion of cache
lines, and not the tag portion. By keeping the entire tag
store active, hardware can measure the hypothetical cache
miss rate if we were to keep all lines active. Pre-
determined parameters such as miss bound and decay time
are no longer needed. Instead, hardware dynamically
monitors the hypothetical miss rate using the tag store,
and controls the total percentage of sleep-mode lines to
achieve an actual miss rate that closely tracks the
hypothetical miss rate. The method is able to self-adjust to
variations among different applications and changes in
cache requirements as a program executes.

Our method is called Adaptive Mode Control (AMC).
Similar to cache line decay, AMC controls the mode
(sleep vs. active) of individual cache lines according to a
turn-off interval. The turn-off interval is the time that
must elapse since the last access to a line before
deactivating the line. The key difference is the turn-off
interval is dynamically adjusted to ensure performance
closely tracks the performance of an equivalent cache
without sleep mode. That is, the turn-off interval is
variable, and its value is periodically adjusted based on
the number of extra misses caused by sleep-mode cache

lines. Because the tags remain active, hardware is able to
distinguish between two types of misses.
1.Ideal miss: This is a miss in the tag store, i.e., the line is

not in the cache in either active or sleep mode. This
miss would have occurred in a conventional cache of
equivalent complexity.

2.Sleep miss: A sleep miss occurs when there is a hit in
the tag store but the data portion of the cache line is in
sleep mode. The line is in the cache, but it is unusable
and results in a cache miss.
A variety of simple control systems are possible. In

this paper, we develop an effective control system that
examines the ratio of sleep misses to ideal misses. If the
ratio is “too small”, AMC can be more aggressive in
deactivating cache lines, so the turn-off interval is
reduced. If the ratio is “too large”, AMC must be more
conservative in deactivating cache lines, so the turn-off
interval is increased. If the ratio is “just right”, the turn-off
interval is kept the same.

Our results show that for the SPECint95 benchmarks,
an average of 73% of instruction cache lines and 54% of
data cache lines can be deactivated during program
execution time with an average performance loss of only
1.7%, for 64KB instruction and data caches.

The remainder of this paper is organized as follows.
Section 2 describes the AMC architecture and hardware
mechanism for controlling the turn-off interval. The
SRAM cell circuit with sleep mode, developed by others
and used in this work, is reviewed in Section 3. The
simulation methodology and results are presented in
Sections 4 and 5, respectively. Section 6 discusses related
work, and Section 7 concludes the paper.

2. Adaptive Mode Control

2.1. AMC Cache Architecture

In order to make efficient use of sleep-mode-capable
SRAMs, we need the ability to monitor accesses to
individual cache lines. We do this by associating a counter
with each tag in the tag store, as shown in Figure 2 for a
direct mapped cache (the same applies for set-associative
caches). These counters are called Line Idle Counters
(LICs), because they keep track of how long a cache line
has not been accessed. If a cache line has been idle (i.e.,
not accessed) for a sufficient period of time, it will be
placed in sleep mode. Below, we first describe how LICs
are maintained (reset and incremented), and then describe
how LICs are monitored to deactivate lines (LIC
compared to a threshold).

A LIC is reset when the corresponding line is accessed.
All LICs in the tag store are simultaneously incremented
after a certain number of cycles have elapsed, called the
LIC update interval. The LIC update interval is constant
and implementation-dependent, the choice of which
depends on a straightforward tradeoff between the
hardware area/power overhead of LIC counters and
aggressiveness in deactivating cache lines. A sufficiently
long LIC update interval (1) results in a small number of
bits for each LIC counter since a single increment
represents a longer time interval and (2) reduces the
frequency of incrementing the counters, keeping their
dynamic power contribution quite low. However, if the
LIC update interval is too long, then AMC is slower to
deactivate cache lines, squandering opportunities to save
static power [6]. Detailed analysis in Section 5.4 shows a
LIC update interval of 2048 cycles yields effective results
with small counter area overhead and negligible dynamic
power overhead (LICs increment infrequently – once
every 2048 cycles) [23].

Also associated with each tag/LIC is a small
comparator logic block called the Mode Control Logic
(MCL), as shown in Figure 2. The MCL associated with
each LIC compares the LIC value to the turn-off interval
stored in the Global Control Register (GCR). If the LIC
value is greater than or equal to the turn-off interval in the
GCR, the MCL will place the corresponding data line into
sleep mode (this is achieved with a control wire, labeled
“mode control” in Figure 2). Otherwise, the line remains
in active mode.

Note, for write-back data caches, dirty data needs to be
written back to the L2 cache/main memory before a line is
placed in sleep mode because data is not retained in sleep
mode. This may impact performance either positively or

negatively; in some sense, the LIC/MCL logic is an
implementation of eager writeback [22] which suggests it
is possible for performance to improve.

Finally, miss detection is modified slightly in an AMC
cache because there are two types of misses (as described
in Section 1), ideal misses and sleep misses. An ideal miss
occurs when the tag(s) do not match. A sleep miss occurs
when a matching tag is found but the data portion is in
sleep mode. A sleep miss is handled like any other cache
miss, i.e., data must be fetched from the L2 cache and the
cache line is re-activated to hold the fetched data. So,
ideal misses are misses that would occur in a conventional
cache of equivalent size/associativity and sleep misses are
additional misses introduced by AMC. The goal of AMC
is to maximize the number of deactivated lines while
minimizing the number of sleep misses.

The turn-off interval, stored in the GCR, determines
how aggressively cache lines are deactivated. When the
GCR is too small, many soon-to-be-accessed cache lines
will prematurely deactivate, resulting in many sleep
misses. In this case, performance suffers and dynamic
power (due to miss servicing) may increase. On the other
hand, if the GCR is too large, AMC is slow to deactivate
lines. Lines that are unused before being evicted are not
deactivated early enough to reap any static power savings.
It is the job of the adaptive mechanism shown at the
bottom of Figure 2 to monitor the overall system and tune
the GCR to achieve maximum static power savings with
little or no performance loss.

2.2. Adaptive Mechanism

The fact that cache tags are never put into sleep mode
allows hardware to separate overall misses into those that
would have occurred regardless of a line’s sleep/active

tag mode Block Offset

Tag Index Block Offset

Tag Store Data Store

tag match & mode check w ord select MUX

hit/miss

row

decoder

Line
Idle

Counter
(LIC)

Control Register (GCR)

row select

mode control
row select

mode control

Mode
Control
Logic

(MCL)

LIC Update Interval

 adaptive
 mechanism

data word

Figure 2. AMC cache architecture (direct mapped cache shown).

status (ideal misses), and extra misses specifically caused
by sleep-mode lines (sleep misses). (Note: overall misses
= ideal misses + sleep misses.)

Ideal and sleep misses are counted during a sense
interval, a fixed period of time. At the end of the sense
interval, the adaptive algorithm examines the gathered
miss counts and updates the GCR. Then, the miss
counters are reset and counting begins anew for the next
sense interval.

The adaptive mechanism is shown in Figure 3. The
ideal miss counter is incremented when there is a tag miss
(tag_miss). The sleep miss counter is incremented when
there is a tag hit and the data is in sleep mode (tag_hit &
data_sleep). The inputs to the GCR update logic are (1)
the ideal miss count, (2) the sleep miss count, (3) the end-
of-sense-interval signal, and (4) the performance factor
(PF). The end-of-sense-interval signal simply indicates

when the GCR update logic should examine the miss
counts and update the GCR. We will show in Section 5.4
that the duration of the sense interval has little impact on
AMC results (both performance and power savings).

The diagram in Figure 4 illustrates how our proposed
adaptive mechanism works. The bold line closest to the x-
axis represents the number of ideal misses. Thus, the
distance between the x-axis and the first bold line is
labeled “ideal misses”. Sleep misses are considered error
in the system since they add to the ideal misses. Targeting
an error of 0 with our control system is rather
conservative (although not impossible), so we show a
second bold line above the first and the distance between
the two bold lines is the amount of error – this distance is
labeled “target error”. Moreover, rather than define the
target error as an absolute number, it makes more intuitive
sense to define the target error as a fraction/percentage of

 tag hit/miss active/sleep mode

ideal miss counter sleep miss counter

end of sense
interval ? GCR update

logic

increase/decrease
no_update performance

factor

G
C
R

<<1

>>1

Figure 3. Adaptive mechanism for dynamically updating the turn-off interval stored in the GCR.

ideal misses

target error =
PF*(ideal misses)

0.5*PF*(ideal misses)

error > 1.5*PF*(ideal misses)
{increase GCR}

error < 0.5*PF*(ideal misses)
{decrease GCR}

error < 1.5*PF*(ideal misses)
error > 0.5*PF*(ideal misses)
{no change to GCR}

increase GCR

decrease GCR

time

 number of misses

Figure 4. Diagram explaining control system in terms of target error. In AMC, error = sleep misses.

the base quantity, in this case the number of ideal misses
(like tolerances in discrete resistors). We call this fraction
the performance factor, PF. So, the target error (or
targeted number of sleep misses) is equal to PF*(ideal
misses).

Now that there is a target error, we can make a control
system. If the observed error is less than the target error,
the GCR is decreased (more lines go to sleep mode,
creating more error but getting more power savings). If
the observed error is greater than the target error, the GCR
is increased (fewer lines go to sleep mode, bringing the
error back down). This approach is too simplistic because
it is unlikely the target error will ever be met exactly, so
the system reacts to even the smallest deviations.

To improve on the above, we define a target error
range that is centered around the target error. This range
is shown in Figure 4 with two dashed lines above and
below the top bold line. So, we still target an error of
PF*(ideal misses), but we only need to get within a
certain range of it to not change the GCR. The range is the
same size as the target error itself, or PF*(ideal misses),
so the two dashed lines are 0.5*PF*(ideal misses) above
and below the top bold line, as labeled in Figure 4.
Therefore, the target error range is expressed as:
PF*(ideal misses) ± 0.5*PF*(ideal misses). Making the
target error and its tolerance similar in magnitude is
intuitively appealing and, as will be described below, it
also simplifies the hardware implementation of the
algorithm – it uses only a few shifts, adds, and compares
as a result.

The GCR update algorithm (shown in Figure 4 and
codified in Figure 5) is based on the target error range
described above. The GCR is decreased when the number
of sleep misses is less than 0.5*PF*(ideal misses). The
GCR is decreased via right-shifting it by one bit (see
Figure 3). This reduces the turn-off interval, in turn more
aggressively deactivating cache lines, since the error is
below the target error range. As an example, the GCR is
decreased twice for the miss curve shown in Figure 4,
since the curve dips below the lower dashed line twice.
The GCR is increased when the number of sleep misses
exceeds 1.5*PF*(ideal misses). The GCR is increased via
left-shifting it by one bit (see Figure 3). This increases the
turn-off interval, in turn less aggressively deactivating
cache lines, since the error is above the target error range.
For the example miss curve in Figure 4, the GCR is
increased once where the curve peaks above the upper
dashed line. If the number of sleep misses is within the
target error range, the GCR is not changed.

Figure 5. The GCR update algorithm.

The GCR update algorithm can be implemented in
hardware using shifts, adds, and compares (subtracts). PF
is set to a power-of-2 such as 2, 1, ½, ¼, etc. Therefore,
0.5*PF is a power-of-2 fraction, and the right-hand side of
the first if-expression in Figure 5 is implemented via a
right-shift of the ideal miss counter. The right-hand side
of the second if-expression is implemented in two steps:
1.0*PF*(ideal misses) is implemented as a right-shift of
the ideal miss counter, and this result is added to the result
computed in the first if-expression to obtain 1.5*PF*(ideal
misses). The two if-conditions are then evaluated via two
magnitude-comparators, where the above quantities and
the number of sleep misses are operands.

Due to the nature of our negative feedback algorithm,
the average ratio of sleep misses to ideal misses settles
close to the desired PF [23].

It should be noted that any control system necessarily
has pre-defined constants, PF in the case of AMC, miss
bound and size bound in the case of DRI [5], and decay
time in the case of cache line decay [6]. All of these
schemes dynamically track performance. AMC’s
distinction is it tracks a dynamic and accurate
performance target (ideal misses) instead of a pre-defined
and potentially less accurate performance target. PF,
albeit a pre-defined parameter, is a multiplicative
coefficient and determines how closely AMC performance
tracks hypothetical performance.

3. Review of SRAM Cell with Sleep Mode
Capability

Recently, researchers in the VLSI community have
proposed several techniques for reducing the static power
dissipated in memory cells due to leakage current [3,4,8-
10]. The design assumed in this work is shown in Figure
6.

The cell can be isolated from the power and ground
rails. Two additional nodes, virtual vdd (vvdd) and virtual
gnd (vgnd), are introduced, and the voltage at these two
nodes is controlled by transistors Q1 and Q2, which are
high-Vt (threshold voltage) or long-channel devices.
When the circuit is in active mode, both Q1 and Q2 are on
and the circuit operates as usual. When in the sleep mode,
Q1 and Q2 are turned off and the leakage current through
the SRAM cell is reduced dramatically due to the

if ((sleep misses) < ((ideal misses)*0.5*PF)) {
 decrease GCR: shift GCR right by one bit
}
else if ((sleep misses) > ((ideal misses)*1.5*PF)) {
 increase GCR: shift GCR left by one bit
}
else {
 do not change GCR
}

transistor stacking effect [7]. Several variants of this
implementation and the implications on power, area, and
performance are discussed in [4].

The cell can be improved by placing diodes between
vgnd-gnd and vvdd-vdd, retaining data in sleep-mode [8].
Sleep-mode lines hit, but with long latency to turn on. So,
AMC and this cell mutually benefit: AMC minimizes
slow sleep-hits and the new cell eliminates the need to
consume power fetching from the L2 cache.

Figure 6. SRAM cell with sleep mode support.

4. Methodology

This section describes our simulation environment,
including the underlying processor architecture,
benchmarks, and baseline AMC parameters.

4.1. Simulation Environment

We developed a cache simulator that fully models the
AMC architecture and integrated it into a timing simulator
developed using the Simplescalar toolset [16]. The
underlying processor organization is based on the MIPS
R10000 processor, configured as indicated in Table 1. The
SPECint95 benchmarks, listed in Table 2, were run to
completion.

Table 1. Processor configuration.
Size = 16/32/64 kB
Associativity = direct-mapped/4-way
Replacement = LRU
Line size = 16 instructions (64 bytes)

Instruction

Cache

Miss penalty = 12 cycles
Size = 16/32/64 kB
Associativity = direct-mapped/4-way
Replacement = LRU
Line size = 64 bytes

Data Cache

Miss penalty = 14 cycles
Reorder buffer: 64 entries
Dispatch/issue/retire bandwidth: 4-way superscalar
4 fully-symmetric function units

Superscalar

Core
Data cache ports: 4
Address generation: 1 cycle
Memory access: 2 cycles (hit in data cache)
Integer ALU ops = 1 cycle

Execution
Latencies

Complex ops = MIPS R10000 latencies

Table 2. Benchmarks.
Benchmark Input dataset Instruction Count

compress compress95.ref 24 million
gcc -O3 genrecog.i –o genrecog.s 117 million
go 9 9 133 million
jpeg Vigo.ppm 166 million
li Test.lsp (queens 7) 202 million
m88ksim -c < ctl.in (dcrand.big) 120 million
perl scrabble.pl < scrabble.in

(dictionary)
108 million

vortex vortex.in (persons.250,
bendian.*)

101 million

4.2. Default AMC Parameters

 Throughout the remainder of the paper we use default
values for three primary AMC parameters: the
performance factor (PF) is set at ½, the sense interval is
set at 1 million cycles, and the LIC update interval is set
at 2048 cycles. The combination of these default settings
provides the best trade-off between static power savings
and performance in our studies. In Section 5.4 we
examine the impact of varying each of these parameters
individually on static power and performance.

5. Results

In this section, we apply AMC to L1 instruction caches
(I-caches) and data caches (D-caches), separately and
together. Specifically, we examine the performance
impact of AMC and the percentage of cache lines that are
placed in sleep mode. Performance is measured as
instructions-per-cycle (IPC), and we present the % IPC
degradation. The percentage of cache lines that are placed
in sleep mode is called the turn-off ratio. Turn-off ratio is
measured by recording the fraction of cache lines in sleep-
mode each cycle, and averaging over all cycles. We
assume static power savings is proportional to the turn-off
ratio.

5.1. AMC Instruction Caches

We studied 16kB, 32kB, and 64kB instruction caches,
for each of direct-mapped and 4-way set-associativity.
The D-cache in all experiments is 64kB 4-way set-
associative without AMC.

Figure 7 shows % IPC degradation over all
benchmarks and I-cache configurations. The primary
result, as expected, is that performance is never degraded
by more than 6.5%, and performance is never worsened
by more than 3% on average.

Figure 7 also shows that the performance impact of
AMC is sensitive to I-cache size and associativity. Firstly,
performance impact is less with higher associativity.
There are fewer ideal misses with 4-way set-associative
caches than with direct-mapped caches, and our control
system targets a number of sleep misses proportional to
the number of ideal misses via PF. This is a small price
we pay for using a multiplicative coefficient rather than

 bitline bitline

wordline

vvdd

vgnd

gnd

vdd

sleep

sleep

Q2

Q1

an arbitrarily set, absolute bound on the number of sleep
misses. In Section 5.4, we study the effects of varying PF
on both static power and performance.

0

1

2

3

4

5

6

7

comp gcc go jpeg li m88k perl vortex H.
Mean

%
 I

P
C

 d
eg

ra
da

ti
on

16k-DM
32k-DM
64k-DM
16k-4way
32k-4way
64k-4way

 Figure 7. AMC I-cache: performance degradation.

Secondly, with 4-way set-associative caches,
increasing cache size results in less performance
degradation (except for a small deviation in gcc for the
32kB cache), for the same reason just described: larger
caches have fewer ideal misses and our control system
will generate fewer sleep misses as a result.

Thirdly, for direct mapped caches, the performance
trend with cache size is somewhat more unusual than with
4-way set-associative caches. For gcc, go, perl, and
vortex, performance degradation with a 16kB direct-
mapped cache is lower than with a 32kB direct-mapped
cache, yet we would expect it to be higher: more ideal
misses with 16kB than with 32kB, therefore, more sleep
misses too. Ideal miss rate is higher, e.g., for gcc, 10% for
16kB and 6% for 32kB. But the sleep miss rate does not
behave as expected. For gcc, the 16kB cache has a 2.2%
sleep miss rate and the 32kB cache has a 2.7% miss rate.
We conclude that, with too small a cache to fit the
working set (16kB), lines are almost always re-accessed
before having a chance to turn-off. For these results, the
minimum turn-off interval is 4K cycles. Most lines in the
16kB cache are re-accessed within 4K cycles. If the turn-
off interval could dip below 4K cycles, 16kB IPC
degradation and turn-off ratio would both be higher. But,
it is encouraging that the lower bound on turn-off interval
also bounds the sleep miss rate when ideal miss rate
becomes too high (a built-in safety mechanism).
Interestingly, in gcc (our largest benchmark), the 16kB 4-
way set-associative cache shows slightly the same trend as
the 16kB direct-mapped cache.

Figure 8 shows the I-cache turn-off ratio for all
benchmarks and cache configurations. The first
conclusion is that AMC provides significant static power
savings, from 40% (16kB 4-way cache) to 77% (64kB

direct-mapped cache) turned-off cache-lines, justifying
the relatively small performance degradation.

Two other trends are evident from Figure 8. Turn-off
ratios (1) decrease with decreasing cache size and (2)
decrease with increasing associativity. The first trend is
expected since, as cache size decreases, an application’s
working set consumes a larger percentage of the cache.
The second trend is less intuitive and can be explained via
a contrived example. Consider a direct-mapped cache and
a fully-associative cache, and suppose all accesses map to
the same line in the direct-mapped cache but obviously
not so in the fully-associative cache. All but that single
line will be turned off in the direct mapped cache; none of
the lines in the fully-associative cache will be turned off.
So, even though a 32kB 4-way cache is effectively larger
than a 32kB direct mapped cache, that does not mean the
turn-off ratio will be higher for the associative cache. In
fact, the utilization of the 32kB space improves with
associativity so fewer lines are deactivated. It is precisely
because the direct mapped cache performs substantially
worse to begin with that deactivating more of it is
possible.

Finally, from Figure 8 it is apparent that AMC is able
to dynamically adjust to different behavior among
benchmarks. Specifically, the turn-off ratio varies
substantially while performance degradation is kept fairly
low across all benchmarks. Turn-off ratios for a 32kB 4-
way set-associative instruction cache are: 94%
(compress), 41% (gcc), 55% (go), 73% (jpeg), 66% (li),
56% (m88ksim), 48% (perl), and 37%
(vortex).

0

20

40

60

80

100

120

comp gcc go jpeg li m88k perl vortex A.
Mean

C
ac

he
 L

in
e

T
ur

n-
of

f R
at

io

16k-DM
32k-DM
64k-DM
16k-4way
32k-4way
64k-4way

 Figure 8. AMC I-Cache: Turn-off Ratio.

Another interesting result can be deduced by
examining Figures 7 and 8 together. Notice gcc, go, perl,
and vortex have relatively higher performance degradation
and relatively lower turn-off ratio, compared to the other
four benchmarks. Again, these benchmarks have
relatively larger working sets.

5.2. AMC Data Caches

We also studied 16kB, 32kB, and 64kB direct-mapped
and 4-way set-associative data caches. The I-cache in
these experiments is 64kB 2-way set-associative without
AMC.

Figure 9 shows the % IPC degradation for each
benchmark and cache configuration. The AMC D-cache
degrades IPC as much as 8.3% among individual
benchmarks and 4.6% on average, compared with 6.5%
and 3%, respectively, for AMC I-caches. D-cache ideal
miss rates are higher, therefore, its sleep miss rates are
higher.

0

1

2

3

4

5

6

7

8

9

comp gcc go jpeg li m88k perl vortex H.
Mean

%
 I

P
C

 d
eg

ra
da

ti
on

16k-DM
32k-DM
64k-DM
16k-4way
32k-4way
64k-4way

Figure 9. AMC D-cache: performance degradation.

From Figure 9, the AMC D-cache has the same
performance trends with cache size and set-associativity
as the AMC I-cache in the previous section. First, IPC
degradation decreases with increasing set-associativity.
Second, IPC degradation decreases with cache size,
although again we see the same phenomenon with the
16kB caches. That is, the 16kB direct mapped cache is
too small for compress, gcc, go, li, and vortex, such that
the turn-off interval saturates at its lower limit and
performance degrades less than expected. For compress
and vortex, this is even true for the 16kB 4-way set-
associative cache. (We even see the same trend for a
32kB direct mapped cache in vortex.)

Figure 10 shows the D-cache turn-off ratio for all
benchmarks and cache configurations. The main
conclusion is that AMC D-caches provide somewhat less
static power savings than AMC I-caches, from 38%
(16kB 4-way cache) to 75% (64kB direct-mapped cache).

Again, similar to AMC I-caches, we see from the
average results in Figure 10 that AMC D-cache turn-off
ratios tend to decrease with decreasing cache size and
decrease with increasing associativity. However, for D-
caches, there are more deviations from these average
trends among individual benchmarks.

0

10

20

30

40

50

60

70

80

90

100

co
m

p
gc

c go
jpe

g li

m
88

k
pe

rl

vo
rte

x

A_m
ea

n

C
ac

he
 L

in
e

T
ur

n-
of

f
R

at
io

16k-DM 32k-DM 64k-DM
16k-4way 32k-4way 64k-4way

Figure 10. AMC D-cache: Turn-off Ratio.

5.3. AMC I-cache and D-cache

AMC can be applied simultaneously to both the
instruction cache and data cache, with significant static
power savings but only minor performance loss. For a
64kB 2-way I-cache and 64kB 4-way D-cache, we get a
turn-off ratio of 73% for the I-cache and 56% for the D-
cache. The performance degradation is only 1.8%, which
interestingly turns out to be equal to the sum of the
performance degradations measured individually in
Sections 5.1 and 5.2. Note, PF = ½ for both D-cache and
I-cache, and each has a separate GCR.

5.4. Sense interval, performance factor, and LIC
update interval

The AMC sense interval determines how often the
GCR should be updated. In our studies we used a fixed
value of 1 million cycles for both I-caches and D-caches.
Although a time-varying value capable of detecting
distinct execution phases is ideal, our studies do not show
a significant difference when the sense interval is varied
from 250000 to 4000000 cycles. The variation in
performance is less than 1% and the variation in power
saving is less than 2% for I-caches and D-caches, with
compress being the only exception. In compress, the
performance variation is 1.3% (IPC from 1.49 to 1.51)
and the variation in power savings in the D-cache is 9%
(from 48.1% to 39.0%).

The performance factor PF determines the trade-off
between performance degradation and static power
savings by controlling the sleep-to-ideal miss ratio. A
smaller PF implies that we are more sensitive to an
increase in sleep misses. In the extreme, by setting the
performance factor to zero, we effectively turn AMC off.
Table 3 shows results for each benchmark using a 64kB 2-
way I-cache and 64kB 4-way D-cache, in which we varied
PF from 1/8 to 1 (again, PF is the same for both caches

and each cache has its own GCR). As expected,
increasing PF tends to decrease IPC and increase turn-off
ratio. IPC for li and m88ksim, however, is insensitive to
PF. The ideal miss rates of both caches for li and
m88ksim are quite low, so both GCRs saturate at the
maximum value most of the time (to keep sleep miss rate
also very low).

Finally, we study the impact of LIC update interval. As
discussed in Section 2.1, a finer interval granularity
provides more opportunity for cache lines to be put into
sleep mode. However, a coarser interval granularity
results in smaller area cost and dynamic power
consumption of the LICs. Simulations showed variations
of 0.5% and 2.0% in IPC and turn-off ratio, respectively,
as the LIC granularity varies from 256 to 4096 cycles. We
conclude a 2048-cycle interval provides a good trade-off
between counter overhead (area and dynamic power) and
aggressiveness in deactivating cache lines.

6. Related work

Recently, as power has become a first-order design
constraint, there has been a deluge of research in
architectural power modeling and optimization of on-chip
caches. Several techniques have been proposed to reduce
the switching power of on-chip caches. With support from
the compiler, selective cache ways [11] enables an
appropriate number of ways based on the cache
requirements of the current application. The unused ways
are disabled by the cache controller through the Cache
Way Select Register (CWSR). The L-Cache [12] and
Filter cache [13] attempt to reduce L1 cache activity by
placing a small L0 cache between the L1 and the
processor. With the compiler taking the responsibility of
code modification and allocation of instructions into the
L-Cache, much smaller performance degradations result
as compared to the Filter cache. Block buffering [14] is
similar in concept, but, instead of an additional cache
level, it places recently requested words into a block
buffer inside the cache. With the use of two-phase
clocking, the additional access latency can be minimized.
Sub-banking in the data array [14] and multiple-divided
modules (MDM) [15] also reduce the power consumption
by accessing only part of the cache line. In addition to

these techniques, several analytical energy models [14,
18, 19] have been proposed to estimate and evaluate cache
power and power saving techniques.

The primary goal of the approaches discussed
previously is to reduce dynamic power dissipation. The
DRI I-cache [5], as mentioned in Section 1, is a
mechanism for reducing static power consumption by
dynamically resizing and turning-off unused sections by
way of the Gated-Vdd technique [4]. As the I-cache size
changes over time, an index re-mapping mechanism is
necessary which incurs a resizing penalty. In order to
obtain optimal power-performance trade-off results, the
control parameters, such as miss bound and size bound,
must be pre-tuned for different applications. Cache Line
Decay [6] targets static power reductions through the use
of the Gated-Vdd technique by turning off individual
cache lines that have not been accessed for some pre-
defined interval – the decay interval. Since the decay
interval is statically fixed, it cannot be updated
dynamically to accommodate changes in cache
requirements within and across applications.

Cache Line Decay was recently improved upon to
make it more dynamic, without keeping the tag store
active [24]. An interesting future study would be to
compare the two alternative dynamic approaches, AMC
cache and the Cache Decay approach.

In this paper, we only presented turn-off ratio results.
A detailed static and dynamic power analysis of the AMC
cache can be found in the companion technical report
[23].

7. Conclusions

We proposed a microarchitecture technique that
dynamically adapts to evolving cache requirements in
order to conserve static power while maintaining
performance. The main contributions of this study are as
follows.
• The tag store is always kept active. This enables

hypothetical performance without sleep mode to be
determined and used to control real performance.
Dynamically monitoring hypothetical performance is
an improvement over setting arbitrary and static
performance targets.

Table 3. Simulation results with different performance factors (PFs).
IPC I-cache turn-off ratio D-cache turn-off ratio Benchmarks

Ideal PF=1/8 PF=1/4 PF=1 PF=1/8 PF=1/4 PF=1 PF=1/8 PF=1/4 PF=1
Compress 1.56 1.53 1.53 1.49 97.0% 97.0% 97.0% 35.0% 36.3% 46.8%

Gcc 1.84 1.83 1.81 1.74 45.2% 52.9% 66.0% 36.5% 44.3% 60.3%
Go 1.64 1.63 1.62 1.58 15.8% 31.3% 73.4% 40.1% 42.2% 53.3%

Jpeg 1.97 1.96 1.95 1.94 83.8% 83.8% 83.9% 48.0% 51.9% 62.3%

Li 2.19 2.18 2.18 2.18 82.9% 82.9% 83.0% 36.4% 36.4% 36.4%
M88ksim 1.74 1.74 1.74 1.74 78.1% 78.3% 78.7% 63.7% 63.8% 79.7%

Perl 1.91 1.91 1.91 1.91 70.2% 70.3% 70.3% 65.8% 66.1% 66.7%
Vortex 2.35 2.32 2.30 2.21 40.5% 43.6% 57.6% 45.7% 55.6% 76.8%

Average 1.868 1.855 1.848 1.817 64.2% 67.5% 76.2% 46.4% 49.6% 60.3%

• We proposed a control system that keeps the number
of sleep misses within a certain factor of ideal misses.
Using a relative factor instead of an arbitrary,
absolute number is a key contribution.

• We presented extensive results, including multiple I-
cache and D-cache configurations and sensitivity to
AMC parameters. Previously unknown, interesting
results emerged. Just one interesting example is
higher associativity results in lower cache turn-off
ratios. This was initially counter-intuitive but the
explanation is associative caches utilize a fixed
amount of space better than direct-mapped caches.

• We demonstrated that AMC is overall a very
effective means for improving static-power-efficiency
in caches while maintaining good performance. Our
overall results show that an average of 73% of I-
cache lines and 54% of D-cache lines can be turned
off with only a 1.8% performance loss.

8. Acknowledgments

 This research was supported by generous funding and
equipment donations from Compaq, Intel, and Ericsson,
and by NSF CAREER grant No. CCR-0092832.

9. References
[1] J. Montanaro, et al, “A 160-MHz, 32-b, 0.5-W CMOS

RISC Microprocessor.” Digital Technical Journal, vol. 9,
Digital Equipment Corporation, 1997.

[2] S. Borkar, “Design Challenges of Technology Scaling.”
IEEE Micro, 19(4), July 1999.

[3] M. Margala, “Low Power SRAM Circuit Design”, IEEE
Int. Workshop on Memory Technology, Design, and
Testing, 1999.

[4] M. Powell, S-H. Yang, B. Falsafi, K. Roy and T.
Vijaykumar, “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories.” Proc. of
the Int. Sym. on Low Power Electronics and Design
(ISLPED), 2000.

[5] S-H. Yang, M. Powell, B. Falsafi, K. Roy and T.
Vijaykumar, “An Integrated Circuit/Architecture Approach
to Reducing Leakage in Deep-Submicron High-
Performance I-caches”, Proc. of the Int. Sym. on High
Performance Computer Architecture (HPCA), Jan. 2001.

[6] S. Kaxiras, Z. Hu, G. Narlikar, and R. Mclellan, “Cache-
line decay: A Mechanism to Reduce Cache Leakage
Power”, IEEE workshop on Power Aware Computer
Systems, 2000.

[7] Y.Ye, S. Borkar and V. De, “A New Technique For
Standby Leakage Reduction in High Performance Circuits.”
IEEE Sym. on VLSI Circuits, 1998.

[8] K. Noii, et.al., “A Low Power SRAM using Auto-
Backgate-Controlled MT—CMOS”, Proc. of the Int. Sym.
on Low Power Electronics and Design (ISLPED), 1998.

[9] S. Shigematsu, et. al., “A 1-v High Speed MTCMOS
Circuit Scheme for Power-Down Application Circuits”,
IEEE Journal of Solid-State Circuits, vol. 32, 1997.

[10] T. Kuroda, et. al., “A 0.9v, 150MHz 10mW, 4mm2, 2-D
Discrete Cosine Transform Core Processor with Variable

Threshold-Voltage Scheme”, IEEE Journal of Solid-Srate
Circuits, vol. 31, 1996.

[11] D. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation”, Proc. of the 32nd Annual IEEE/ACM
Int. Sym. on Microarchitecture (MICRO 32), Nov. 1999.

[12] N. Bellas, I. N. Hajj, C. D. Polychronopoulos, and G.
Stamoulis, “Architectural and Compiler Techniques for
Energy Reduction in High-Performance Microprocessors”,
IEEE Trans. On VLSI Systems, 8(3), 2000.

[13] J. Kin, M. Gupta, and W. Mangione-Smith, “The filter
cache: An energy efficient memory structure”, Proc. of the
30th Annual IEEE/ACM Int. Sym. on Microarchitecture
(MICRO 30), 1997.

[14] M. B. Kamble and K. Ghose, “Analytical Energy
Dissipation Models for Low Power Caches”, Proc. of the
Int. Sym. on Low Power Electronics and Design (ISLPED),
Aug. 1997.

[15] U. Ko and P.T. Balsara, “Characterization and Design of A
Low-Power, High-Performance Cache Architecture”, Int.
Sym. on VLSI Technology, Systems, and Applications, 1995.

[16] D. Burger and T. M. Austin, “The Simplescalar Tool Set
Version 2.0”, Technical Report, Computer Science
Department, University of Wisconsin-Madison, 1997.

[17] N. Bellas, I. Hajj, and C. Polychropoulos, “A detailed,
transistor-level energy model for SRAM-based caches”,
Proc. Int. Sym. Circuits and Sytems, 1999.

[18] N. Vijaykrishnan, M. Kandemir, M.J., Irwin, H.S. Kim and
W. Ye, “Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower”, Proc. of 27th Int. Sym.
On Computer Architecture (ISCA), 2000.

[19] G. Reinman and N. Jouppi, “An Integrated Cache Timing
and Power Model”, CACTI 2.0 Technical Report,
COMPAQ Western Research Lab, 1999.

[20] L. Gwennap, “Digital 21264 Sets New Standard”,
Microprocessor Report, vol. 10, no. 14, Oct. 1996.

[21] R. Gonzalez and M. Horowitz, “Energy Dissipation in
General Purpose Microprocessors”, IEEE Journal of Solid-
State Circuits, 31(9), 1996.

[22] H-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager
Writeback – A Technique for Improving Bandwidth
Utilization”, MICRO 33, Dec. 2000.

[23] H. Zhou, M. Toburen, E. Rotenberg, T. Conte, “AMC: A
low leakage power efficient on-chip cache system design”,
Technical Report, Department of Electrical and Computer
Engineering, North Carolina State University, Nov. 2000.

[24] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay:
generational behavior to reduce cache leakage power”,
Proc. of 28th Int. Symp. On Computer Architecture (ISCA),
2001.

