
Revisiting ILP Designs for Throughput-Oriented GPGPU Architecture

Ping Xiang Yi Yang Mike Mantor Norm Rubin Huiyang Zhou
Dept. of ECE Dept. of Integrated Systems Graphics Group Nvidia Research Dept. of ECE

NCSU NEC Labs AMD Nvidia NCSU
Raleigh, NC Princeton, NJ Orlando, FL Santa Clara, CA Raleigh, NC

pxiang@ncsu.edu yyang@nec-labs.com Michael.Mantor@amd.com nrubin@nvidia.com hzhou@ncsu.edu

Abstract—Many-core architectures such as graphics
processing units (GPUs) rely on thread-level parallelism (TLP)
to overcome pipeline hazards. Consequently, each core in a
many-core processor employs a relatively simple in-order
pipeline with limited capability to exploit instruction-level
parallelism (ILP). In this paper, we study the ILP impact on the
throughput-oriented many-core architecture, including data
bypassing, scoreboarding and branch prediction. We show that
these ILP techniques significantly reduce the performance
dependency on TLP. This is especially useful for applications,
whose resource usage limits the hardware to run a high number
of threads concurrently. Furthermore, ILP techniques reduce
the demand on on-chip resource to support high TLP. Given
the workload-dependent impact from ILP, we propose
heterogeneous GPGPU architecture, consisting of both the
cores designed for high TLP and those customized with ILP
techniques. Our results show that our heterogeneous GPU
architecture achieves high throughput as well as high energy-
and area-efficiency compared to homogenous designs.

Keywords-GPGPU; Heterogeneous; ILP; Energy

I.INTRODUCTION

The design philosophy of many-core architectures such as
graphics processing units (GPUs) is to exploit thread-level
parallelism (TLP) to achieve high throughput. Compared to
central processing unit (CPU) designs, GPU-like many-core
architectures spend the on-die area mainly for
computational/instruction execution logic rather than caches
or complex instruction processing, such as register renaming
and out-of-order execution, to extract instruction-level
parallelism (ILP). Each core in a GPU, referred to as a shader
core (SC), is a relatively simple in-order multi-threaded
processor, which primarily relies on TLP to overcome
pipeline hazards. In this paper, we propose to architect SCs
for GPU-like many-core processors to achieve both high
performance and high energy- and area-efficiency.

We first revisit the ILP techniques [5][9] for in-order
processors, including data bypassing/forwarding,
scoreboarding and branch prediction, to gain insight on how
they interact with throughput-oriented many-core
architectures. Similar to CPUs, data bypass in a GPU
accelerates execution of producer and consumer instruction
pairs from the same threads; a scoreboard checks data
independency to support the ‘stall-on-use’ policy, i.e., the
pipeline is not stalled by a long latency instruction such as a
cache miss, instead it is stalled by the consumer instruction
of the loaded value; and branch prediction aims to reduce the
impact of control hazards. Since GPU-like many-core

architectures execute instructions in the single-instruction
multiple-thread (SIMT) mode, there are new challenges and
opportunities to implement these ILP techniques. In this
paper, we present the many-thread-aware ILP designs and
analyze their impacts on performance, area, and
power/energy consumption.

Modern GPUs have implemented some ILP techniques
like bypass or scoreboard. But the implementation details
have not been disclosed and our study provides insight into
such designs. More importantly, our proposed scoreboard
design supports precise interrupts. A key motivation for
precise interrupts is that with GPUs being widely used for
general purpose computation, they need to support virtual
memory. In addition, in the server environment, GPUs will
need to provide the context switch capability in order to
service multiple tasks, which also requires precise interrupts.
In a recent work [16], support for precise interrupts in GPUs
is also proposed using idempotent code regions generated by
the compiler.

Our experiments show that the ILP techniques in GPGPU
are effective for two types of applications: (1) applications
with high resource requirement in registers or shared
memory, which limits the number of threads that can run
concurrently, thereby limiting the capability for TLP to hide
pipeline hazards, especially those due to long-latency cache
misses; and (2) applications with uneven workloads, in which
few threads (or thread blocks) with the largest workloads will
dominate the overall performance. It is worth pointing out
that these applications benefit significantly from the many-
core architecture, achieving tens or even hundreds
instructions per cycle. Therefore, these applications are more
suitable to GPUs than CPUs. The problem, however, is that
they cannot fully utilize the massive computational power
available in GPU-like many-core architectures. ILP
techniques, in this case, effectively utilize the otherwise idle
hardware resources. On the other hand, for applications that
TLP alone can achieve high hardware utilization, the ILP
techniques are not effective. To efficiently handle such
workload-dependent behavior, we propose heterogeneous
GPU-like many-core architectures, which contain two types
of cores, one customized for ILP friendly applications and the
other for TLP friendly ones. This heterogeneous architecture
is particularly useful for concurrent kernel execution, which
is supported by current GPUs such as NVIDIA Fermi/Kepler
architecture for general purpose computation [19]. When
concurrent kernels have different characteristics,
heterogeneity improves both throughput and energy
efficiency. For single kernels or homogeneous concurrent
kernels, we show that our heterogeneous architecture also

achieves similar or higher performance compared to
homogeneous designs.

In summary, this paper makes the following key
contributions: (1) we present a detailed study to reveal the
effectiveness of ILP on throughput-oriented many-core GPU-
like architecture; (2) we show that ILP techniques present an
interesting alternative to high degrees of TLP to achieve high
performance. Considering the significant resource
requirements to support high TLP, certain ILP techniques can
be area and energy efficient even in throughput-oriented
many-core architectures; (3) we propose heterogeneous
GPU-like many-core architectures and a policy to steer
applications to the appropriate type of SCs; and (4) we
present a detailed analysis on performance as well as area-
and energy-efficiency to make the case for heterogeneous
GPU architecture for high performance GPU computing.

The remainder of the paper is organized as follows.
Section 2 gives an overview of GPU-like many-core
architecture and the SIMT execution model. Section 3
presents the experimental methodology. The ILP techniques
are discussed in detail in Section 4. In Section 5, we make the
case for heterogeneous GPU-like many-core architecture.
Section 6 discusses the related work. Section 7 concludes the
paper.

II.BACKGROUND

Recently, GPU-like many-core architectures have
become a promising platform to achieve high performance
computing in an energy-efficient way. The cores, referred to
as shader cores (SCs), in a many-core GPU processor are
organized in a hierarchical manner. A GPU contains multiple
streaming multiprocessors (SMs) or compute units (CUs) and
each SM/CU includes several SCs, which are also called
streaming processors (SPs) or thread processors (TPs). Each
SM has a register file (RF), shared memory, and an L1
(global) data cache, which are used by all the SCs in the SM.

Modern GPUs execute programs, commonly referred to
as GPU kernels, in the single-instruction multiple-thread
(SIMT) mode. When a GPU kernel is invoked, the threads
are grouped into many thread blocks (TBs) according to the
kernel invocation parameters. The TB identifier (id) and the
thread id of a thread help to determine the data to be operated
upon. One or more TBs can be dispatched to one SM,
dependent on the register file usage and shared memory usage
of a TB. Threads in a TB are organized in multiple warps
(also called wavefronts). Each warp has one program counter

(PC) and all the threads in the same warp execute instructions
in the single-instruction multiple-data (SIMD) mode.
Multiple warps from the same or different TBs can run
concurrently in an SM. If there are enough concurrent warps,
pipeline hazards can be effectively overcome: if one
instruction, which may potentially cause a pipeline hazard,
e.g., a long latency memory access or a branch instruction,
gets in the pipeline, the pipeline simply executes instructions
from other warps until the hazard is resolved. A warp
scheduler is responsible of selecting instructions to issue
from different warps and different scheduling policies have
been studied, including round-robin (RR), fairness, two-
level, etc. [7][8][10][17].

III.EXPERIMENTAL METHODOLOGY

In this work, we made extensive changes to
GPGPUsimV3.0.1 [12] to model the baseline GPU, as shown
in Table 1, and our ILP designs. In our experiments, we vary
the parameters including the register file size, core frequency,
and memory bandwidth, to examine the impacts. We use the
shared memory of 16kB per SM. Although recent GPUs
feature higher shared memory capacity, they integrate many
more SPs (or ALUs) and accommodate more TBs in each
SM, therefore increasing the pressure on shared memory. We
modified McPAT [13] using similar approaches to
GPUWattch [12] to model the area and power.

Shader core frequency 325/650/1300Mhz
Number of SMs 30

Warp size 32
SIMD width (per SM) 8

Max. Num. of TBs Per SM 8 TBs/1024 Threads

Register File size 8k/16k/32k registers
Shared Memory Size Per

SM
16KB

Warp scheduling policy Round robin

L1 Cache Per SM
8-way set assoc. 64B cache line

(48KB)

L2 cache
 8-way set assoc. 64B, 256 KB

per memory channel
Number of Memory

Channels
16

GDDR Memory
8 banks, 800Mhz, total

bandwidth: 200GB/S, TCL =
10, TRP = 10, TRCD = 12

TABLE 2 . WORKLOADS USED IN EXPERIMENTS

Benchmark Inputs Grid Dim. TB Dim. Concurrent TBs
(warps) on an SM

Total
threads

Total
Inst

Inst. Per
core cycle

N-Queen solver (NQU) (8,1) (256, 1) (96, 1) 1 TB or 3 warps 24576 2M 22.97
StoreGPU (STO) (196625,1) (384, 1) (128, 1) 1 TB or 4 warps 49152 91M 271.4
Ray Tracing (RAY) (512, 512) (32, 32) (16, 16) 1 TBs or 8 warps 262144 257M 516.5
MatrixMultiplication(MM) (512, 512) (32, 32) (16, 16) 4 TBs or 32 warps 65536 120M 894.2
prefix-sum(Scan) (256,1) (256, 1) (128, 1) 4 TBs or 16 warps 32768 10M 579.98
Convolution(Con) (512, 512) (32, 32) (16, 16) 4 TBs or 32 warps 262144 520M 872.8
Fast fourier transform (FFT) (16384,1) (128, 1) (64, 1) 8 TBs or 16 warps 8192 37M 374.5
BlackSchol (BS) (480, 128) (480, 1) (128, 1) 6 TBs or 24 warps 61440 394M 848.82
Dxtc (DT) (125, 125) (1024, 1) (128, 1) 4 TBs or 16 warps 131072 568M 751.72
ScalarProd (SCP) (2048, 256) (2048, 1) (128, 1) 6 TBs or 24 warps 262144 32M 681.96
Matrix vector multiplication (MV) (128K, 32) (512, 1) (256, 1) 4 TBs or 32 warps 131072 32M 879.37

TABLE 1 THE BASELINE GPU CONFIGURATION

In our experiments, we selected 11 benchmarks from
NVIDIA CUDA SDK[18] as well as the ones released along
with the GPGPUsim simulator. The data inputs, the thread
grid configuration, the TB configuration, the maximal
number of TBs that can run in an SM, the overall number of
threads, the overall number of instructions, and the baseline
GPU performance measured in instructions per cycle (IPC)
for each workload are shown in Table 2. As a reference, the
peak IPC is 960 (= SIMD width per SM (32) x 30 SMs) in
our GPU model. Among the workloads, NQU and STO have
a limited number of concurrent TBs that can run on an SM.
NQU and STO have high shared memory usage per TB,
15.4kB and 16kB, respectively. Therefore, each SM can only
accommodate one TB at one time. In addition, for NQU, its

GPU kernel contains the following if-statement
‘if(idx<total_conditions){…}’, where ‘idx=blockDim.x *blockid +
threadid’. As a result, TB0 (TB with blockid 0) of NQU has
the highest number of instructions to execute compared to
other TBs and therefore dominates the performance. Among
the remaining benchmarks, RAY, Scan, and DT have a
moderate number of warps (less than or equal to 16 warps)
that run concurrently on an SM. For FFT, each SM is capable
of running 16 warps (or 8 TBs with the TB size of 64)
concurrently. Here, it is worth to point out that even the low
TLP workloads, NQU and STO, have hundreds of concurrent
threads running on each SM. Therefore, they fit better with
GPUs and much higher performance is achieved than running
on multi-threaded CPUs.

TB id Warp id PC Ready

Instruction

Buffer

I

n

s

n

r

e

g

RR

EX1 EXn …
WB

AGEN MEMk … MEM1

Shader core 1 (SC1)

RR

EX1 EXn …
WB

AGEN
…

MEM1

Shader core i (SCi)

…

Decoder

Decoded Insn

MEMk

Figure 1. The microarchitecture of an SM. RR stands for register read, EX for execution, AGEN for address generation, WB for write back, multiple EX or
MEM stages account for multi-cycle latency.

Warp scheduler

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f1 = f2 + f3 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 0-7)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 16-23)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 24-31)
f1 = f2 + f3 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 0-7)
 (from a different warp) RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 16-23)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 24-31)
f4 = f1 + f5 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 0-7)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 … (threads 8-15)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 … (threads 16-23)
 RR EX1 EX2 EX3 EX4 EX5 EX6 … (threads 24-31)

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f1 = f2 + f3 IF ID RR EX1 EX2 EX3 EX4 WB (threads 0-7)
 RR EX1 EX2 EX3 EX4 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 WB (threads 16-23)
 RR EX1 EX2 EX3 EX4 WB (threads 24-31)
f4 = f1 + f5 IF ID RR EX1 EX2 EX3 EX4 WB (threads 0-7)
 RR EX1 EX2 EX3 EX4 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 WB (threads 16-23)
 RR EX1 EX2 EX3 EX4 WB (threads 24-31)

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f1 = f2 + f3 IF ID RR EX1 EX2 WB (threads 0-7)
 RR EX1 EX2 WB (threads 8-15)
 RR EX1 EX2 WB (threads 16-23)
 RR EX1 EX2 WB (threads 24-31)
f4 = f1 + f5 IF ID RR EX1 EX2 WB (threads 0-7)
 RR EX1 EX2 WB (threads 8-15)
 RR EX1 EX2 WB (threads 16-23)
 RR EX1 EX2 WB (threads 24-31)

(a)

(b)

Figure 2. Many-thread aware data bypassing. The instruction fetch (IF) stage and decode (ID) stage are shared among all the threads in a warp. The

register read (RR) stage, execution (EX) stage, and write back (WB) stage process 8 threads at a time as there are 8 SCs. (a) No need for data bypassing

when the number of EX stages is less than the ratio of warp size/number of SCs (32/8 = 4); (b) Data bypassing from EX4->EX1 if the ALU latency is 4

cycles; (c) Data bypassing from EX8->EX1 if the ALU latency is 8 cycles.

IV.INSTRUCTION-LEVEL PARALLELISM FOR

SHADER CORES

In this section, we present our detailed many-
thread aware ILP designs in throughput-oriented
GPUs. Our discussion is based on the GPU model with
the configuration shown in Table 1. The
microarchitecture of an SM in a GPU is presented in
Figure 1. In an SM, a warp scheduler selects and issues
instructions from ‘ready’ warps to the multiple SCs. A
ready warp means that the next instruction from this
warp has all its dependencies resolved. Each entry in
the warp scheduler contains the information of a warp.
Using the program counter (PC) field, it reads the
instruction from the instruction buffer. During decode, the
TB id, the warp id and the thread id are used to generate the
mapping from logical register numbers to physical register
numbers for SCs to read from and write to the physical
register file. An issued instruction will be executed by
multiple SCs for all the threads in the warp. Depending on the
type of the instruction, it either goes through the ALU
pipeline, the memory pipeline, or the special functional units.
The ready field of a warp scheduler entry is cleared when an
instruction is issued from this warp. When an instruction
reaches the write back stage, it uses its warp id to locate the
corresponding warp scheduler entry and set the ‘ready’ bit.

4.1. Data Bypassing for Dependent Instructions

In pipeline designs, data bypassing is an effective way to
reduce the penalty of read-after-write data hazards. In an SM
of a GPU, once an instruction is issued from a warp, the same
instruction will be executed by the SCs for all the threads in
that warp. Given the warp size of 32 and the number of SCs
as 8 in an SM, the SCs will be fully utilized if one instruction
can be issued every four cycles. As a result, it presents a
different tradeoff for data bypassing compared to single-
threaded pipelines. Considering a pair of immediate producer
(f1 = f2 + f3) and consumer (f4 = f1 + f5) instructions, these
two instructions can be issued back-to-back without data
bypassing if latency of the producer instruction is fewer than
4 cycles, as shown in Figure 2a. The reason is that the
producer results have been written to the register file (e.g.,
register f1 is updated in cycle 12 for threads 0-7) before the
consumer instruction from the same threads (register read at
cycle 13 for threads 0-7) is executed. If the producer
execution latency is 4 cycles, however, the dependent
instruction can only be issued when there is a data bypass
path from the EX4 stage to the EX1 stage, as shown in Figure
2b. If the producer execution latency is 8 cycles, the pipeline
requires at least two warps to fully utilize the pipeline with a
data bypass path from EX8 to EX1, as shown in Figure 2c. In
our experiments, we assume that the ALU instructions have
8-cycle latency as it is consistent with the AMD GPUs [2]
which require two wavefronts (warps) to make the pipeline
busy when there is such a producer-consumer pair in the
code.

In summary, in our design data bypass is supported with
a single bypass path (EX4->EX1 or EX8->EX1) for ALU
instructions. Also, such data bypass is limited within each SP
since each thread will be executed in a fixed SP (e.g., thread
0 by SP0) and there is no communication among different

threads in a warp. Instructions accessing shared memory or
global memory have variable latencies due to bank conflicts
or cache misses. Therefore, we choose not to support data
bypassing for these instructions. Instead, they wait until the
data are fetched and being written to the register file before
setting the corresponding warp to be ready to issue the
dependent instructions. With the same warp size and an
increased SIMD width, e.g., 16 or 32, the demand for TLP to
hide the read-after-write data hazard becomes higher as each
instruction will take fewer (2 or 1) cycles to issue.

4.2. Scoreboards for Independent Instructions

When a long latency instruction, such as a cache-missing
load, is issued from one warp, the stall-on-use policy, i.e.,
issuing subsequent independent instructions from the same
warp until the consumer of the loaded value, provides
opportunities to hide the latency beyond leveraging the
independent warps within the same SM. To support such a
stall-on-use policy, the following issues need to be addressed
carefully. First, as discussed in Section 1, we argue that
precise interrupts are required for next generation GPUs and
we propose to support in-order instruction commit or write
back. An alternative way for precise interrupts is to allow out-
of-order commit and resort to checkpoints and replay to
reconstruct the precise states. However, it is challenging to
checkpoint periodically the aggregated architectural states of
a large number of threads. Second, we need an efficient way
to check data dependencies to enable independent
instructions to be executed. Third, as a warp contains multiple
(32) threads, control divergence (i.e., not all the threads in a
warp have the same control flow) complicates the handling
of data dependence. Next, we propose a cost-effective design
that addresses all these challenges. The microarchitecture of
our many-thread aware scoreboard is shown in Figure 3a.

 As shown in Figure 3a, our proposed scoreboard is a
fully-associative cache with a small number of entries (e.g.,
8, see Section 4.4.1), maintaining the information of issued-
but-not-yet–committed (i.e., outstanding) instructions. A tag
entry in our scoreboard has a ‘physical register number’ field,
corresponding to the destination register of an outstanding
instruction. Since the registers in the GPU register file are
organized as vector registers to support SIMD execution of a
warp, for a register file with 16k registers and the warp size
of 32, there are 512 (=16k/32) physical vector registers in the
register file. Therefore, the width of each tag is 9 bits. Since
the logic-to-physical register mapping ensures that the same
logic register numbers from different warps will be mapped
to different physical registers, there is no need to keep the

Complete Active Status Mask Data Next

(a)

Warp id PC Ready

Warp Scheduler

Head Tail In-Board

(b)

Phys. Reg. Num

Decoded insn In-store

Data store (RAM) Tag store (CAM)

Figure 3. Architecture of (a) a many-thread aware scoreboard and (b)
the associated warp scheduler.

TB id

warp id information. A data entry contains a 1-bit
‘completion’ flag, a 32-bit ‘active mask’, a 32-bit ‘status
mask’,128-byte ‘data values’ (corresponding to 32 registers
or 1 vector register), and a K-bit ‘next’ field, where K is
log2(num. of scoreboard entries). We also append four
additional fields to each entry in the warp scheduler,
including a ‘head pointer’ (K bits), a ‘tail pointer’ (K bits), a
1-bit ‘in-board’ flag, and a 1-bit ‘in-store’ flag, as shown in
Figure 3b.

To support precise interrupts, outstanding instructions’
execution results (or loaded values) are kept in the data value
field rather than updating the register file out-of-order. If each
warp has its own scoreboard, we can manage the scoreboard
as a circular buffer, similar to the reorder buffer in CPU
designs, to achieve in-order commit (i.e., update the register
file in order). However, this approach adds too much
overhead as an SM can support up to 32 concurrent warps.
Therefore, we propose to share the scoreboard among all the
warps in an SM. Due to such sharing, we introduce the
pointers to maintain the order of outstanding instructions in
each warp. The head pointer and the tail pointer in each warp
scheduler entry point to the oldest and the youngest
instruction, respectively, inside the scoreboard from this
warp. To maintain these pointers, when an instruction from a
warp is issued, if there is an unused entry in the scoreboard
and there are no older instructions from the same warp in the
scoreboard (i.e., when the ‘in-board’ bit from the warp
scheduler entry is not set), the head pointer and tail pointer
are set to this scoreboard entry. When another instruction is
issued from the same warp, the scoreboard entry indexed by
the warp’s tail pointer will update its next field to point to the
newly issued instruction. Then, the warp’s tail pointer in the
warp scheduler will be updated as well. Each cycle, each
warp will use its head pointer to examine whether its oldest
instruction (i.e., pointed to by its head pointer) completes.
Since every instruction is executed for all the threads in a
warp, the status mask is used to maintain which threads have
updated their results in the data value field. If all threads
complete (assuming no control divergence), the oldest
instruction commits the results into the register file and then
frees the scoreboard entry. In the meanwhile, the
corresponding entry in the warp scheduler will update its
head pointer according to the next field of the instruction to
be committed. This way, in-order commit is enforced for
precise interrupts.

The tag store (not the data store) in the scoreboard is used
for checking data dependence. After an instruction is fetched
and decoded from a warp, it searches the tag store to see
whether any of its source registers hits in the tag store. If not,
it means that all the source registers are available from the
register file. If there is one or more hit, then the complete
status bits of the corresponding entries are used to determine
whether the operands can be read from the scoreboard. In
either case (i.e., no tag match or matches with the complete
bit being set), the ready bit in the warp scheduler entry is set
so that the warp can be selected to issue this instruction.
Otherwise, the warp is marked not ready as the source
operand(s) of the instruction is not available yet. This way,
the warp is not stalled until it encounters the consumer
instruction of a long latency instruction. For example, for the

following instructions in a GPU kernel, ‘A: load r1, -,-; B:
Add r2, -, -; C: Load r3, r2, -; D Add -, r1,-’, instruction A
results in a long latency cache miss. With the scoreboard, the
same warp can issue the subsequent independent instruction
B. After B is completed, its results are available in the
scoreboard but not in the register file. Therefore, when
instruction C is issued from the same warp, it searches the tag
store of the scoreboard for its source operands. If there is a
match (r2), the data from the corresponding data value field
will be used instead of the data from the register file.
Instruction D, due to its source operand match (r1) in the tag
store, stalls the warp.

Since the instructions from the same warp are issued in
order, write-after-read data hazards do not present a problem.
To handle write-after-write data hazards, we introduce a ‘no
match’ (NM) bit for each tag entry in the scoreboard, as
shown in Figure 4. When an instruction is issued, if it finds
that there is a match in the tag store of the scoreboard with its
destination register, the NM bit of the older definition is set
to zero so that subsequent use will not generate a match to it.
For example, for the instructions ‘A: load r1,-,-; B: Add r1, -
, -; C: Add -, r1, -;’, when instruction B issues, it will reset the
NM bit of instruction A in the scoreboard. Then, when
instruction C is issued, it is guaranteed that there is only one
match to r1, which is defined by instruction B. The NM bit is
set when the scoreboard entry is allocated to a new
instruction.

The active mask field is introduced to handle control
divergence. By default, all the bits are set for this mask. When
a branch results in control divergence, only the active threads
along the control path will have their corresponding mask bit
set, leveraging the existing branch execution logic. The
completion flag is the result of inverted XOR between the
active mask and the status mask, meaning that only if all
active threads have updated their data values, the instruction
is completed and ready to be committed. Furthermore, for an
instruction having a write-after-write data hazard with an
outstanding instruction in the scoreboard, it is only allowed
to be issued if the active threads for this instruction are the
same or the superset compared to those of the previous define
instruction. Otherwise, the warp scheduler entry will be
marked as ‘not ready’ and the warp is stalled until the
previous define instruction is committed.

To handle memory dependence, we propose the
following approach. When a store instruction is decoded, the
warp waits for all of its outstanding instructions to be
completed to ensure that the store is the oldest instruction.
Then, it can issue the store instruction. This way, the precise
interrupts are supported. Once a store instruction is issued,
the ‘in-store’ flag in the warp scheduler entry is set, which is
used to prevent any subsequent load instructions to be issued

Physical Reg. Num NM

C
om

pare

0

Match

0

1

 Figure 4. Handling write-after-write data hazards with the no-match (NM)
flag.

Incoming reg. num

from the same warp. The independent ALU instructions,
however, can still be issued from this warp. When the store
instruction commits, the ‘in-store’ flag in the corresponding
warp scheduler entry is reset.

To reduce the structural hazard impact due to the limited
size of the scoreboard, we use the ‘in-board’ flag for each
warp to track whether there is any outstanding instruction
from the warp residing in the scoreboard. If this flag is zero,
meaning no outstanding instructions from the warp, and there
is no free entry in the scoreboard, the warp can still issue one
instruction to the SCs as it is the only instruction from this
warp that will be in the pipeline. Therefore, it would not
violate any dependency. In this case, after the instruction is
issued, the warp scheduler entry’s ready bit will be reset,
preventing any subsequent instruction from this warp from
being issued. The ready bit is set when the issued instruction
reaches the write back stage. If the in-board flag is set, the
ready bit of the warp scheduler entry is controlled by the tag
store matches as discussed earlier.

In addition, the warp scheduler handles memory
synchronization as well as thread execution synchronization
(i.e., barrier) by marking the corresponding warps as ‘not
ready’ until the barrier has been reached by all the warps in a
thread block.

Note that our proposed scoreboard is much simpler than
the reservation stations used in CPU designs. It only
maintains the execution results of the issued instructions and
does not have the capability to issue an instruction to the
pipeline (i.e., no wake up and select logic).

4.3. Branch Prediction for Control Hazards

After a warp issues a branch instruction, if there are no
other ready warps, it may impose a control hazard. In GPUs,
control hazards have different characteristics compared to
single-threaded CPUs. First, the branch target can be
computed promptly in GPUs. Due to the SIMD execution
mode of a warp (8 SCs executing an instruction for 32
threads), fetching one instruction in every four cycles is
sufficient to keep the pipeline busy. During the 4 cycles of IF
stage, the branch target can be computed. Even with 16 SCs
in an SM, there are 2 cycles to generate the target. Therefore,
there is no need for a branch target buffer (BTB) as
commonly used in CPU designs. It also means that
unconditional branches should impose no control hazards.
Second, for conditional branches, branch divergence among
the threads in a warp makes them friendly to branch
prediction. As shown in Figure 5, the branch instruction
results in a divergence, i.e., some threads follow the taken
path and some follow the not-taken path. Assume a branch
takes 4 cycles to resolve (i.e., the branch outcome or the
predicate bitmask is known after EX4). If a taken prediction

is made, right before the instruction at the predicted target L
is executed, the bitmask from the branch has already been
computed for the corresponding threads. For example, at
cycle 14 before the EX1 of the instruction L for threads 0-7,
the bit mask of these threads has been computed and can be
used to void the computation for the threads that should
follow the not-taken path. Even if the branch is resolved at
EX8 stage, it can still be used to predicate the write back
operation of instruction L. Therefore, divergent branches can
be predicted either taken or not-taken and either prediction
will not cause any misprediction penalty. In other words,
divergent branches are immune to mispredictions. For non-
divergent branches, a misprediction incurs a recovery by
nullifying the instructions from the predicted path, similar to
CPU designs. The only difference is that rather than
nullifying all the instructions in the pipeline after the branch,
we only need to nullify those from the same warp. To make
predictions for conditional branches, we can use hardware
based predictors such as gshare predictors [14]. Such a gshare
predictor can be shared by all the thread blocks in the same
SM. For divergent branches, since either taken or not taken is
a correct prediction, the predictor is updated as if it makes a
correct prediction. A more cost-effective (nearly free) way is
to use the simple heuristics ‘backward taken and forward not-
taken’. Since the target can be computed during the IF stage,
it can be used to compare to the branch PC to make a
prediction without any prediction tables. We refer to this
approach as ‘static’ prediction in this paper. Note that, we will
not make predictions of a branch, which is dependent upon a
long latency operation, since either the stall-on-miss (i.e.,
without scoreboards) or the stall-on-use policy stalls the warp
and prevents the branch from entering the pipeline.

4.4. Experimental Results

4.4.1. Performance impacts of reducing data hazards

Figure 6. The performance improvement of the ILP techniques to reduce
data hazards

In our first experiment, we evaluate the performance
gains from reducing data hazards. Since the bypassing and
the scoreboard techniques target different types of data
hazards, we can combine the two. The performance results,

151%
172%

95%
100%
105%
110%
115%
120%
125%
130%
135%
140%

NQU STO Ray FFT Scan MM Con BS DT SCP MV GM

Performance improvement over baseline GPU

SC BP SC+BP

Figure 5. Branch prediction/resolution in SIMT architectures. The branch outcomes, if available at EX4 or EX8, can guard the execution or write back
operations of the instruction from the predicted path.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Breq r1,L IF ID RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 0-7)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 16-23)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 24-31)
L: f1 = f2 + f3 IF ID RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 0-7)
(predicted path) RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 8-15)
 RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 16-23)

RR EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 WB (threads 24-31)

normalized to the baseline GPU, of the bypassing (labeled
‘BP’), the scoreboard (labeled ‘SC’), and the combined
bypassing and scoreboard (labeled ‘BP+SC’) are shown in
Figure 6. The scoreboard has 8 entries, translating into the
following hardware overhead. The tag store of the scoreboard
is an 8-entry CAM with each entry containing 9 (Physical reg.
number) + 1 (NM) = 10 bits. The data store of the scoreboard
has a total of 8 x (1+32+32+128x8+3) = 8736 bits (=1092 B).
Compared to the large register file size (16k registers=16k x
4B=65536 B) in each SM, such overhead is quite limited.

From Figure 6, we can see that the data bypassing and
scoreboard techniques show variable performance gains on
different workloads. Among them, two benchmarks, NQU,
and STO, benefit significantly from reducing data hazards.
The main reason is that these two benchmarks have relatively
low TLP due to their resource usage and the ILP techniques
effectively utilize the otherwise stall cycles. For benchmarks
with moderate degrees of TLP, including RAY, FFT, Scan,
and DT, reducing data hazards also shows good performance
gains, ranging from 6.5% (Scan) to 12.9% (FFT). For
benchmarks with high degrees of TLP (MM, Con, BS, SCP,
and MV), reducing data hazards shows almost no
performance gains as there are enough threads/warps to
overlap the latency introduced by data hazards. Overall, on
average using the geometric mean (GM), the data bypassing
scheme introduces 6.6% performance improvements and the
scoreboard has 9.7% performance gains. When the two
techniques are combined, there is an average of 11.5%
performance enhancement.

We also vary the scoreboard size to evaluate the impact
of the structural hazards. And we found out that an 8-entry
scoreboard is the most cost-effective choice, which is used in
the remaining experiments in the paper.

In the next experiment, we change the SC frequency
(from 325MHz to 1300MHz) and the memory bandwidth
(from 100GB/s to 400GB/s). The experimental results show
similar performance gains (ranging between 12.0% and
14.6% on average) when both data bypassing and scoreboard
techniques are used.
 We also vary the physical register file size from 8k to 32k
registers to analyze the impact. With a small register file in
an SM (e.g., 8k registers), the number of concurrent TBs in
the SM is reduced compared to larger register files. The
performance gains from the bypassing and scoreboard
techniques on GPUs with different register file sizes are
shown in Figure 7.

Figure 7. Performance improvements from reducing data hazards on GPUs
with different register file sizes.

From Figure 7, we can see that the benchmarks Scan, MM,
BS, DT and SCP benefit more from bypassing and
scoreboards when the register file is small (8k) and limits the
number of concurrent TBs. Further increasing the register file

size from 16k to 32k cannot provide additional TLP for Scan,
MM and SCP as each SM already runs the maximum number
of TBs or threads. For NQU and STO, the resource bottleneck
is shared memory. Therefore, we observe similar results to
those with the register file size of 16k registers. For the
benchmark, Ray, we do not have the result for 8k registers
because such a register file is not enough to launch 1 TB, and
when we increase the register file size from 16k to 32k, the
number of concurrent TBs increases from 1 to 2, therefore the
bypassing and scoreboard techniques are less effective for the
32k case compared to the 16k case.

4.4.2 Performance impacts of reducing control hazards

Figure 8. The performance improvements from branch prediction on the
baseline GPU equipped with the bypassing and scoreboard techniques.

In this experiment, we first examine the performance
impact of branch prediction. We changed the GPGPUsim to
reduce the branch latency to 1 cycle to reduce the control
hazards in the baseline GPU. In other words, the instruction
at the right target of the branch is ready to be issued one cycle
after the branch enters the EX stage. In Figure 8, we report
the performance improvements over the GPU with the bypass
and scoreboard techniques. The predictions are made using
the static predictor as well as the gshare predictor discussed
in Section 4.3. For reference, we also report the performance
results with perfect branch predictions (i.e., no
mispredictions).

From Figure 8, we can see that the benchmark NQU
benefits significantly from either static or gshare predictors,
20.8% for our static predictor and 20.6% for the gshare
predictor over the baseline GPU with bypassing and
scoreboard. The remaining benchmarks, however, have
smaller impacts, including 4.1% for Ray and 2.2% for Scan.
The reason is that in the TB0 of NQU (the performance
dominant TB), 13.7% of all its instructions are branches.
Among the branches, 42.3% of them do not present a control
hazard for the baseline GPU (i.e., without bypassing or
scoreboard) due to TLP. The remaining 57.7% result in
pipeline stalls. As discussed in Section 4.3, either correct
predictions or divergent branches can effectively utilize the
otherwise stall cycles, thereby showing high performance
gains for NQU. Other benchmarks have less number of
branches and there are more warps running concurrently on
an SM to overlap the pipeline hazards, thereby showing
relatively small performance impacts.

In the next experiment, we examine the predictability of
non-divergent conditional branches in the GPU kernels. We
report the branch prediction accuracies of our simple static
approach and a 1k-bit gshare predictor (shared by all warps
in an SM) in Figure 9 (FFT has no conditional branches and
is excluded from the figure). From the figure, we can see that
in GPU kernels branches can be predicted reasonably well

90%
100%
110%
120%
130%
140%
150%
160%
170%
180%

NQU STO Ray FFT Scan MM Con BS DT SCP MV GM

Performance improvements from BP+SC
8k 16k 32k

95%

100%

105%

110%

115%

120%

125%

NQU STO Ray FFT Scan MM Con BS DT SCP MV GM

Performance improvement from SC+BP

Static Gshare Perfect

using our simple static approach (95.8% accuracy on
average). The gshare predictor is also effective (96.4%). The
reason is that all warps within the same SM share the same
predictor and therefore they can accurately update the branch
predictor for each other.

Figure 9. The prediction accuracy for conditional non-divergent branches
of different prediction schemes.

Overall, from the results, we can see that although on
average the performance gains of branch prediction is
moderate (2.5% for our static branch predictor and 2.7% for
the gshare branch predictor), it can be quite effective for
control intensive benchmarks with low TLP (e.g., NQU). In
addition, as discussed in Section 4.3, branch prediction is
almost free in terms of hardware cost using our simple static
prediction approach. Therefore, we argue that it is a technique
to adopt for next generation GPUs.

4.4.3. Interaction between ILP and TLP

Either ILP or TLP can be leveraged to overcome pipeline
hazards. The overhead to support the ILP techniques includes
additional bypass paths and scoreboards, as discussed in
Sections 4.1-4.3. The cost of supporting TLP, on the other
hand, is the aggregated resource requirement from a high
number of threads. Among such resources, register files
maintain the register state of the threads. To study the
interaction between ILP and TLP, in the next experiment, we
vary the register file size in each SM from 4k to16k registers
and evaluate the performance of the GPU model with and
without the ILP techniques. The performance results,
normalized to our baseline GPU model with a register file
having 16k registers, are reported in Figure 10. The
benchmark RAY requires at least 10k registers to run one

thread block. Therefore, there are no performance results for
small register files for this benchmark. When calculating the
average using GM, the performance of 10k registers is used
for small register files (4k, 6k and 8k registers) for this
benchmark.

Two important observations can be made from Figure 10.
First, on average, the performance gains for the ILP
techniques tend to reduce with a higher degree of TLP as a
result of large register files. Among individual benchmarks,
for NQU, STO, RAY, and FFT, the performance is not
affected by the register file size as the factors such as shared
memory other than the register file size are limiting their
TLP. The benchmark Scan is sensitive to the warp scheduling
policy and performs the best when the register file has 6k
registers. For the rest benchmarks, large register files support
a higher number of concurrent threads and lead to better
performance. Higher degrees of TLP also reduce the
effectiveness of the ILP techniques. Take SCP as an example,
when the register file has 4k registers, adding ILP techniques
improves the performance from 44.8% to 65.6% of the
baseline GPU. With a register file containing 12k registers,
the improvement from the ILP techniques is from 95.3% to
96.9% of the baseline.

Second, the ILP techniques provide an interesting
tradeoff for resources required for high TLP. As seen from
Figure 10, on average, adding the ILP support to a GPU with
the register file size of 8k registers outperforms the baseline
GPU with the register file size of 16k registers by 9.1%. In
other words, the ILP techniques can save 8k registers in each
register file while achieving higher performance, thereby
being potentially more area and energy efficient. We leverage
this observation in Section 5 to customize our designs.

V.HETEROGENEOUS GPU ARCHITECTURE

The results discussed in Section 4.4 show that the ILP
techniques have different performance impacts on different
applications. To efficiently handle such workload-dependent
behavior, we propose a heterogeneous GPU architecture and
it contains two types of cores: one with the ILP techniques
(referred to as ILP cores) and one without them (referred to
as TLP cores). A kernel with high TLP fits the TLP cores
while a kernel with limited TLP benefits more from the ILP

65%

70%

75%

80%

85%

90%

95%

100%

NQU STO Ray Scan MM Con BS DT SCP MV GM

Branch Prediction accuracy
Static Gshare

207% 140%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

NQU STO RAY FFT Scan MM Con BS DT SCP MV GM

Normalized performance over the baseline GPU for different register file sizes 4K_TLP

6K_TLP

8K_TLP

10K_TLP

12K_TLP

14K_TLP

4K_ILP

6K_ILP

8K_ILP

10K_ILP

12K_ILP

14K_ILP

16K_ILPFigure 10. Performance comparisons across different register file sizes. The legend: the number means the register file size and ‘_ILP/TLP’

means with/without ILP techniques.

cores. To classify whether a kernel has high TLP or not, we
simply use the number of concurrent warps that can run on
an SM. This information depends on the resource usage of a
kernel and is readily available at the compile time. If a kernel
can have more than 24 concurrent warps (i.e., 24x32=768
threads) running concurrently on an SM, it is classified as
high TLP. Next, we compare it with homogeneous TLP cores
and homogeneous ILP cores.

First, we modified McPAT [13] using the similar
approach to GPUWattch [12] to model the area and power of
an SM based on the configuration shown in Table 1. The
40nm technology is used to achieve the target core frequency
of 1.3GHz and the operating temperature is 380K. The
reported area of an SM of the baseline GPU (or an SM with
TLP cores) is 11.823 mm2. The data bypassing support in
each SC introduces an area overhead of 0.028 mm2. As there
are 8 SCs in an SM, the overall area cost of data bypassing in
an SM is 0.224 mm2. The scoreboard support, shared by all
SCs in an SM, costs 0.917 mm2. Therefore, an SM with ILP
cores has an area of 12.964 mm2, which means a 9.6% area
overhead for the ILP techniques. The branch prediction
support only requires an adder to compute the target and a
comparator between the target and PC. Since such logic has
very small area overhead and the current McPAT tool does
not model it explicitly, we ignore the area cost of branch
prediction support.

Considering the die area that is similar to an NVIDIA
GTX480 GPU, we can have the following options: 40 SMs
with TLP cores (40x11.823 = 472.92 mm2); 36 SMs with ILP
cores (36x12.964 = 466.704 mm2); and 20 SMs with TLP
cores plus 18 SMs with ILP cores (20x11.823 + 18*12.964 =
234.46 + 233.352 = 467.812 mm2). We refer to the first one
as GPU-T, the second one as GPU-I, and third one as GPU-
H. The first two are homogeneous designs and the last one is
heterogeneous. There are many possible combinations of ILP
and TLP cores for heterogeneous designs. Our choice is
based on the option that either type of cores has the
same/similar area (234.46 mm2 vs. 233.352 mm2).
Compared to our baseline GPU in Table 1, these GPUs have
higher number of SMs. Therefore, to maintain the ratio of
compute-to-memory bandwidth, we increase the number of
memory modules per memory controller from 2 to 3.

Figure 11. The performance of different GPUs running single kernels.

Next, we run a single kernel on these three different GPU
architectures and the performance results, normalized to
GPU-T, are shown in Figure 11. Since GPU-T, GPU-I, and
GPU-H have similar areas, the performance also represents
their area efficiencies.

From Figure 11, it can be seen that when running a single
kernel, GPU-I is most effective for applications with limited
TLP (NQU, STO, Ray, and Scan) and GPU-T is most
effective for applications with high TLP (MM, Conv, BS,
DT, SCP and MV). For FFT, although it has reasonably high
number of concurrent warps (16) to run on each SM, its
overall number of threads (16384) is limited. Therefore,
GPU-I achieves higher performance for FFT than GPU-T or
GPU-H. Compared to GPU-I and GPU-T, GPU-H presents a
nice tradeoff. On average, GPU-H achieves 7.5% higher
performance than GPU-T and higher performance compared
to GPU-I (6.5%).

Similar trends are observed for energy consumption of
three GPU designs. GPU-I consumes lower energy than
GPU-T running applications with limited TLP and consumes
higher energy than GPU-T running high TLP workloads.
GPU-H achieves a good balance between them.

Figure 12. The performance of different GPUs running concurrent kernels
(one favors ILP and the other favors TLP).

Figure 13. The energy consumption of different GPUs running concurrent
kernels (one favors ILP and the other favors TLP).

Then, we run heterogeneous concurrent kernels on these
three GPU designs. The heterogeneous kernel mixes are
constructed using the following way: one from NQU, STO,
or Scan, which favors ILP cores, and the other from MM,
Con, DT or MV, which favors the TLP cores. To overcome
the issue that different workloads have different number of
instructions, we add a loop to each kernel to make it run
continuously and then stop execution when the longer kernel
finishes at least 1 run. We adopt the weighted speedups [21]
from multi-threaded CPU designs to evaluate the
performance. Assuming kernel 1 is the one with low TLP and
kernel 2 is the one with high TLP. The weighted speedup is
computed as follows: 	ଵ

ଶ
∗ ሺ ౅ౌిృౌ౑ሺౡ౛౨౤౛ౢభሻ

౅ౌిృౌ౑ష౅ሺౡ౛౨౤౛ౢభሻ
ା

౅ౌిృౌ౑ሺౡ౛౨౤౛ౢమሻ
౅ౌిృౌ౑ష౐ሺౡ౛౨౤౛ౢమሻ

,

where IPC GPU(kernel) is the instructions per cycle of the
kernel running on the GPU of interest, IPCୋ୔୙ି୍ሺkernel1ሻ is
the performance of the kernel 1 running on GPU-I, and

207%

207%

85%
90%
95%
100%
105%
110%
115%
120%
125%
130%
135%
140%
145%
150%

NQU STO Ray FFT Scan MM Con BS DT SCP MV GM

Performance normalized to GPU‐T

GPU_I GPU_Hetero

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%
Weighted speedups of GPUs running 2 kernels

GPU_T GPU_I GPU_H

60%

70%

80%

90%

100%

110%

120%

130%

140%
Normalized energy consumption to GPU‐T

GPU_I GPU_H

IPCୋ୔୙ି୘ሺkernel2ሻ is the performance of the kernel 2
running on GPU-T. The application steering policy used in
GPU-H is mainly based on how many concurrent warps that
an SM can run. If this number is less than 16, the application
is dispatched to the 18 SMs with ILP cores. Otherwise, it is
dispatched to the 20 SMs with TLP cores. If an application
has limited overall number of threads (<=32768), it is
dispatched to ILP cores. As the resource requirement of a
kernel is available statically at compile time, the support for
our application steering policy is straightforward.

The performance results of GPU-I, GPU-T, and GPU-H
are shown in Figure 12. For concurrent kernels containing
NQU and STO, the GPU-I outperforms GPU-T, the reason is
that the performance gains from GPU-I for NQU and STO
are higher than the performance gains from GPU-T for MM,
Con, DT or MV. For concurrent kernels containing Scan, the
performance of GPU-T is better because the benefit of GPU-
T for MM, Con, DT or MV is larger than the performance
gains from GPU-I for Scan. In all these cases, GPU-H
outperforms either homogeneous design and on average,
GPU-H achieves 4.7% and 19.8% higher performance than
GPU-I and GPU-T, respectively. We also collect the energy
consumption results of GPU-I, GPU-T, and GPU-H, and
report them in Figure 13. As each concurrent kernel contains
two applications, the energy consumption is the sum of the
energy consumed by executing either application from the
beginning to end. From the figure, we can see that on average,
GPU-H consumes least energy, 16.0% less than GPU-T and
6.5% less than GPU-I.

VI.RELATED WORK

Most research work on GPU architectures focuses on
reducing the impact of divergent behavior [6][7][15] within
warps and improving GPU memory hierarchy[11], rather
than architecting SCs. To our knowledge, this is the first work
to examine the impact of ILP techniques on SCs for many-
core GPUs. Among the ILP techniques, data bypassing
support exists in AMD GPUs. Although the detailed
architecture has not been disclosed, it is stated in R-700 ISA
[2] that special instruction encoding (PS or PV) is used to
receive the result of previous instruction. Certain compiler
optimizations, such as loop unrolling, assume that GPUs can
execute independent outstanding loads from the same warp.
However, current GPUs do not support precise interrupts and
it is not clear how the read-after-write and write-after-write
data hazards are resolved after an older pending long latency
instruction. We are not aware of any prior work on branch
prediction on GPUs or heterogeneous GPU architectures.

For concurrent kernel execution, [1][20] show that
scheduling concurrent kernels on different SMs is more
beneficial than letting one kernel occupy all the SMs. Our
approach takes one step further by customizing the SMs
based on the characteristics of the concurrent kernels.

VII.CONCLUSIONS

Given the high computational throughput and energy
efficiency, GPU-like many-core architectures have been
increasingly adopted to build supercomputers. In this paper,
we focus on the basic building block of the GPU, the shader

cores. We present a detailed study to reveal the effectiveness
of the ILP on the throughput-oriented many core
architectures. We show that for applications, whose resource
requirements prevent GPUs from running a sufficient number
of concurrent threads, the ILP techniques can significantly
improve the performance. Furthermore, we show that the ILP
techniques can be used to reduce the TLP requirement and
therefore reduce the requirement in critical resources such as
the register file. We then propose heterogeneous GPU
architectures to include both ILP cores (i.e., cores with the
ILP techniques) and TLP cores (i.e., cores without them).
Applications are steered to either type of cores depending on
how many threads can run concurrently on the hardware. Our
results show that the proposed heterogeneous GPUs have
higher performance, area- and energy-efficiency than
homogenous GPUs based on either ILP or TLP cores.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments to improve our paper. This work is supported by
an NSF project 1216569 and a gift fund from AMD Inc.

REFERENCES

[1] J. T. Adriaens, et al., The GPGPU Spatial Multitasking, HPCA 2012.
[2] AMD R700-Family Instruction Set Architecture Reference, Guide

February 2011.
[3] A. Bakhoda, et al., Analyzing CUDA workloads using a detailed GPU

simulator. IPASS 2009.

[4] GTX 680 Kepler Whitepaper.

[5] R. Espasa, M. Valero, and J.E. Smith, Out-of-Order Vector

Architectures, MICRO 1997.
[6] W. Fung, et al., Thread block compaction for efficient SIMT control

flow, HPCA 2011.
[7] W Fung, et al., Dynamic warp formation and scheduling for efficient

GPU control flow, MICRO 2007.
[8] A. Jog, et al, OWL:Cooperative Thread Array Aware Scheduling

Techniques for Improving GPGPU Performance. In ASPLOS, 2013
[9] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, Morgan Kaufmann Publishers.
[10] N. Lakshminarayana et al., Effect of instruction fetch and memory

scheduling on GPGPU performance, Workshop on Lang. Comp. and
Arch. Support for GPGPU, 2010.

[11] J. Lee, et al., Many-thread aware prefetching mechanisms for GPGPU
applications. MICRO 2010.

[12] J. Leng, et al., GPUWattch: Enabling Energy Optimizations in
GPGPUs, ISCA, 2013

[13] S. Li at al., McPAT: an integrated power, area and timing modeling
framework for multicore and manycore architectures, MICRO 2009.

[14] S. McFarling, Combining branch predictors, Digital Western
Research Lab (WRL) Technical Report, 1993.

[15] J. Meng, et al. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. In ISCA, 2010.

[16] J. Menon et al., iGPU: Exception support and speculative execution
on GPUs, ISCA 2012.

[17] V. Narasiman, et al, Improving GPU Performance via Large Warps
and Two-level Warp Scheduling. In MICRO, 2011

[18] NVIDIA GPU Computing SDK 3.1.
[19] NVIDIA CUDA Programming Guide 4.1, 2011.
[20] V.T. Ravi, et al, Supporting GPU sharing in cloud environments with

a transparent runtime consolidation framework. In HPDC, 2011
[21] D. Tullsen et al., Handling long-latency loads in a simultaneous

multithreading processor, MICRO 2001.

