
Analyzing Locality of Memory References
in GPU Architectures

Saurabh Gupta, Ping Xiang, Huiyang Zhou
North Carolina State University

Raleigh, NC, USA
{sgupta12, pxiang, hzhou}@ncsu.edu

ABSTRACT
In this paper we advocate formal locality analysis on memory

references of GPGPU kernels. We investigate the locality of
reference at different cache levels in the memory hierarchy. At the
L1 cache level, we look into the locality behavior at the warp-, the
thread block- and the streaming multiprocessor-level. Using
matrix multiplication as a case study, we show that our locality
analysis accurately captures some interesting and counter-intuitive
behavior of the memory accesses. We believe that such analysis
will provide very useful insights in understanding the memory
accessing behavior and optimizing the memory hierarchy in GPU
architectures.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hybrid)
systems

General Terms
Algorithms, Performance.

Keywords
GPGPU, matrix multiplication, tiling, locality of reference.

1. INTRODUCTION
Although graphics processing units (GPUs) rely on thread-level
parallelism to hide long memory access latencies, the memory
hierarchy, including on-chip caches, remain critical for many
GPGPU (general purpose computing on GPUs) applications. In
this paper, we advocate formal locality analysis to understand the
nature of the memory access patterns of GPGPU applications and
how they interact with the GPU memory hierarchy. We will first
discuss our approach for locality analysis and then use matrix
multiplication as a case study to show that interesting and
somewhat unexpected memory access behavior can be revealed
from our locality analysis.

2. APPROACH
To get a quantitative measure of locality, we use our probability
based approach [2]. It defines locality as a conditional probability:
given the condition that a memory address, X, is accessed, how
likely the same address X or a neighbor address Y, where Y is
within the neighborhood of X, will be accessed in the near future.
With N being defined as the near future window size (N unique
addresses) and K as the neighborhood size (|Y-X| < K), the spatial

locality is represented as LS(N,K), which can be readily computed
from an address stream for different Ns and Ks, resulting in a 3D
mesh.

In current GPU memory hierarchy, each stream multiprocessor
(SM) has an L1 cache and multiple SMs share an L2 cache, which
is then connected to off-chip memory using multiple memory
controllers. Since each L1 cache is shared by all the warps
running on the SM and the threads are also managed in thread
blocks, we analyze the locality behavior at the warp-level, the
thread block level and the SM level to understand the impact on
the L1 cache. Then, the L2 cache access stream is used to
compute the locality at the L2 cache level. The L2 miss stream is
also used to examine the locality behavior at the off-chip DRAM
level.

In our study, GPGPU-Sim 3.1.1 [1] is used to generate various
address streams of interests. Our GPU model is similar to
NVIDIA GTX 480GPUs [3]. The L1 cache has the capacity of
16kB, the block size of 128 bytes and the set associativity of 4.
The shared L2 cache has the capacity of 768kB, the block size of
128 bytes and the set associativity of 16. The L2 cache is shared
among 15 SMs. The round-robin warp scheduling policy is used
for all the warps in an SM.

3. LOCALITY ANALYSIS ON MATRIX
MULTIPLICATION
In this case study, we use the tiled matrix multiplication (MM)
kernel from CUDA SDK [4]. We modified the kernel to use the
L1 cache rather than the shared memory. The tile size is 16x16.
Therefore each thread block contains 8 warps and 4 thread blocks
can run concurrently in an SM. The locality curves computed at
the warp level, the thread-block level, and the SM level are shown
in Figure 1. The locality curves at different levels capture the
reuse patterns accurately and can reveal interesting and somewhat
unexpected results.

At the warp level, within a warp, the temporal locality varies as
shown by curve for neighborhood size of 0 in Figure 1a. Since tile
A’s element A[0][0] gets multiplied with 16 elements from tile B
(i.e. B[0][0~15]), the element A[0][0] is reused 15 times within
warp 0. This extremely near reuse distance is shown in Figure 1a
with a quick increase in temporal locality (LS(1,0)= 0.46). Since
re-accesses to tile B occur after 16 accesses, the temporal locality
jumps to 0.71 at the near-window size of 16 (LS (16, 0) = 0.71).
There is also significant spatial locality present in the accesses to
matrix B which shows up in the figure as increase in the locality
as we move towards bigger neighborhood sizes (keeping near
future window size fixed at say 1 or 2). This is because
consecutive accesses to array B are from the same row (note that
we assume row major data layout for 2D arrays).

At the thread block level (containing 8 warps), access patterns
form several warps are interleaved, shown as follows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSPC'13, June, 2013, Seattle, Washington.
Copyright 2013 ACM 978-1-4503-1219-6/12/06 …$10.00.

A[0][0]*B[0][0 ~ 15] – warp 0
A[1][0]*B[0][0 ~ 15] – warp 0
A[2][0]*B[0][0 ~ 15] – warp 1

…
A[14][0]*B[0][0 ~ 15] – warp 7
A[15][0]*B[0][0 ~ 15] – warp 7

A[0][1]*B[1][0 ~ 15] – warp 0
A[1][1]*B[1][0 ~ 15] – warp 0

…
A[15][1]*B[1][0 ~ 15] – warp 7

…

A[0][2]*B[2][0 ~ 15] – warp 0

…
….

A[0][15]*B[15][0~15] – warp 7
Since elements of matrix A again see multiple accesses causing
the first jump in temporal locality in Figure 1b. It is interesting to
see that all 16 elements in the row from tile B are again reused
while they get multiplied by newer elements from tile A by
subsequent warps. This causes accesses to matrix B have even
higher temporal locality across warps at the thread block level
(shown by LS(16, 0) = 0.80).
At the SM level, multiple thread blocks (4 in our case) are
scheduled together and they share the L1 cache capacity. This can
disrupt the data locality due to interference of data access patterns
of multiple thread blocks sharing the same cache. In other words,
if the cache in minimally sized to hold only the data accessed by
one thread block, multiple co-scheduled thread blocks may end up
thrashing the cache. Figure 1b and 1c compare the locality
behavior of only one of the thread blocks executing in the SM and
4 thread blocks executing together. From the figures, we cannot
see any significant difference in the locality plots and hence we
can conclude that for MM, there is not any significant impact
from multiple thread blocks being co-scheduled on the same SM.
Clearly, this is counter intuitive as our initial expectation is that
each of the four thread blocks will need 1 tile for A and 1 tile for
B. Even with sharing among thread blocks when they have the
same X position, 1 tile for A and 4 tiles for B will be needed by
the 4 thread blocks. Therefore, the locality curve at the SM level
should be quite different from the locality curve at the thread
block level. So, what did we miss here?

From the access patterns at the thread block level, we can see that
accesses to tile A enjoy spatial locality, i.e., if the cache is large
enough to hold 16 elements from tile A (i.e. A[0][0], A[1][0], …
A[15][0]) and the cache block is big enough to hold multiple data
elements, the access A[0][1], A[1][1], … A[15][1] will be hits due

to spatial locality. Consider the capacity requirement for
achieving good performance from the tiled implementation in this
case, only 16 cache blocks from tile A need to be cached. On the
other hand, the 16 contiguous elements need to be cached from
tile B to get the performance. In our GPU, the cache block size is
128-bytes and therefore all 16 elements (4-bytes each) fit in the
cache block. Therefore, only 16 cache blocks for tile A + one
cache block for tile B = 17 cache blocks in L1 cache is enough to
get performance from the tiled MM on GPU.

Now we move on to analyzing the locality of the memory
reference stream observed by the L1 cache of an SM in the GPU
when tiled MM is used. The GPU in our experiments uses round-
robin scheduling policy to schedule thread blocks on SMs and
within a thread block it uses round robin scheduling as well for
scheduling warps. As multiple thread blocks are sharing the same
L1 cache, the requirement of L1 cache capacity is increased as
well. Though depending upon which thread blocks get co-
scheduled, there is a possibility of sharing one of the tiles (either
A or B) among the multiple co-scheduled thread blocks. In our
experiments we observed that the co-scheduled thread blocks
share the same tile A. Interestingly, this causes the capacity
requirement to increase only by very small amount. The reason is
that we only need to cache 16 cache blocks of tile A and only 1
cache block for each thread block scheduled for their respective
tile B. This is the fundamental reason why the locality curves in
Figure 1b and Figure 1c do not show any significant difference.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we advocate locality analysis on memory references
of GPGPU applications and showcase the locality study on the
matrix multiplication kernel. We show that our locality curves
capture the nature of the access patterns accurately and also reveal
interesting and somewhat unexpected results, regarding multiple
thread blocks sharing the L1 cache in an SM. In our future work,
we plan to optimize the memory hierarchy based on the insights
revealed from the locality analysis. We also plan to extend this
work to understand the interactions of locality when multiple
kernels share the last level of cache in a GPU.

5. REFERENCES
[1] A. Bakhoda, et al. Analyzing CUDA workloads using a
detailed GPU simulator. In IPASS 2009.
[2] S. Gupta et al. Locality Principle Revisited: A Probability-
Based Quantitative Approach. In IPDPS 2012.
[3] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA
Compute Architecture. 2009; http://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture
_Whitepaper.pdf.
[4] NVIDIA GPU Computing SDK 3.1; https://developer.
nvidia.com/cuda-toolkit-31-downloads.

 (a) Warp level (b) Thread-block level (c) SM-level

Figure 1: Locality of Matrix Multiplication kernel at warp, thread-block level, SM level

