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ABSTRACT 
In this paper we advocate formal locality analysis on memory 

references of GPGPU kernels. We investigate the locality of 
reference at different cache levels in the memory hierarchy. At the 
L1 cache level, we look into the locality behavior at the warp-, the 
thread block- and the streaming multiprocessor-level. Using 
matrix multiplication as a case study, we show that our locality 
analysis accurately captures some interesting and counter-intuitive 
behavior of the memory accesses. We believe that such analysis 
will provide very useful insights in understanding the memory 
accessing behavior and optimizing the memory hierarchy in GPU 
architectures. 

Categories and Subject Descriptors 
C.1.3 [Other Architecture Styles]: Heterogeneous (hybrid) 
systems 

General Terms 
Algorithms, Performance. 
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1. INTRODUCTION 
Although graphics processing units (GPUs) rely on thread-level 
parallelism to hide long memory access latencies, the memory 
hierarchy, including on-chip caches, remain critical for many 
GPGPU (general purpose computing on GPUs) applications. In 
this paper, we advocate formal locality analysis to understand the 
nature of the memory access patterns of GPGPU applications and 
how they interact with the GPU memory hierarchy. We will first 
discuss our approach for locality analysis and then use matrix 
multiplication as a case study to show that interesting and 
somewhat unexpected memory access behavior can be revealed 
from our locality analysis.    

2. APPROACH 
To get a quantitative measure of locality, we use our probability 
based approach [2]. It defines locality as a conditional probability: 
given the condition that a memory address, X, is accessed, how 
likely the same address X or a neighbor address Y, where Y is 
within the neighborhood of X, will be accessed in the near future.  
With N being defined as the near future window size (N unique 
addresses) and K as the neighborhood size (|Y-X| < K), the spatial 

locality is represented as LS(N,K), which can be readily computed 
from an address stream for different Ns and Ks, resulting in a 3D 
mesh.  

In current GPU memory hierarchy, each stream multiprocessor 
(SM) has an L1 cache and multiple SMs share an L2 cache, which 
is then connected to off-chip memory using multiple memory 
controllers. Since each L1 cache is shared by all the warps 
running on the SM and the threads are also managed in thread 
blocks, we analyze the locality behavior at the warp-level, the 
thread block level and the SM level to understand the impact on 
the L1 cache. Then, the L2 cache access stream is used to 
compute the locality at the L2 cache level. The L2 miss stream is 
also used to examine the locality behavior at the off-chip DRAM 
level. 

In our study, GPGPU-Sim 3.1.1 [1] is used to generate various 
address streams of interests. Our GPU model is similar to 
NVIDIA GTX 480GPUs [3]. The L1 cache has the capacity of 
16kB, the block size of 128 bytes and the set associativity of 4. 
The shared L2 cache has the capacity of 768kB, the block size of 
128 bytes and the set associativity of 16. The L2 cache is shared 
among 15 SMs. The round-robin warp scheduling policy is used 
for all the warps in an SM. 

3. LOCALITY ANALYSIS ON MATRIX 
MULTIPLICATION 
In this case study, we use the tiled matrix multiplication (MM) 
kernel from CUDA SDK [4]. We modified the kernel to use the 
L1 cache rather than the shared memory. The tile size is 16x16. 
Therefore each thread block contains 8 warps and 4 thread blocks 
can run concurrently in an SM. The locality curves computed at 
the warp level, the thread-block level, and the SM level are shown 
in Figure 1. The locality curves at different levels capture the 
reuse patterns accurately and can reveal interesting and somewhat 
unexpected results.  

At the warp level, within a warp, the temporal locality varies as 
shown by curve for neighborhood size of 0 in Figure 1a. Since tile 
A’s element A[0][0] gets multiplied with 16 elements from tile B 
(i.e. B[0][0~15]), the element A[0][0] is reused 15 times within 
warp 0. This extremely near reuse distance is shown in Figure 1a 
with a quick increase in temporal locality (LS(1,0)= 0.46). Since 
re-accesses to tile B occur after 16 accesses, the temporal locality 
jumps to 0.71 at the near-window size of 16 (LS (16, 0) = 0.71). 
There is also significant spatial locality present in the accesses to 
matrix B which shows up in the figure as increase in the locality 
as we move towards bigger neighborhood sizes (keeping near 
future window size fixed at say 1 or 2). This is because 
consecutive accesses to array B are from the same row (note that 
we assume row major data layout for 2D arrays).  

At the thread block level (containing 8 warps), access patterns 
form several warps are interleaved, shown as follows. 
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A[0][0]*B[0][0 ~ 15] – warp 0 
A[1][0]*B[0][0 ~ 15] – warp 0 
A[2][0]*B[0][0 ~ 15] – warp 1 

… 
A[14][0]*B[0][0 ~ 15] – warp 7 
A[15][0]*B[0][0 ~ 15] – warp 7 
--------------------------------------- 
A[0][1]*B[1][0 ~ 15] – warp 0 
A[1][1]*B[1][0 ~ 15] – warp 0 

… 
A[15][1]*B[1][0 ~ 15] – warp 7 
--------------------------------------- 

… 
--------------------------------------- 
A[0][2]*B[2][0 ~ 15] – warp 0 

… 
…. 

A[0][15]*B[15][0~15] – warp 7 
Since elements of matrix A again see multiple accesses causing 
the first jump in temporal locality in Figure 1b. It is interesting to 
see that all 16 elements in the row from tile B are again reused 
while they get multiplied by newer elements from tile A by 
subsequent warps. This causes accesses to matrix B have even 
higher temporal locality across warps at the thread block level 
(shown by LS(16, 0) = 0.80).  
At the SM level, multiple thread blocks (4 in our case) are 
scheduled together and they share the L1 cache capacity. This can 
disrupt the data locality due to interference of data access patterns 
of multiple thread blocks sharing the same cache. In other words, 
if the cache in minimally sized to hold only the data accessed by 
one thread block, multiple co-scheduled thread blocks may end up 
thrashing the cache. Figure 1b and 1c compare the locality 
behavior of only one of the thread blocks executing in the SM and 
4 thread blocks executing together. From the figures, we cannot 
see any significant difference in the locality plots and hence we 
can conclude that for MM, there is not any significant impact 
from multiple thread blocks being co-scheduled on the same SM. 
Clearly, this is counter intuitive as our initial expectation is that 
each of the four thread blocks will need 1 tile for A and 1 tile for 
B. Even with sharing among thread blocks when they have the 
same X position, 1 tile for A and 4 tiles for B will be needed by 
the 4 thread blocks. Therefore, the locality curve at the SM level 
should be quite different from the locality curve at the thread 
block level. So, what did we miss here?  

From the access patterns at the thread block level, we can see that 
accesses to tile A enjoy spatial locality, i.e., if the cache is large 
enough to hold 16 elements from tile A (i.e. A[0][0], A[1][0], … 
A[15][0]) and the cache block is big enough to hold multiple data 
elements, the access A[0][1], A[1][1], … A[15][1] will be hits due 

to spatial locality. Consider the capacity requirement for 
achieving good performance from the tiled implementation in this 
case, only 16 cache blocks from tile A need to be cached. On the 
other hand, the 16 contiguous elements need to be cached from 
tile B to get the performance. In our GPU, the cache block size is 
128-bytes and therefore all 16 elements (4-bytes each) fit in the 
cache block. Therefore, only 16 cache blocks for tile A + one 
cache block for tile B = 17 cache blocks in L1 cache is enough to 
get performance from the tiled MM on GPU.  

Now we move on to analyzing the locality of the memory 
reference stream observed by the L1 cache of an SM in the GPU 
when tiled MM is used. The GPU in our experiments uses round-
robin scheduling policy to schedule thread blocks on SMs and 
within a thread block it uses round robin scheduling as well for 
scheduling warps. As multiple thread blocks are sharing the same 
L1 cache, the requirement of L1 cache capacity is increased as 
well. Though depending upon which thread blocks get co-
scheduled, there is a possibility of sharing one of the tiles (either 
A or B) among the multiple co-scheduled thread blocks. In our 
experiments we observed that the co-scheduled thread blocks 
share the same tile A. Interestingly, this causes the capacity 
requirement to increase only by very small amount. The reason is 
that we only need to cache 16 cache blocks of tile A and only 1 
cache block for each thread block scheduled for their respective 
tile B. This is the fundamental reason why the locality curves in 
Figure 1b and Figure 1c do not show any significant difference. 

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we advocate locality analysis on memory references 
of GPGPU applications and showcase the locality study on the 
matrix multiplication kernel. We show that our locality curves 
capture the nature of the access patterns accurately and also reveal 
interesting and somewhat unexpected results, regarding multiple 
thread blocks sharing the L1 cache in an SM. In our future work, 
we plan to optimize the memory hierarchy based on the insights 
revealed from the locality analysis. We also plan to extend this 
work to understand the interactions of locality when multiple 
kernels share the last level of cache in a GPU.   
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    (a)  Warp level        (b) Thread-block level    (c) SM-level 

Figure 1: Locality of Matrix Multiplication kernel at warp, thread-block level, SM level 


