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Abstract—Many-core architectures such as graphics 
processing units (GPUs) rely on thread-level parallelism (TLP) 
to overcome pipeline hazards. Consequently, each core in a 
many-core processor employs a relatively simple in-order 
pipeline with limited capability to exploit instruction-level 
parallelism (ILP). In this paper, we study the ILP impact on the 
throughput-oriented many-core architecture, including data 
bypassing, scoreboarding and branch prediction. We show that 
these ILP techniques significantly reduce the performance 
dependency on TLP. This is especially useful for applications, 
whose resource usage limits the hardware to run a high number 
of threads concurrently. Furthermore, ILP techniques reduce 
the demand on on-chip resource to support high TLP. Given 
the workload-dependent impact from ILP, we propose 
heterogeneous GPGPU architecture, consisting of both the 
cores designed for high TLP and those customized with ILP 
techniques. Our results show that our heterogeneous GPU 
architecture achieves high throughput as well as high energy- 
and area-efficiency compared to homogenous designs. 
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I.INTRODUCTION 

The design philosophy of many-core architectures such as 
graphics processing units (GPUs) is to exploit thread-level 
parallelism (TLP) to achieve high throughput. Compared to 
central processing unit (CPU) designs, GPU-like many-core 
architectures spend the on-die area mainly for 
computational/instruction execution logic rather than caches 
or complex instruction processing, such as register renaming 
and out-of-order execution, to extract instruction-level 
parallelism (ILP). Each core in a GPU, referred to as a shader 
core (SC), is a relatively simple in-order multi-threaded 
processor, which primarily relies on TLP to overcome 
pipeline hazards. In this paper, we propose to architect SCs 
for GPU-like many-core processors to achieve both high 
performance and high energy- and area-efficiency. 

We first revisit the ILP techniques [5][9] for in-order 
processors, including data bypassing/forwarding, 
scoreboarding and branch prediction, to gain insight on how 
they interact with throughput-oriented many-core 
architectures. Similar to CPUs, data bypass in a GPU 
accelerates execution of producer and consumer instruction 
pairs from the same threads; a scoreboard checks data 
independency to support the ‘stall-on-use’ policy, i.e., the 
pipeline is not stalled by a long latency instruction such as a 
cache miss, instead it is stalled by the consumer instruction 
of the loaded value; and branch prediction aims to reduce the 
impact of control hazards. Since GPU-like many-core 

architectures execute instructions in the single-instruction 
multiple-thread (SIMT) mode, there are new challenges and 
opportunities to implement these ILP techniques. In this 
paper, we present the many-thread-aware ILP designs and 
analyze their impacts on performance, area, and 
power/energy consumption. 

Modern GPUs have implemented some ILP techniques 
like bypass or scoreboard. But the implementation details 
have not been disclosed and our study provides insight into 
such designs. More importantly, our proposed scoreboard 
design supports precise interrupts. A key motivation for 
precise interrupts is that with GPUs being widely used for 
general purpose computation, they need to support virtual 
memory. In addition, in the server environment, GPUs will 
need to provide the context switch capability in order to 
service multiple tasks, which also requires precise interrupts. 
In a recent work [16], support for precise interrupts in GPUs 
is also proposed using idempotent code regions generated by 
the compiler. 

Our experiments show that the ILP techniques in GPGPU 
are effective for two types of applications: (1) applications 
with high resource requirement in registers or shared 
memory, which limits the number of threads that can run 
concurrently, thereby limiting the capability for TLP to hide 
pipeline hazards, especially those due to long-latency cache 
misses; and (2) applications with uneven workloads, in which 
few threads (or thread blocks) with the largest workloads will 
dominate the overall performance. It is worth pointing out 
that these applications benefit significantly from the many-
core architecture, achieving tens or even hundreds 
instructions per cycle. Therefore, these applications are more 
suitable to GPUs than CPUs. The problem, however, is that 
they cannot fully utilize the massive computational power 
available in GPU-like many-core architectures. ILP 
techniques, in this case, effectively utilize the otherwise idle 
hardware resources. On the other hand, for applications that 
TLP alone can achieve high hardware utilization, the ILP 
techniques are not effective. To efficiently handle such 
workload-dependent behavior, we propose heterogeneous 
GPU-like many-core architectures, which contain two types 
of cores, one customized for ILP friendly applications and the 
other for TLP friendly ones. This heterogeneous architecture 
is particularly useful for concurrent kernel execution, which 
is supported by current GPUs such as NVIDIA Fermi/Kepler 
architecture for general purpose computation [19]. When 
concurrent kernels have different characteristics, 
heterogeneity improves both throughput and energy 
efficiency. For single kernels or homogeneous concurrent 
kernels, we show that our heterogeneous architecture also 



achieves similar or higher performance compared to 
homogeneous designs. 

In summary, this paper makes the following key 
contributions: (1) we present a detailed study to reveal the 
effectiveness of ILP on throughput-oriented many-core GPU-
like architecture; (2) we show that ILP techniques present an 
interesting alternative to high degrees of TLP to achieve high 
performance. Considering the significant resource 
requirements to support high TLP, certain ILP techniques can 
be area and energy efficient even in throughput-oriented 
many-core architectures; (3) we propose heterogeneous 
GPU-like many-core architectures and a policy to steer 
applications to the appropriate type of SCs; and (4) we 
present a detailed analysis on performance as well as area- 
and energy-efficiency to make the case for heterogeneous 
GPU architecture for high performance GPU computing. 

The remainder of the paper is organized as follows. 
Section 2 gives an overview of GPU-like many-core 
architecture and the SIMT execution model. Section 3 
presents the experimental methodology. The ILP techniques 
are discussed in detail in Section 4. In Section 5, we make the 
case for heterogeneous GPU-like many-core architecture. 
Section 6 discusses the related work. Section 7 concludes the 
paper. 

II.BACKGROUND 

Recently, GPU-like many-core architectures have 
become a promising platform to achieve high performance 
computing in an energy-efficient way. The cores, referred to 
as shader cores (SCs), in a many-core GPU processor are 
organized in a hierarchical manner. A GPU contains multiple 
streaming multiprocessors (SMs) or compute units (CUs) and 
each SM/CU includes several SCs, which are also called 
streaming processors (SPs) or thread processors (TPs). Each 
SM has a register file (RF), shared memory, and an L1 
(global) data cache, which are used by all the SCs in the SM.  

Modern GPUs execute programs, commonly referred to 
as GPU kernels, in the single-instruction multiple-thread 
(SIMT) mode. When a GPU kernel is invoked, the threads 
are grouped into many thread blocks (TBs) according to the 
kernel invocation parameters. The TB identifier (id) and the 
thread id of a thread help to determine the data to be operated 
upon. One or more TBs can be dispatched to one SM, 
dependent on the register file usage and shared memory usage 
of a TB. Threads in a TB are organized in multiple warps 
(also called wavefronts). Each warp has one program counter 

(PC) and all the threads in the same warp execute instructions 
in the single-instruction multiple-data (SIMD) mode. 
Multiple warps from the same or different TBs can run 
concurrently in an SM. If there are enough concurrent warps, 
pipeline hazards can be effectively overcome: if one 
instruction, which may potentially cause a pipeline hazard, 
e.g., a long latency memory access or a branch instruction, 
gets in the pipeline, the pipeline simply executes instructions 
from other warps until the hazard is resolved. A warp 
scheduler is responsible of selecting instructions to issue 
from different warps and different scheduling policies have 
been studied, including round-robin (RR), fairness, two-
level, etc. [7][8][10][17].  

III.EXPERIMENTAL METHODOLOGY 

In this work, we made extensive changes to 
GPGPUsimV3.0.1 [12] to model the baseline GPU, as shown 
in Table 1, and our ILP designs. In our experiments, we vary 
the parameters including the register file size, core frequency, 
and memory bandwidth, to examine the impacts. We use the 
shared memory of 16kB per SM. Although recent GPUs 
feature higher shared memory capacity, they integrate many 
more SPs (or ALUs) and accommodate more TBs in each 
SM, therefore increasing the pressure on shared memory. We 
modified McPAT [13] using similar approaches to 
GPUWattch [12] to model the area and power. 

Shader core frequency 325/650/1300Mhz 
Number of SMs 30 

Warp size 32 
SIMD width (per SM) 8 

Max. Num. of TBs Per SM 8 TBs/1024 Threads 

Register File size 8k/16k/32k registers 
Shared Memory Size Per 

SM 
16KB 

Warp scheduling policy Round robin 

L1 Cache Per SM 
8-way set assoc. 64B cache line 

(48KB) 

L2 cache 
 8-way set assoc. 64B, 256 KB 

per memory channel 
Number of Memory 

Channels 
16 

GDDR Memory 
8 banks, 800Mhz, total 

bandwidth: 200GB/S,   TCL = 
10, TRP = 10, TRCD = 12 

TABLE 2 . WORKLOADS USED IN EXPERIMENTS

Benchmark Inputs Grid Dim. TB Dim. Concurrent TBs 
(warps) on an SM 

Total 
threads 

Total 
Inst 

Inst. Per 
core cycle 

N-Queen solver (NQU) (8,1) (256, 1) (96, 1) 1 TB or 3 warps 24576 2M 22.97 
StoreGPU (STO) (196625,1) (384, 1) (128, 1) 1 TB or 4 warps 49152 91M 271.4 
Ray Tracing (RAY) (512, 512) (32, 32) (16, 16) 1 TBs or 8 warps 262144 257M 516.5 
MatrixMultiplication(MM) (512, 512) (32, 32) (16, 16) 4 TBs or 32 warps 65536 120M 894.2 
prefix-sum(Scan) (256,1) (256, 1) (128, 1) 4 TBs or 16 warps 32768 10M 579.98 
Convolution(Con) (512, 512) (32, 32) (16, 16) 4 TBs or 32 warps 262144 520M 872.8 
Fast fourier transform (FFT) (16384,1) (128, 1) (64, 1) 8 TBs or 16 warps 8192 37M 374.5 
BlackSchol (BS) (480, 128) (480, 1) (128, 1) 6 TBs or 24 warps 61440 394M 848.82 
Dxtc (DT) (125, 125) (1024, 1) (128, 1) 4 TBs or 16 warps 131072 568M 751.72 
ScalarProd (SCP) (2048, 256) (2048, 1) (128, 1) 6 TBs or 24 warps 262144 32M 681.96 
Matrix vector multiplication (MV) (128K, 32) (512, 1) (256, 1) 4 TBs or 32 warps 131072 32M 879.37 

TABLE 1 THE BASELINE GPU CONFIGURATION 



In our experiments, we selected 11 benchmarks from 
NVIDIA CUDA SDK[18] as well as the ones released along 
with the GPGPUsim simulator. The data inputs, the thread 
grid configuration, the TB configuration, the maximal 
number of TBs that can run in an SM, the overall number of 
threads, the overall number of instructions, and the baseline 
GPU performance measured in instructions per cycle (IPC) 
for each workload are shown in Table 2. As a reference, the 
peak IPC is 960 (= SIMD width per SM (32) x 30 SMs) in 
our GPU model. Among the workloads, NQU and STO have 
a limited number of concurrent TBs that can run on an SM. 
NQU and STO have high shared memory usage per TB, 
15.4kB and 16kB, respectively. Therefore, each SM can only 
accommodate one TB at one time. In addition, for NQU, its 

GPU kernel contains the following if-statement 
‘if(idx<total_conditions){…}’, where ‘idx=blockDim.x *blockid + 
threadid’. As a result, TB0 (TB with blockid 0) of NQU has 
the highest number of instructions to execute compared to 
other TBs and therefore dominates the performance. Among 
the remaining benchmarks, RAY, Scan, and DT have a 
moderate number of warps (less than or equal to 16 warps) 
that run concurrently on an SM. For FFT, each SM is capable 
of running 16 warps (or 8 TBs with the TB size of 64) 
concurrently. Here, it is worth to point out that even the low 
TLP workloads, NQU and STO, have hundreds of concurrent 
threads running on each SM. Therefore, they fit better with 
GPUs and much higher performance is achieved than running 
on multi-threaded CPUs.  

 

TB id Warp id PC Ready 

Instruction 

Buffer 

I

n

s

n

r

e

g 

RR 

EX1 EXn …
WB 

AGEN MEMk … MEM1 

Shader core 1 (SC1) 

RR 

EX1 EXn …
WB 

AGEN 
… 

MEM1 

Shader core i (SCi) 

… 

Decoder 

Decoded Insn 

MEMk 

Figure 1. The microarchitecture of an SM. RR stands for register read, EX for execution, AGEN for address generation, WB for write back, multiple EX or 
MEM stages account for multi-cycle latency. 

Warp scheduler 

cycle               1       2       3    4      5       6   7        8    9      10     11   12   13    14       15      16        17       18        19       20    21   
f1 = f2 + f3  RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB                                                                                                               (threads 0-7) 
                           RR   EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB                                                                                                      (threads 8-15) 
                                   RR   EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB                                                                                              (threads 16-23) 
                                           RR   EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB                                                                                      (threads 24-31)                                          
f1 = f2 + f3                                 RR   EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB                                                                              (threads 0-7) 
 (from a different warp)                      RR   EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8    WB                                                                  (threads 8-15) 
                                                                     RR  EX1 EX2 EX3 EX4 EX5 EX6 EX7    EX8    WB                                                       (threads 16-23) 
                                                                            RR   EX1 EX2 EX3 EX4 EX5 EX6    EX7    EX8    WB                                            (threads 24-31)                                          
f4 = f1 + f5                                                                  RR   EX1 EX2 EX3 EX4 EX5    EX6    EX7    EX8    WB                                 (threads 0-7) 
                                                                                             RR   EX1 EX2 EX3 EX4    EX5    EX6    EX7    EX8    …                        (threads 8-15) 
                                                                                                      RR  EX1 EX2 EX3    EX4    EX5    EX6    EX7    …                        (threads 16-23) 
                                                                                                             RR   EX1 EX2    EX3    EX4    EX5    EX6    …                       (threads 24-31) 

cycle                  1       2       3    4    5    6    7    8    9      10       11       12     13       14        15      16        17       18        19       20    21   
f1 = f2 + f3        IF                    ID                   RR  EX1  EX2  EX3  EX4   WB                                                                                (threads 0-7) 
                                                                                 RR    EX1  EX2  EX3   EX4  WB                                                                      (threads 8-15) 
                                                                                          RR     EX1  EX2   EX3  EX4   WB                                                           (threads 16-23) 
                                                                                                    RR    EX1   EX2  EX3   EX4    WB                                                (threads 24-31) 
f4 = f1 + f5                               IF                     ID                               RR     EX1  EX2   EX3    EX4    WB                                     (threads 0-7) 
                                                                                                                        RR    EX1   EX2    EX3    EX4    WB                         (threads 8-15) 
                                                                                                                                 RR     EX1    EX2    EX3    EX4    WB              (threads 16-23) 
                                                                                                                                           RR      EX1    EX2    EX3    EX4   WB    (threads 24-31) 

cycle                  1      2       3     4    5    6   7    8    9      10       11       12     13      14       15     16     17       18        19       20    21  
f1 = f2 + f3        IF                   ID                    RR  EX1  EX2   WB                                                                                                    (threads 0-7) 
                                                                                 RR    EX1   EX2   WB                                                                                         (threads 8-15) 
                                                                                          RR     EX1   EX2  WB                                                                                (threads 16-23) 
                                                                                                    RR     EX1  EX2    WB                                                                     (threads 24-31) 
f4 = f1 + f5                               IF                      ID                               RR    EX1    EX2   WB                                                           (threads 0-7) 
                                                                                                                        RR      EX1   EX2   WB                                                (threads 8-15) 
                                                                                                                                   RR     EX1    EX2   WB                                     (threads 16-23) 
                                                                                                                                             RR      EX1   EX2   WB                           (threads 24-31) 

(a) 

(b) 

Figure 2. Many-thread aware data bypassing. The instruction fetch (IF) stage and decode (ID) stage are shared among all the threads in a warp. The 

register read (RR) stage, execution (EX) stage, and write back (WB) stage process 8 threads at a time as there are 8 SCs. (a) No need for data bypassing 

when the number of EX stages is less than the ratio of warp size/number of SCs (32/8 = 4); (b) Data bypassing from EX4->EX1 if the ALU latency is 4 

cycles; (c) Data bypassing from EX8->EX1 if the ALU latency is 8 cycles.



IV.INSTRUCTION-LEVEL PARALLELISM FOR 

SHADER CORES 

In this section, we present our detailed many-
thread aware ILP designs in throughput-oriented 
GPUs. Our discussion is based on the GPU model with 
the configuration shown in Table 1. The 
microarchitecture of an SM in a GPU is presented in 
Figure 1. In an SM, a warp scheduler selects and issues 
instructions from ‘ready’ warps to the multiple SCs. A 
ready warp means that the next instruction from this 
warp has all its dependencies resolved. Each entry in 
the warp scheduler contains the information of a warp. 
Using the program counter (PC) field, it reads the 
instruction from the instruction buffer. During decode, the 
TB id, the warp id and the thread id are used to generate the 
mapping from logical register numbers to physical register 
numbers for SCs to read from and write to the physical 
register file. An issued instruction will be executed by 
multiple SCs for all the threads in the warp. Depending on the 
type of the instruction, it either goes through the ALU 
pipeline, the memory pipeline, or the special functional units. 
The ready field of a warp scheduler entry is cleared when an 
instruction is issued from this warp. When an instruction 
reaches the write back stage, it uses its warp id to locate the 
corresponding warp scheduler entry and set the ‘ready’ bit.  

4.1. Data Bypassing for Dependent Instructions 

In pipeline designs, data bypassing is an effective way to 
reduce the penalty of read-after-write data hazards. In an SM 
of a GPU, once an instruction is issued from a warp, the same 
instruction will be executed by the SCs for all the threads in 
that warp. Given the warp size of 32 and the number of SCs 
as 8 in an SM, the SCs will be fully utilized if one instruction 
can be issued every four cycles. As a result, it presents a 
different tradeoff for data bypassing compared to single-
threaded pipelines. Considering a pair of immediate producer 
(f1 = f2 + f3) and consumer (f4 = f1 + f5) instructions, these 
two instructions can be issued back-to-back without data 
bypassing if latency of the producer instruction is fewer than 
4 cycles, as shown in Figure 2a. The reason is that the 
producer results have been written to the register file (e.g., 
register f1 is updated in cycle 12 for threads 0-7) before the 
consumer instruction from the same threads (register read at 
cycle 13 for threads 0-7) is executed. If the producer 
execution latency is 4 cycles, however, the dependent 
instruction can only be issued when there is a data bypass 
path from the EX4 stage to the EX1 stage, as shown in Figure 
2b. If the producer execution latency is 8 cycles, the pipeline 
requires at least two warps to fully utilize the pipeline with a 
data bypass path from EX8 to EX1, as shown in Figure 2c. In 
our experiments, we assume that the ALU instructions have 
8-cycle latency as it is consistent with the AMD GPUs [2] 
which require two wavefronts (warps) to make the pipeline 
busy when there is such a producer-consumer pair in the 
code. 

In summary, in our design data bypass is supported with 
a single bypass path (EX4->EX1 or EX8->EX1) for ALU 
instructions. Also, such data bypass is limited within each SP 
since each thread will be executed in a fixed SP (e.g., thread 
0 by SP0) and there is no communication among different 

threads in a warp. Instructions accessing shared memory or 
global memory have variable latencies due to bank conflicts 
or cache misses. Therefore, we choose not to support data 
bypassing for these instructions. Instead, they wait until the 
data are fetched and being written to the register file before 
setting the corresponding warp to be ready to issue the 
dependent instructions. With the same warp size and an 
increased SIMD width, e.g., 16 or 32, the demand for TLP to 
hide the read-after-write data hazard becomes higher as each 
instruction will take fewer (2 or 1) cycles to issue.  

4.2. Scoreboards for Independent Instructions 

When a long latency instruction, such as a cache-missing 
load, is issued from one warp, the stall-on-use policy, i.e., 
issuing subsequent independent instructions from the same 
warp until the consumer of the loaded value, provides 
opportunities to hide the latency beyond leveraging the 
independent warps within the same SM. To support such a 
stall-on-use policy, the following issues need to be addressed 
carefully. First, as discussed in Section 1, we argue that 
precise interrupts are required for next generation GPUs and 
we propose to support in-order instruction commit or write 
back. An alternative way for precise interrupts is to allow out-
of-order commit and resort to checkpoints and replay to 
reconstruct the precise states. However, it is challenging to 
checkpoint periodically the aggregated architectural states of 
a large number of threads.  Second, we need an efficient way 
to check data dependencies to enable independent 
instructions to be executed. Third, as a warp contains multiple 
(32) threads, control divergence (i.e., not all the threads in a 
warp have the same control flow) complicates the handling 
of data dependence. Next, we propose a cost-effective design 
that addresses all these challenges. The microarchitecture of 
our many-thread aware scoreboard is shown in Figure 3a. 

 As shown in Figure 3a, our proposed scoreboard is a 
fully-associative cache with a small number of entries (e.g., 
8, see Section 4.4.1), maintaining the information of issued-
but-not-yet–committed (i.e., outstanding) instructions. A tag 
entry in our scoreboard has a ‘physical register number’ field, 
corresponding to the destination register of an outstanding 
instruction. Since the registers in the GPU register file are 
organized as vector registers to support SIMD execution of a 
warp, for a register file with 16k registers and the warp size 
of 32, there are 512 (=16k/32) physical vector registers in the 
register file. Therefore, the width of each tag is 9 bits. Since 
the logic-to-physical register mapping ensures that the same 
logic register numbers from different warps will be mapped 
to different physical registers, there is no need to keep the 

Complete Active Status Mask Data Next 
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Warp Scheduler 

Head Tail In-Board 
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Phys. Reg. Num 
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Data store (RAM) Tag store (CAM) 

Figure 3. Architecture of (a) a many-thread aware scoreboard and (b) 
the associated warp scheduler. 

TB id 



warp id information. A data entry contains a 1-bit 
‘completion’ flag, a 32-bit ‘active mask’, a 32-bit ‘status 
mask’,128-byte ‘data values’ (corresponding to 32 registers 
or 1 vector register), and a K-bit ‘next’ field, where K is 
log2(num. of scoreboard entries). We also append four 
additional fields to each entry in the warp scheduler, 
including a ‘head pointer’ (K bits), a ‘tail pointer’ (K bits), a 
1-bit ‘in-board’ flag, and a 1-bit ‘in-store’ flag, as shown in 
Figure 3b. 

To support precise interrupts, outstanding instructions’ 
execution results (or loaded values) are kept in the data value 
field rather than updating the register file out-of-order. If each 
warp has its own scoreboard, we can manage the scoreboard 
as a circular buffer, similar to the reorder buffer in CPU 
designs, to achieve in-order commit (i.e., update the register 
file in order). However, this approach adds too much 
overhead as an SM can support up to 32 concurrent warps. 
Therefore, we propose to share the scoreboard among all the 
warps in an SM. Due to such sharing, we introduce the 
pointers to maintain the order of outstanding instructions in 
each warp. The head pointer and the tail pointer in each warp 
scheduler entry point to the oldest and the youngest 
instruction, respectively, inside the scoreboard from this 
warp. To maintain these pointers, when an instruction from a 
warp is issued, if there is an unused entry in the scoreboard 
and there are no older instructions from the same warp in the 
scoreboard (i.e., when the ‘in-board’ bit from the warp 
scheduler entry is not set), the head pointer and tail pointer 
are set to this scoreboard entry. When another instruction is 
issued from the same warp, the scoreboard entry indexed by 
the warp’s tail pointer will update its next field to point to the 
newly issued instruction. Then, the warp’s tail pointer in the 
warp scheduler will be updated as well. Each cycle, each 
warp will use its head pointer to examine whether its oldest 
instruction (i.e., pointed to by its head pointer) completes. 
Since every instruction is executed for all the threads in a 
warp, the status mask is used to maintain which threads have 
updated their results in the data value field. If all threads 
complete (assuming no control divergence), the oldest 
instruction commits the results into the register file and then 
frees the scoreboard entry. In the meanwhile, the 
corresponding entry in the warp scheduler will update its 
head pointer according to the next field of the instruction to 
be committed. This way, in-order commit is enforced for 
precise interrupts. 

The tag store (not the data store) in the scoreboard is used 
for checking data dependence. After an instruction is fetched 
and decoded from a warp, it searches the tag store to see 
whether any of its source registers hits in the tag store. If not, 
it means that all the source registers are available from the 
register file. If there is one or more hit, then the complete 
status bits of the corresponding entries are used to determine 
whether the operands can be read from the scoreboard. In 
either case (i.e., no tag match or matches with the complete 
bit being set), the ready bit in the warp scheduler entry is set 
so that the warp can be selected to issue this instruction. 
Otherwise, the warp is marked not ready as the source 
operand(s) of the instruction is not available yet. This way, 
the warp is not stalled until it encounters the consumer 
instruction of a long latency instruction. For example, for the 

following instructions in a GPU kernel, ‘A: load r1, -,-; B: 
Add r2, -, -; C: Load r3, r2, -; D Add -, r1,-’, instruction A 
results in a long latency cache miss. With the scoreboard, the 
same warp can issue the subsequent independent instruction 
B. After B is completed, its results are available in the 
scoreboard but not in the register file. Therefore, when 
instruction C is issued from the same warp, it searches the tag 
store of the scoreboard for its source operands. If there is a 
match (r2), the data from the corresponding data value field 
will be used instead of the data from the register file. 
Instruction D, due to its source operand match (r1) in the tag 
store, stalls the warp.  

Since the instructions from the same warp are issued in 
order, write-after-read data hazards do not present a problem. 
To handle write-after-write data hazards, we introduce a ‘no 
match’ (NM) bit for each tag entry in the scoreboard, as 
shown in Figure 4. When an instruction is issued, if it finds 
that there is a match in the tag store of the scoreboard with its 
destination register, the NM bit of the older definition is set 
to zero so that subsequent use will not generate a match to it. 
For example, for the instructions ‘A: load r1,-,-; B: Add r1, -
, -; C: Add -, r1, -;’, when instruction B issues, it will reset the 
NM bit of instruction A in the scoreboard. Then, when 
instruction C is issued, it is guaranteed that there is only one 
match to r1, which is defined by instruction B. The NM bit is 
set when the scoreboard entry is allocated to a new 
instruction. 

The active mask field is introduced to handle control 
divergence. By default, all the bits are set for this mask. When 
a branch results in control divergence, only the active threads 
along the control path will have their corresponding mask bit 
set, leveraging the existing branch execution logic. The 
completion flag is the result of inverted XOR between the 
active mask and the status mask, meaning that only if all 
active threads have updated their data values, the instruction 
is completed and ready to be committed. Furthermore, for an 
instruction having a write-after-write data hazard with an 
outstanding instruction in the scoreboard, it is only allowed 
to be issued if the active threads for this instruction are the 
same or the superset compared to those of the previous define 
instruction. Otherwise, the warp scheduler entry will be 
marked as ‘not ready’ and the warp is stalled until the 
previous define instruction is committed. 

To handle memory dependence, we propose the 
following approach. When a store instruction is decoded, the 
warp waits for all of its outstanding instructions to be 
completed to ensure that the store is the oldest instruction. 
Then, it can issue the store instruction. This way, the precise 
interrupts are supported. Once a store instruction is issued, 
the ‘in-store’ flag in the warp scheduler entry is set, which is 
used to prevent any subsequent load instructions to be issued 
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from the same warp. The independent ALU instructions, 
however, can still be issued from this warp. When the store 
instruction commits, the ‘in-store’ flag in the corresponding 
warp scheduler entry is reset.  

To reduce the structural hazard impact due to the limited 
size of the scoreboard, we use the ‘in-board’ flag for each 
warp to track whether there is any outstanding instruction 
from the warp residing in the scoreboard. If this flag is zero, 
meaning no outstanding instructions from the warp, and there 
is no free entry in the scoreboard, the warp can still issue one 
instruction to the SCs as it is the only instruction from this 
warp that will be in the pipeline. Therefore, it would not 
violate any dependency. In this case, after the instruction is 
issued, the warp scheduler entry’s ready bit will be reset, 
preventing any subsequent instruction from this warp from 
being issued. The ready bit is set when the issued instruction 
reaches the write back stage. If the in-board flag is set, the 
ready bit of the warp scheduler entry is controlled by the tag 
store matches as discussed earlier.  

In addition, the warp scheduler handles memory 
synchronization as well as thread execution synchronization 
(i.e., barrier) by marking the corresponding warps as ‘not 
ready’ until the barrier has been reached by all the warps in a 
thread block. 

Note that our proposed scoreboard is much simpler than 
the reservation stations used in CPU designs. It only 
maintains the execution results of the issued instructions and 
does not have the capability to issue an instruction to the 
pipeline (i.e., no wake up and select logic). 

4.3. Branch Prediction for Control Hazards 

After a warp issues a branch instruction, if there are no 
other ready warps, it may impose a control hazard. In GPUs, 
control hazards have different characteristics compared to 
single-threaded CPUs. First, the branch target can be 
computed promptly in GPUs. Due to the SIMD execution 
mode of a warp (8 SCs executing an instruction for 32 
threads), fetching one instruction in every four cycles is 
sufficient to keep the pipeline busy. During the 4 cycles of IF 
stage, the branch target can be computed. Even with 16 SCs 
in an SM, there are 2 cycles to generate the target. Therefore, 
there is no need for a branch target buffer (BTB) as 
commonly used in CPU designs. It also means that 
unconditional branches should impose no control hazards. 
Second, for conditional branches, branch divergence among 
the threads in a warp makes them friendly to branch 
prediction. As shown in Figure 5, the branch instruction 
results in a divergence, i.e., some threads follow the taken 
path and some follow the not-taken path. Assume a branch 
takes 4 cycles to resolve (i.e., the branch outcome or the 
predicate bitmask is known after EX4). If a taken prediction 

is made, right before the instruction at the predicted target L 
is executed, the bitmask from the branch has already been 
computed for the corresponding threads. For example, at 
cycle 14 before the EX1 of the instruction L for threads 0-7, 
the bit mask of these threads has been computed and can be 
used to void the computation for the threads that should 
follow the not-taken path. Even if the branch is resolved at 
EX8 stage, it can still be used to predicate the write back 
operation of instruction L. Therefore, divergent branches can 
be predicted either taken or not-taken and either prediction 
will not cause any misprediction penalty. In other words, 
divergent branches are immune to mispredictions. For non-
divergent branches, a misprediction incurs a recovery by 
nullifying the instructions from the predicted path, similar to 
CPU designs. The only difference is that rather than 
nullifying all the instructions in the pipeline after the branch, 
we only need to nullify those from the same warp. To make 
predictions for conditional branches, we can use hardware 
based predictors such as gshare predictors [14]. Such a gshare 
predictor can be shared by all the thread blocks in the same 
SM. For divergent branches, since either taken or not taken is 
a correct prediction, the predictor is updated as if it makes a 
correct prediction. A more cost-effective (nearly free) way is 
to use the simple heuristics ‘backward taken and forward not-
taken’. Since the target can be computed during the IF stage, 
it can be used to compare to the branch PC to make a 
prediction without any prediction tables. We refer to this 
approach as ‘static’ prediction in this paper. Note that, we will 
not make predictions of a branch, which is dependent upon a 
long latency operation, since either the stall-on-miss (i.e., 
without scoreboards) or the stall-on-use policy stalls the warp 
and prevents the branch from entering the pipeline. 

4.4. Experimental Results 

4.4.1. Performance impacts of reducing data hazards 

 
Figure 6. The performance improvement of the ILP techniques to reduce 
data hazards 

In our first experiment, we evaluate the performance 
gains from reducing data hazards. Since the bypassing and 
the scoreboard techniques target different types of data 
hazards, we can combine the two. The performance results, 
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normalized to the baseline GPU, of the bypassing (labeled 
‘BP’), the scoreboard (labeled ‘SC’), and the combined 
bypassing and scoreboard (labeled ‘BP+SC’) are shown in 
Figure 6. The scoreboard has 8 entries, translating into the 
following hardware overhead. The tag store of the scoreboard 
is an 8-entry CAM with each entry containing 9 (Physical reg. 
number) + 1 (NM) = 10 bits. The data store of the scoreboard 
has a total of 8 x (1+32+32+128x8+3) = 8736 bits (=1092 B). 
Compared to the large register file size (16k registers=16k x 
4B=65536 B) in each SM, such overhead is quite limited. 

From Figure 6, we can see that the data bypassing and 
scoreboard techniques show variable performance gains on 
different workloads. Among them, two benchmarks, NQU, 
and STO, benefit significantly from reducing data hazards. 
The main reason is that these two benchmarks have relatively 
low TLP due to their resource usage and the ILP techniques 
effectively utilize the otherwise stall cycles. For benchmarks 
with moderate degrees of TLP, including RAY, FFT, Scan, 
and DT, reducing data hazards also shows good performance 
gains, ranging from 6.5% (Scan) to 12.9% (FFT). For 
benchmarks with high degrees of TLP (MM, Con, BS, SCP, 
and MV), reducing data hazards shows almost no 
performance gains as there are enough threads/warps to 
overlap the latency introduced by data hazards. Overall, on 
average using the geometric mean (GM), the data bypassing 
scheme introduces 6.6% performance improvements and the 
scoreboard has 9.7% performance gains. When the two 
techniques are combined, there is an average of 11.5% 
performance enhancement.  

We also vary the scoreboard size to evaluate the impact 
of the structural hazards. And we found out that an 8-entry 
scoreboard is the most cost-effective choice, which is used in 
the remaining experiments in the paper. 

In the next experiment, we change the SC frequency 
(from 325MHz to 1300MHz) and the memory bandwidth 
(from 100GB/s to 400GB/s). The experimental results show 
similar performance gains (ranging between 12.0% and 
14.6% on average) when both data bypassing and scoreboard 
techniques are used.  
     We also vary the physical register file size from 8k to 32k 
registers to analyze the impact. With a small register file in 
an SM (e.g., 8k registers), the number of concurrent TBs in 
the SM is reduced compared to larger register files. The 
performance gains from the bypassing and scoreboard 
techniques on GPUs with different register file sizes are 
shown in Figure 7.  

 
Figure 7. Performance improvements from reducing data hazards on GPUs 
with different register file sizes. 

From Figure 7, we can see that the benchmarks Scan, MM, 
BS, DT and SCP benefit more from bypassing and 
scoreboards when the register file is small (8k) and limits the 
number of concurrent TBs. Further increasing the register file 

size from 16k to 32k cannot provide additional TLP for Scan, 
MM and SCP as each SM already runs the maximum number 
of TBs or threads. For NQU and STO, the resource bottleneck 
is shared memory. Therefore, we observe similar results to 
those with the register file size of 16k registers. For the 
benchmark, Ray, we do not have the result for 8k registers 
because such a register file is not enough to launch 1 TB, and 
when we increase the register file size from 16k to 32k, the 
number of concurrent TBs increases from 1 to 2, therefore the 
bypassing and scoreboard techniques are less effective for the 
32k case compared to the 16k case. 

4.4.2 Performance impacts of reducing control hazards 

 
Figure 8. The performance improvements from branch prediction on the 
baseline GPU equipped with the bypassing and scoreboard techniques. 

In this experiment, we first examine the performance 
impact of branch prediction. We changed the GPGPUsim to 
reduce the branch latency to 1 cycle to reduce the control 
hazards in the baseline GPU. In other words, the instruction 
at the right target of the branch is ready to be issued one cycle 
after the branch enters the EX stage. In Figure 8, we report 
the performance improvements over the GPU with the bypass 
and scoreboard techniques. The predictions are made using 
the static predictor as well as the gshare predictor discussed 
in Section 4.3. For reference, we also report the performance 
results with perfect branch predictions (i.e., no 
mispredictions). 

From Figure 8, we can see that the benchmark NQU 
benefits significantly from either static or gshare predictors, 
20.8% for our static predictor and 20.6% for the gshare 
predictor over the baseline GPU with bypassing and 
scoreboard. The remaining benchmarks, however, have 
smaller impacts, including 4.1% for Ray and 2.2% for Scan. 
The reason is that in the TB0 of NQU (the performance 
dominant TB), 13.7% of all its instructions are branches. 
Among the branches, 42.3% of them do not present a control 
hazard for the baseline GPU (i.e., without bypassing or 
scoreboard) due to TLP. The remaining 57.7% result in 
pipeline stalls. As discussed in Section 4.3, either correct 
predictions or divergent branches can effectively utilize the 
otherwise stall cycles, thereby showing high performance 
gains for NQU. Other benchmarks have less number of 
branches and there are more warps running concurrently on 
an SM to overlap the pipeline hazards, thereby showing 
relatively small performance impacts. 

In the next experiment, we examine the predictability of 
non-divergent conditional branches in the GPU kernels. We 
report the branch prediction accuracies of our simple static 
approach and a 1k-bit gshare predictor (shared by all warps 
in an SM) in Figure 9 (FFT has no conditional branches and 
is excluded from the figure). From the figure, we can see that 
in GPU kernels branches can be predicted reasonably well 
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using our simple static approach (95.8% accuracy on 
average). The gshare predictor is also effective (96.4%). The 
reason is that all warps within the same SM share the same 
predictor and therefore they can accurately update the branch 
predictor for each other. 

 
Figure 9. The prediction accuracy for conditional non-divergent branches 
of different prediction schemes. 

Overall, from the results, we can see that although on 
average the performance gains of branch prediction is 
moderate (2.5% for our static branch predictor and 2.7% for 
the gshare branch predictor), it can be quite effective for 
control intensive benchmarks with low TLP (e.g., NQU). In 
addition, as discussed in Section 4.3, branch prediction is 
almost free in terms of hardware cost using our simple static 
prediction approach. Therefore, we argue that it is a technique 
to adopt for next generation GPUs.  

4.4.3. Interaction between ILP and TLP 

Either ILP or TLP can be leveraged to overcome pipeline 
hazards. The overhead to support the ILP techniques includes 
additional bypass paths and scoreboards, as discussed in 
Sections 4.1-4.3. The cost of supporting TLP, on the other 
hand, is the aggregated resource requirement from a high 
number of threads. Among such resources, register files 
maintain the register state of the threads. To study the 
interaction between ILP and TLP, in the next experiment, we 
vary the register file size in each SM from 4k to16k registers 
and evaluate the performance of the GPU model with and 
without the ILP techniques. The performance results, 
normalized to our baseline GPU model with a register file 
having 16k registers, are reported in Figure 10. The 
benchmark RAY requires at least 10k registers to run one 

thread block. Therefore, there are no performance results for 
small register files for this benchmark. When calculating the 
average using GM, the performance of 10k registers is used 
for small register files (4k, 6k and 8k registers) for this 
benchmark.  

Two important observations can be made from Figure 10. 
First, on average, the performance gains for the ILP 
techniques tend to reduce with a higher degree of TLP as a 
result of large register files. Among individual benchmarks, 
for NQU, STO, RAY, and FFT, the performance is not 
affected by the register file size as the factors such as shared 
memory other than the register file size are limiting their 
TLP. The benchmark Scan is sensitive to the warp scheduling 
policy and performs the best when the register file has 6k 
registers. For the rest benchmarks, large register files support 
a higher number of concurrent threads and lead to better 
performance. Higher degrees of TLP also reduce the 
effectiveness of the ILP techniques. Take SCP as an example, 
when the register file has 4k registers, adding ILP techniques 
improves the performance from 44.8% to 65.6% of the 
baseline GPU. With a register file containing 12k registers, 
the improvement from the ILP techniques is from 95.3% to 
96.9% of the baseline.  

Second, the ILP techniques provide an interesting 
tradeoff for resources required for high TLP. As seen from 
Figure 10, on average, adding the ILP support to a GPU with 
the register file size of 8k registers outperforms the baseline 
GPU with the register file size of 16k registers by 9.1%. In 
other words, the ILP techniques can save 8k registers in each 
register file while achieving higher performance, thereby 
being potentially more area and energy efficient. We leverage 
this observation in Section 5 to customize our designs. 

V.HETEROGENEOUS GPU ARCHITECTURE 

The results discussed in Section 4.4 show that the ILP 
techniques have different performance impacts on different 
applications. To efficiently handle such workload-dependent 
behavior, we propose a heterogeneous GPU architecture and 
it contains two types of cores: one with the ILP techniques 
(referred to as ILP cores) and one without them (referred to 
as TLP cores). A kernel with high TLP fits the TLP cores 
while a kernel with limited TLP benefits more from the ILP 
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cores. To classify whether a kernel has high TLP or not, we 
simply use the number of concurrent warps that can run on 
an SM. This information depends on the resource usage of a 
kernel and is readily available at the compile time. If a kernel 
can have more than 24 concurrent warps (i.e., 24x32=768 
threads) running concurrently on an SM, it is classified as 
high TLP. Next, we compare it with homogeneous TLP cores 
and homogeneous ILP cores. 

First, we modified McPAT [13] using the similar 
approach to GPUWattch [12] to model the area and power of 
an SM based on the configuration shown in Table 1. The 
40nm technology is used to achieve the target core frequency 
of 1.3GHz and the operating temperature is 380K. The 
reported area of an SM of the baseline GPU (or an SM with 
TLP cores) is 11.823 mm2. The data bypassing support in 
each SC introduces an area overhead of 0.028 mm2. As there 
are 8 SCs in an SM, the overall area cost of data bypassing in 
an SM is 0.224 mm2. The scoreboard support, shared by all 
SCs in an SM, costs 0.917 mm2. Therefore, an SM with ILP 
cores has an area of 12.964 mm2, which means a 9.6% area 
overhead for the ILP techniques. The branch prediction 
support only requires an adder to compute the target and a 
comparator between the target and PC. Since such logic has 
very small area overhead and the current McPAT tool does 
not model it explicitly, we ignore the area cost of branch 
prediction support. 

Considering the die area that is similar to an NVIDIA 
GTX480 GPU, we can have the following options: 40 SMs 
with TLP cores (40x11.823 = 472.92 mm2); 36 SMs with ILP 
cores (36x12.964 = 466.704 mm2); and 20 SMs with TLP 
cores plus 18 SMs with ILP cores (20x11.823 + 18*12.964 = 
234.46 + 233.352 = 467.812 mm2). We refer to the first one 
as GPU-T, the second one as GPU-I, and third one as GPU-
H. The first two are homogeneous designs and the last one is 
heterogeneous. There are many possible combinations of ILP 
and TLP cores for heterogeneous designs. Our choice is 
based on the option that either type of cores has the 
same/similar area (234.46 mm2 vs. 233.352 mm2). 
Compared to our baseline GPU in Table 1, these GPUs have 
higher number of SMs. Therefore, to maintain the ratio of 
compute-to-memory bandwidth, we increase the number of 
memory modules per memory controller from 2 to 3.  

 
Figure 11. The performance of different GPUs running single kernels. 

Next, we run a single kernel on these three different GPU 
architectures and the performance results, normalized to 
GPU-T, are shown in Figure 11. Since GPU-T, GPU-I, and 
GPU-H have similar areas, the performance also represents 
their area efficiencies. 

From Figure 11, it can be seen that when running a single 
kernel, GPU-I is most effective for applications with limited 
TLP (NQU, STO, Ray, and Scan) and GPU-T is most 
effective for applications with high TLP (MM, Conv, BS, 
DT, SCP and MV). For FFT, although it has reasonably high 
number of concurrent warps (16) to run on each SM, its 
overall number of threads (16384) is limited. Therefore, 
GPU-I achieves higher performance for FFT than GPU-T or 
GPU-H. Compared to GPU-I and GPU-T, GPU-H presents a 
nice tradeoff. On average, GPU-H achieves 7.5% higher 
performance than GPU-T and higher performance compared 
to GPU-I (6.5%).  

Similar trends are observed for energy consumption of 
three GPU designs. GPU-I consumes lower energy than 
GPU-T running applications with limited TLP and consumes 
higher energy than GPU-T running high TLP workloads. 
GPU-H achieves a good balance between them. 

 
Figure 12. The performance of different GPUs running concurrent kernels 
(one favors ILP and the other favors TLP). 

 
Figure 13. The energy consumption of different GPUs running concurrent 
kernels (one favors ILP and the other favors TLP). 

Then, we run heterogeneous concurrent kernels on these 
three GPU designs. The heterogeneous kernel mixes are 
constructed using the following way: one from NQU, STO, 
or Scan, which favors ILP cores, and the other from MM, 
Con, DT or MV, which favors the TLP cores. To overcome 
the issue that different workloads have different number of 
instructions, we add a loop to each kernel to make it run 
continuously and then stop execution when the longer kernel 
finishes at least 1 run. We adopt the weighted speedups [21] 
from multi-threaded CPU designs to evaluate the 
performance. Assuming kernel 1 is the one with low TLP and 
kernel 2 is the one with high TLP. The weighted speedup is 
computed as follows: 	ଵ

ଶ
∗ ሺ ౅ౌిృౌ౑ሺౡ౛౨౤౛ౢభሻ
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, 

where IPC GPU(kernel) is the instructions per cycle of the 
kernel running on the GPU of interest, IPCୋ୔୙ି୍ሺkernel1ሻ  is 
the performance of the kernel 1 running on GPU-I, and 
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IPCୋ୔୙ି୘ሺkernel2ሻ  is the performance of the kernel 2 
running on GPU-T. The application steering policy used in 
GPU-H is mainly based on how many concurrent warps that 
an SM can run. If this number is less than 16, the application 
is dispatched to the 18 SMs with ILP cores. Otherwise, it is 
dispatched to the 20 SMs with TLP cores. If an application 
has limited overall number of threads (<=32768), it is 
dispatched to ILP cores. As the resource requirement of a 
kernel is available statically at compile time, the support for 
our application steering policy is straightforward. 

The performance results of GPU-I, GPU-T, and GPU-H 
are shown in Figure 12. For concurrent kernels containing 
NQU and STO, the GPU-I outperforms GPU-T, the reason is 
that the performance gains from GPU-I for NQU and STO 
are higher than the performance gains from GPU-T for MM, 
Con, DT or MV. For concurrent kernels containing Scan, the 
performance of GPU-T is better because the benefit of GPU-
T for MM, Con, DT or MV is larger than the performance 
gains from GPU-I for Scan. In all these cases, GPU-H 
outperforms either homogeneous design and on average, 
GPU-H achieves 4.7% and 19.8% higher performance than 
GPU-I and GPU-T, respectively. We also collect the energy 
consumption results of GPU-I, GPU-T, and GPU-H, and 
report them in Figure 13. As each concurrent kernel contains 
two applications, the energy consumption is the sum of the 
energy consumed by executing either application from the 
beginning to end. From the figure, we can see that on average, 
GPU-H consumes least energy, 16.0% less than GPU-T and 
6.5% less than GPU-I. 

VI.RELATED WORK 

Most research work on GPU architectures focuses on 
reducing the impact of divergent behavior [6][7][15] within 
warps and improving GPU memory hierarchy[11], rather 
than architecting SCs. To our knowledge, this is the first work 
to examine the impact of ILP techniques on SCs for many-
core GPUs. Among the ILP techniques, data bypassing 
support exists in AMD GPUs. Although the detailed 
architecture has not been disclosed, it is stated in R-700 ISA 
[2] that special instruction encoding (PS or PV) is used to 
receive the result of previous instruction. Certain compiler 
optimizations, such as loop unrolling, assume that GPUs can 
execute independent outstanding loads from the same warp. 
However, current GPUs do not support precise interrupts and 
it is not clear how the read-after-write and write-after-write 
data hazards are resolved after an older pending long latency 
instruction. We are not aware of any prior work on branch 
prediction on GPUs or heterogeneous GPU architectures. 

For concurrent kernel execution, [1][20] show that 
scheduling concurrent kernels on different SMs is more 
beneficial than letting one kernel occupy all the SMs. Our 
approach takes one step further by customizing the SMs 
based on the characteristics of the concurrent kernels. 

VII.CONCLUSIONS 

Given the high computational throughput and energy 
efficiency, GPU-like many-core architectures have been 
increasingly adopted to build supercomputers. In this paper, 
we focus on the basic building block of the GPU, the shader 

cores. We present a detailed study to reveal the effectiveness 
of the ILP on the throughput-oriented many core 
architectures. We show that for applications, whose resource 
requirements prevent GPUs from running a sufficient number 
of concurrent threads, the ILP techniques can significantly 
improve the performance. Furthermore, we show that the ILP 
techniques can be used to reduce the TLP requirement and 
therefore reduce the requirement in critical resources such as 
the register file. We then propose heterogeneous GPU 
architectures to include both ILP cores (i.e., cores with the 
ILP techniques) and TLP cores (i.e., cores without them). 
Applications are steered to either type of cores depending on 
how many threads can run concurrently on the hardware. Our 
results show that the proposed heterogeneous GPUs have 
higher performance, area- and energy-efficiency than 
homogenous GPUs based on either ILP or TLP cores. 
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