

Exploiting Uniform Vector Instructions for GPGPU
Performance, Energy Efficiency, and Opportunistic

Reliability Enhancement
Ping Xiang, Yi Yang*, Mike Mantor#, Norm Rubin#, Lisa R. Hsu#, Huiyang Zhou

Dept. of Electrical and Computer
Engineering

North Carolina State University
Raleigh, NC, USA

{pxiang, hzhou}@ncsu.edu

*Dept. of Computing Systems
Architecture

NEC Laboratories America
Princeton, NJ, USA

yyang@nec-labs.com

#
Graphics Products Group

AMD Inc.
Orlando, FL, USA

Michael.Mantor, Norman.Rubin,
Lisa.Hsu}@amd.com

Abstract
State-of-art graphics processing units (GPUs) employ the single-

instruction multiple-data (SIMD) style execution to achieve both

high computational throughput and energy efficiency. As previous

works have shown, there exists significant computational

redundancy in SIMD execution, where different execution lanes

operate on the same operand values. Such value locality is referred

to as uniform vectors. In this paper, we first show that besides

redundancy within a uniform vector, different vectors can also

have the identical values. Then, we propose detailed architecture

designs to exploit both types of redundancy. For redundancy

within a uniform vector, we propose to either extend the vector

register file with token bits or add a separate small scalar register

file to eliminate redundant computations as well as redundant data

storage. For redundancy across different uniform vectors, we adopt

instruction reuse, proposed originally for CPU architectures, to

detect and eliminate redundancy. The elimination of redundant

computations and data storage leads to both significant energy

savings and performance improvement. Furthermore, we propose

to leverage such redundancy to protect arithmetic-logic units

(ALUs) and register files against hardware errors. Our detailed

evaluation shows that our proposed design has low hardware

overhead and achieves performance gains, up to 23.9% and 12.0%

on average, along with energy savings, up to 24.8% and 12.6% on

average, as well as a 21.1% and 14.1% protection coverage for

ALUs and register files, respectively.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures

General Terms

Performance, Design, Experimentation

Keywords

GPGPU, Redundancy

1. INTRODUCTION

State-of-art GPUs manage, schedule, and execute parallel threads

in groups. While each individual thread has its own register state, a

group of threads, called a warp/wavefront, share a single program

counter (PC) as well as the instruction fetch, decode, and

processing logic. When executing an instruction, different threads

in a warp operate upon different data, which are typically specified

using their thread identifiers (ids). To hide instruction execution

latencies, especially off-chip memory accesses, GPUs are designed

to host a high number of warps so that when one warp is stalled,

another warp can issue instructions so as to keep the

arithmetic/logic units (ALUs) busy. As a result, throughput-

oriented GPUs can spend most energy budget and die area on

computational logic rather than sophisticated instruction

processing logic as in latency-oriented central processing units

(CPUs). The combined single-instruction multiple-data (SIMD)

style execution and warp-level parallelism, also referred to as

single-instruction multiple-thread (SIMT) processing, is the key for

GPU’s high energy efficiency and computational throughput. In

this paper, we propose a novel approach to further improve the

performance, energy efficiency and reliability of GPU computing.

Our approach is built upon the following observations on SIMT

processing. During SIMD execution, different threads in the same

warp are supposed to operate upon different data. However, certain

program structures in the kernel code, such as loops, and some

intermediate computations, including loading data from the same

address, calculating configuration numbers, or initializing registers

with constant values, result in identical computations among the

threads in a warp. In such cases, different threads in a warp have

the same source values and therefore produce the same output.

This value locality was referred to as uniform vectors [5]. In this

paper, we observe that such computational redundancy does not

only exist among the threads within a warp, but also happens at the

warp level. In other words, different warps may have identical

input and output values. Therefore, we refer to them as intra-warp

and inter-warp uniform vector instructions, respectively.

We propose detailed architecture designs to detect and remove

redundancy resulting from intra- and inter-warp uniform vector

instructions to achieve both performance gains and energy savings,

and to leverage such redundancy for reliability enhancement. For

intra-warp uniform vector instructions, we present two designs.

The first one adds a token bit to each vector register to detect and

track intra-warp redundancy. For an instruction, when all of its

source operands have this token bit set and there is no control

divergence, this instruction is recognized as an intra-warp uniform

vector instruction. In this case, only one thread in the warp will

carry out the computation, store the result in its destination scalar

register, and set the token bit associated with the destination vector

register. Additional multiplexers (MUXes) are introduced to reuse

the existing broadcast logic to feed the register value to other

threads, when it is used in subsequent instructions as a source

operand. In our second design, we propose to add a separate small

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICS’13, June 10–14, 2013, Eugene, Oregon, USA.

Copyright © ACM 978-1-4503-2130-3/13/06...$15.00.

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

scalar register file (SRF) to eliminate redundant values in the

vector register file (VRF). For uniform vector accesses, this

approach replaces VRF reads and writes with SRF operations,

thereby lowering the power consumption. Furthermore, the SRF

simplifies the design for the corner case when a uniform vector

register is used as both a source and the destination operand. A

register renaming table and a freelist are introduced to manage the

SRF. Note that although register renaming apparently adds the

complexity of instruction processing, it is done at the warp level,

therefore the overhead is amortized by the high number of threads

(e.g., 32) in a warp.

To detect and eliminate inter-warp redundancy, we leverage the

idea of instruction reuse [19] and propose a warp-level instruction

reuse buffer (IRB). When an instruction hits in the IRB, it skips

execution and directly writes back the results stored in the IRB into

the destination register. To reduce the complexity of the warp-level

IRB, we choose to allow only the instructions, which are detected

as intra-warp uniform, to access it. This eliminates the need for the

IRB to store and compare the input values of all the threads in a warp.

We model our proposed designs in a cycle-accurate GPGPU

architecture simulator and our experimental results show that our

proposed deigns achieve significant energy savings, up to 25.3%

and 12.7% on average, along with performance gains of up to

23.9% and 12.0% on average.

Since GPUs are getting more and more popular in general-purpose

computations, there is a growing concern on reliability [8][18]. We

propose to leverage both intra- and inter-warp uniform vector

instructions for opportunistic reliability enhancement. For intra-

warp uniform vector instructions, we simply use two threads to

carry out the computations and store the two results to provide the

necessary redundancy. For inter-warp uniform vector instructions,

we choose to protect the warp-level IRB with parity bits. Our

results show that our approach achieves 21.1% and 14.1%

reliability coverage for ALUs and register files, respectively, with

no performance penalty and only 0.29% dynamic energy overhead

(or 0.14% in total energy) compared to our proposed designs that

completely eliminate the redundancy from uniform vector

instructions.

The rest of the paper is organized as follows. Section 2 presents the

background and quantifies how often intra- and inter-warp uniform

vector instructions exist in typical GPGPU workloads. Section 3

describes in detail our architectural designs. The experimental

methodology and results are discussed in Section 4 and Section 5,

respectively. Related work is addressed in Section 6. Section 7

concludes the paper.

2. BACKGROUND AND MOTIVATION

Modern GPUs employ the SIMT programming model. A GPU

program, commonly referred to as a kernel, follows the single-

program multiple-data (SPMD) model. A kernel specifies the

workloads of all threads and differentiates them using thread ids.

The threads are organized into a two-level hierarchy. The kernel is

launched to a GPU as a grid of threads, which contains multiple

thread blocks/workgroups. Each thread block/workgroup in turn

contains multiple warps/wavefronts. A warp/wavefront is a group

of threads that are executed in the SIMD manner by sharing the PC.

In GPU hardware, a high number of cores are also organized in a

hierarchy. Each GPU has multiple Streaming Multiprocessors

(SMs) or Compute Units (CUs). Each SM/CU in turn has multiple

streaming processors (SPs)/processing elements (PEs). The

resources in each SM/CU include a vector register file, the shared

memory, and L1 caches. The threads in the same thread

block/workgroup will be executed on the same SM/CU so as to

support synchronization and data exchange among the threads in

the same thread block/workgroup. One SM can host one or more

thread blocks depending on the resource requirement of each

thread block.

In the SIMT model, each thread has its own register state. As a

result, each thread needs to carry out computations even they are

essentially scalar operations. For example, in the code shown in

Figure 1 , we can see that the loop control ‘(int i = 0; i < width;

i++)’ on line 3 is independent on the thread id. As all the threads in

a warp are executed in lock steps, the corresponding instructions to

the loop control will have identical input and output values for all

the threads in the warp. Such value locality among the threads in a

warp has also been observed in [5] and is referred to as uniform

vectors given the similarity between a warp in SIMT architecture

and a vector in vector processors. In this paper, we adopt this term

to indicate that an operand is the same for all the threads in a warp.

For an instruction, if all of its source operands, including the

current active mask, are uniform vectors, it is called a uniform

vector instruction.

Figure 1. A code example to illustrate both intra- and inter-warp

uniform vector instructions.

The code in Figure 1 also shows that besides the identical

computation (or redundancy) among the threads within a warp,

there exist identical computations among different warps. For

example, the computation on line 2 ‘blockIdx.x*blockDim.x’ only

depends on thread block ids. All the warps in the same thread

block will perform the same computation. In addition, the loop

control on line 3 may also result in redundancy across different

warps as long as one warp reaches the same loop iteration before

another leaves it. Due to the commonly used round-robin warp

scheduling policy [11], the warps in a thread block usually make

similar progress. As a result, these warps tend to carry out identical

loop iterator update and bound check operations. To differentiate

identical computations within a warp and across multiple warps,

we refine the definition of uniform vector instructions and refer to

them as intra-warp uniform vector instructions and inter-warp

uniform vector instructions.

In the current GPU architectures, both intra- and inter-warp

uniform vector instructions result in redundant computations as

well as redundant register file reads and writes since the exactly

same computation is repeated for many threads in the same warp

or different warps. As a warp/wavefront contains 32/64 threads in

NVIDIA/AMD GPUs, one intra-warp uniform vector will lead to

31/63 redundant computations. To address this issue, a scalar unit

is added to each CU in AMD’s latest Graphics Core Next (GCN)

architecture [1] and it relies on the compiler to identify the uniform

vector instructions and to encode them as scalar instructions to be

executed in the scalar unit. The scalar unit in AMD’s GCN

architecture has a scalar register file, which can forward scalar

register values to the SPs/PEs when they are used as source

1. __global__ void foo (float *A, float *B, float *C, int width) {

2. int idx = (blockIdx.x*blockDim.x+threadIdx.x);
3. for (int i = 0; i < width; i++) {

4. a = A[i+idx*width];

5. if(B[idx] > 0)
6. b = C[i];

7. else

8 b = 0;

9. }…}

operands for vector instructions, and a scalar ALU to perform

scalar computations.

Although the GCN architecture reduces redundant operations,

several limitations remain. First, the scalar instructions are

generated using the compiler and there are fundamental limitations

of static analysis by the compiler. For example, the if-statement ‘if

(B[idx]>0)’ on line 5 in Figure 1 may result in control divergence

among the threads in a warp, i.e., some threads satisfy the

condition while others do not. Therefore, the compiler cannot

classify the operations ‘b = C[i]’ on line 6 and ‘b = 0’ on line 8 as

scalar operations although they do not have data dependence on the

thread id. In other words, the control dependency on thread id

makes the static analysis very challenging. Second, the scalar unit

incurs additional hardware cost and the dedicated scalar

instructions are not compatible with previous GPUs with the same

vector instruction set architecture (ISA). Third, the AMD GCN

cannot handle inter-warp uniform vectors since the scalar

instructions are embedded in the same instruction stream as vector

operations, which are executed separately for each warp.

Before discussing our proposed solution, we quantify how often

uniform vector instructions present in typical GPGPU workloads.

We profile a set of applications using GPGPUSim [2] with the

detailed methodology presented in Section 4. Our results are

shown in Figure 2. In this experiment, for each vector instruction

that is not control divergent, we consider that there are 32 scalar

operations, one for each thread due to the warp size of 32. For each

intra-warp uniform instruction, we consider that there are 31

redundant operations. For each inter-warp uniform vector

instruction being detected, we consider that there are 32 redundant

operations when we focus only on inter-warp uniform vector

instructions. When we target at both types of uniform vector

instructions, for each inter-warp uniform vector instruction being

detected, we consider that there is 1 redundant operation since 31

of them are already counted as intra-warp redundant ones. Then,

we normalize the numbers of redundant operations to the total

number of dynamic scalar instructions and report the ratios in

Figure 2. The reason why we do not use the number of vector

instructions is due to the presence of control divergence. In such a

case, the number of scalar instructions captures the application’s

computational needs more accurately than the number of vector

instructions. Note that in our redundant instruction statistics, we do

not include branch instructions as the PC is already updated at a

per-warp basis in SIMT architectures. Memory instructions are not

considered as redundant operations either as we assume the

memory coalescing logic and miss status handling registers

(MSHRs) already detect/merge redundant memory requests.

 Figure 2 Percentage of redundant operations resulting from intra-and

inter-warp uniform vector instructions.

As we can see from Figure 2, among the 13 applications under our

study, there exist significant redundant operations. The

contribution from intra-warp uniform vector instructions can be as

high as 41.5% and 18.1% on average using the geometric mean

(GM). The inter-warp uniform vector instructions also result in up

to 28.5% and an average of 8.9% redundant operations. When both

types are combined, up to 42.4% and an average of 18.4% of all

scalar operations are redundant. Although the difference between

intra-warp and combined intra- and inter-warp results is apparently

small, it does not mean that the contribution from inter-warp

uniform vector instruction would be low. The reason is that we

only count 1 redundant scalar operation for each inter-warp

uniform vector instruction as discussed above. As shown in

Section 5, eliminating redundancy from inter-warp uniform vector

instructions can lead to significant performance gains and energy

savings even after we already leverage intra-warp uniform vector

instructions.

3. ARCHITECTURE DESIGN

The significant amount of uniform vector instructions presents an

interesting opportunity for optimizing SIMT architectures. First,

eliminating redundant computations and register file accesses can

reduce dynamic power consumption. Second, when the number of

SPs in an SM is smaller than the warp size, converting an intra-

warp uniform vector instruction to a scalar operation can improve

the instruction issue rate so as to improve the performance.

Considering a warp size of 32 and a SIMD width of 8 (i.e., 8 SPs

per SM), it takes 4 cycles to issue a regular vector instruction. As

discussed in Section 3.1.1, by converting a uniform vector

instruction into a scalar one, we can increase the instruction issue

rate to 1 instruction per cycle as only one SP is needed to carry out

the computation. Third, the execution of any inter-warp uniform

vector instruction can be skipped after it is detected, resulting in

performance enhancement due to the reduced execution latency.

Fourth, redundant computations and data storage can also be

leveraged for hardware error detection to opportunistically

improve the reliability. In this section, we present our proposed

architecture design to achieve these goals. Figure 3 shows the

baseline architecture of an SM for our discussion.

Figure 3. The baseline architecture of an SM. The number of EX stage

depends on the instruction latency.

As shown in Figure 3, there is a warp scheduler in an SM and it

issues instructions from the ‘ready’ warps, meaning that they have

all the source operands ready for their current instructions. During

the register read (RR) stage, the multi-lane vector register file

(VRF) is accessed to provide the source operands for each thread

in the warp. The aggregated registers from all the threads in a warp

can be viewed as a vector register. For example, for an instruction

‘ADD r1, r2, r3’, the register r1 for all the threads in warp can be

viewed as a vector register VR1, which contains 32 scalar

registers. Here, we use the notation ‘VR1.i’ to denote the scalar

register r1 of the ith thread in a warp. Depending on the number of

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

u
n

if
o

r
m

 i
n

st
r
u

c
ti

o
n

r
a

ti
o

Intra_warp Inter_warp Combined

Warp scheduler

 PC decoded insn

Insn.

Buffer
Decoder

...

...

Vector Register File

IF ID RR EXn WB

id

SP

VR

x

SPs (denoted as ‘NumSP’) in an SM, which are used for executing

instructions from a warp, the warp scheduler issues one instruction

to the SPs every ‘warpsize/NumSP’ cycles. In NVIDIA GTX285

GPUs, NumSP is 8, and in GTX480 (aka Fermi architecture),

NumSP is 16 as each warp occupies 16 SP lanes. Typically, the

threads in a warp are assigned to the SPs in a round-robin manner.

In other words, if NumSP is 8, the first SP (i.e., SP0) executes the

instruction for thread 0, 8, 16, 24; the second SP executes thread 1,

9, 17, 25; etc. Also, the VRF lane in each SP provides the

corresponding register operands. For example, with 8 SPs in an

SM, the VRF lane in SP0 provides VR1.0, VR1.8, VR1.16, and

VR1.24. The warp id in the warp scheduler is used to map the

same architectural registers in different warps into different

physical vector registers.

3.1. Exploiting Intra-Warp Uniform Vector

Instructions

To detect intra-warp uniform vectors, we start with the instruction

decode (ID) stage in the GPU pipeline. During the ID stage, an

instruction’s source operands are checked to see whether they are

uniform vectors. If an operand is an immediate or a special register

used for thread id independent information such as thread block

dimensions, it is detected as a uniform vector. An instruction is

detected as a uniform vector instruction if all its source operands

are uniform and the current active mask is all 1’s, indicating that

the instruction is not under a control divergent path. In this case,

the destination register will be a uniform vector. Next, we propose

two architectural designs to implement the propagation of uniform

vectors. The two designs differ in where to store uniform vectors.

One reuses the VRF and extends it with token bits. The other

introduces a small scalar register file (SRF) to replace VRF

accesses with SRF accesses.

3.1.1. Token-based design
In this design, we add a token file, which contains 1 token bit for

each vector register. A token bit is set in two scenarios: (1) when a

uniform vector instruction is detected and is updating its

destination vector register, and (2) when the value to be written

back is from the broadcast path even the instruction is not yet

detected as uniform. The broadcast path, which is used for

accessing the same address in either shared memory or global

memory, ensures that all the threads in the warp will have the same

value. A token bit is reset when the corresponding vector register is

redefined by a regular (i.e., non-uniform) vector instruction.

Figure 4. Reusing the existing broadcast logic to feed the scalar value

to multiple SPs.

The token file will be accessed during the ID stage to determine

whether an instruction is a uniform vector one. If so, once this

instruction is issued, it does not need to update all the 32 scalar

registers in the destination vector register. Instead, updating one of

them is sufficient. As this vector register can be used as a source

operand of a non-uniform vector instruction, we add a MUX to

reuse the existing broadcast bus, as shown in Figure 4, to provide

the data. This way, an intra-warp uniform vector instruction is

essentially converted to a scalar one. Compared to a regular vector

instruction, it saves (warpsize – 1) computations as well as the

associated read and write accesses to the VRF lanes.

Another important advantage of converting a uniform vector

instruction into a scalar one is the opportunity to improve

instruction issue rate. As our uniform vector instruction detection

happens in the ID stage, the warp scheduler can increase the issue

rate from one per ‘warpsize/NumSP’ cycle to one every cycle for

uniform vector instructions. In other words, after a uniform vector

instruction, which is converted to a scalar one, is issued, the warp

scheduler can issue another ready instruction in the next cycle.

Although the token-based design is relatively straightforward,

there are several corner cases that need to be carefully considered.

First, when a uniform vector register is used as both a source and

the destination register, such as in the case of ‘VR1 = VR1 + VR2’

where the token bit of VR1 is set but the token bit of VR2 is not.

Depending on the number of SPs in an SM, the source scalar value

may be overwritten before its due time. For example, assuming 8

SPs in an SM, threads 0-7 in the warp will execute the instruction

before other threads. If the scalar value of the uniform vector VR1

is stored in VR1.0 (i.e., the register for the first thread in the warp),

this value (VR1.0) may be updated with ‘VR1.0+VR2.0’ before it

is used for the remaining threads, e.g., thread 31 ‘VR1.31 =

VR1.0+VR2.31’. To resolve this issue, we propose to store the

scalar value of a uniform vector VRx in VRx.N, where N is

determined as ‘N = warp size – NumSP’. In the case of NumSP

being 8, VR1.24 is used to store the scalar value of the uniform

vector register VR1. This ensure that there is no write-after-read

data hazard for instructions like ‘Add VR1, VR1, VR2’ as thread

24 is among the last patch of threads to be executed in a warp.

When there are as many SPs as the warp size, all the threads in a

warp will be executed at the same time, this hazard disappears

naturally and the formula can still be used to specify VRx.0 to be

used for the scalar value. Note that for the instruction ‘Add VR1,

VR1, #2’ with the token bit set for VR1, there is no hazard since

this instruction will be detected as a uniform vector instruction.

The token bit will remain set and only the ALU in SP0 will be used

to carry out the computation (VR1.24 = VR1.24 + #2).

Second, control divergence complicates the processing of uniform

vectors. Consider the case with the instruction ‘VR1 = VR1 + 2’

with the token bit of VR1 set and the active mask indicates that

only threads 24-31 are to be executed in a warp. Although our

intra-warp uniform vector instruction detection logic will detect it

as a non-uniform vector instruction due to the condition on the

active mask, there still is a correctness issue. The reason is that the

scalar value VR1.24 will be overwritten with ‘VR1.24+2’ and for

threads 0 to 23, the register VR1’s value would be corrupted. To

resolve this problem, we propose the following copy-on-write

solution. When the warp scheduler finds that the current instruction

is under a control divergent path by checking the active mask and

the instruction has its destination register being the same as one of

its source uniform vector operands, the warp scheduler inserts a

copy instruction, which explicitly copies the scalar value of the

uniform vector to all of its scalar registers. This way, all the

threads have their private copy of the register and the correctness is

ensured. As we show in Section 5.1, this copy-on-write happens

fairly infrequently, resulting in negligible performance overhead.

...

 ...

Broadcast bus

SP

MUX

Scalar value

3.1.2. Scalar register file based design
In this design, we introduce a separate scalar register file (SRF) to

store the scalar value of uniform vectors. The intra-warp vector

instruction detection logic is the same as the token-based design

described in Section 3.1.1. The advantage of the SRF-based design

over the token-based design is that for uniform vectors, it replaces

the vector register file (VRF) accesses with SRF accesses. In state-

of-art GPUs, an SM typically has a very large vector register file

(e.g., 64/128 kB in GTX285/GTX480 GPUs, corresponding to

16k/32k scalar registers or 512/1024 vector registers). Each access

incurs nontrivial energy consumption. Using a small scalar register

file reduces the energy consumption at a small area overhead.

To manage the SRF, we add a freelist and a renaming map table to

dynamically allocate and free the scalar registers in the SRF. In the

ID stage, the renaming map table is accessed to see whether its

source vector register operands are remapped to scalar registers.

For a detected uniform vector instruction, its destination vector

register will be renamed by obtaining a scalar register from the

freelist and updating the renaming map table accordingly. Decoded

and renamed instructions will be kept in the warp scheduler

waiting to be issued to the SPs. During instruction execution, the

renamed register operands specify whether the SRF or the VRF is

to be accessed. For an intra-warp uniform vector instruction, both

its source and destination registers will be from the SRF. In this

case, the ALU of the first SP is reused to carry out the

computation. The register renaming logic may affect the timing of

the ID stage and lead to an additional register renaming stage. Such

a new pipeline stage at the frontend will not increase pipeline

hazards, thereby having very limited performance impact as

confirmed in our experiments.

The SRF is also connected to the existing broadcast path to handle

the case when a scalar register is needed for a regular vector

instruction. For a regular vector instruction, its destination vector

register number will be used to check the renaming map table at

the ID stage. If this vector register is currently being mapped to a

scalar register, the mapping information will be cleared and the

scalar register is pushed back to the freelist.

Our SRF-based design simplifies the processing of the corner case

where the destination and a source operand share the same register,

like in the case of ‘VR1 = VR1 + VR2’ where VR1 is currently

mapped to a scalar register, e.g., SR4, but VR2 is not. With the

renaming process, the instruction becomes ‘VR1 = SR4 + VR2’.

During execution, the value of SR4 is broadcasted to all the SPs

from the SRF. Since SR4 will not be overwritten during the

execution, the correctness is ensured.

For the corner case of control divergence, we resort to the same

copy-on-write solution as in our token-based design when the

destination operand shares the same register with a source operand,

which is currently mapped to a scalar register. In other words, for

the instruction ‘VR1 = VR1 + 2’ under a control divergent path

with VR1 being currently mapped a scalar register SR5, the warp

scheduler will insert a copy instruction ‘VR1 = SR5’, before

issuing the instruction ‘VR1 = VR1 + 2’.

Note that our renaming process is based on physical vector register

numbers. For the same architectural register, different warps map

them to different physical vector registers based on their warp ids.

Therefore, there is no conflict among the warps when the same

registers are used.

Compared to the token-based design, the disadvantage of the SRF-

based design is that due to the SRF’s limited size, when all the

scalar registers are used up, we cannot convert newly detected

intra-warp uniform vector instructions to scalar ones until a scalar

register is freed to the freelist. We study this structural hazard

effect in Section 5.3.

3.2. Exploiting Inter-Warp Uniform Vector

Instructions

As shown in Section 2, different warps may perform the same

computations. To exploit such inter-warp uniform vector

instructions, we propose to leverage the idea of instruction reuse

[19], which was proposed to reduce repeating computations in

CPU architecture. In each SM, we add an instruction reuse buffer

(IRB), which is a cache structure with the partial PC as the tag.

Each entry in the data store includes opcode, three source operand

values and one destination operand value. Here, we focus on

instruction reuse only for intra-warp uniform vector instructions.

Otherwise, for an arbitrary vector instruction, we have to compare

the source operands for all 32 threads with those stored in the IRB,

which would incur too much overhead. Partial PCs are used as tags

to reduce the power consumption of fully associative searches. To

avoid possible aliases due to partial PC match, we include the

opcode field in the data store since identical inputs and opcode

ensure the same outputs. Therefore, a hit in IRB means that both

the partial PC and opcode match.

The IRB is accessed during the Register Read (RR) stage. If there

is a hit in the IRB, the source operand values from the IRB will be

compared with those read from either the first lane of the VRF,

when our token-based design is used, or the SRF, when our SRF-

based design is used. If all the source operands match, the

execution stage will be skipped and the destination operand value

from the IRB will be used to update either the first lane of the VRF

or the SRF. If the source operand values do not match, the

instruction will be executed in the first SP and the result will be

used to update the corresponding IRB entry. If the PC misses in the

IRB, the least-recently-used (LRU) replacement policy is used to

find a victim entry in the IRB.

3.3. Leveraging Uniform Vector Instructions

for Reliability Enhancement

As discussed in Section 1, reliability is an important issue for

general purpose computation on GPUs (GPGPU). Both intra- and

inter-warp uniform vector instructions can be leveraged for

hardware error detection. For intra-warp uniform vector

instructions, we choose to use two vector lanes (or two SPs) to

carry out the computation and compare them before updating the

register file. Furthermore, we also store two copies of a scalar

value to protect the VRF against errors. In our token-based design,

the two copies can be stored in the first two lanes of the VRF. For

our SRF-based design, one copy is stored in the SRF and the other

is stored in the first lane of the VRF. Adding parity bits to each 32-

bit scalar value is another option to detect errors in either the VRF

or the SRF. Redundant data storage, however, adds error correction

capability when used together with the parity protection: when two

copies differ, the parity bit detects which one is uncorrupted.

For inter-warp uniform vector instructions, we propose to protect

the IRB with parity bits so as to protect the ALUs in an indirect

manner. In this scheme, we add 1 parity bit for each IRB entry. For

an instruction with uniform vector operands, if its PC hits in the

IRB and an error is detected in the IRB entry using the parity bit,

the instruction will be executed and the IRB will be updated

accordingly. When there is no error detected in IRB, the ALU

computation is skipped. This way, the ALUs become less

vulnerable to errors as they are being used less often to carry out

computations.

Since redundant computations or parity bit checks are performed in

parallel with original computations, there is no performance

impact. The additional energy spent on redundant computations is

analyzed in Section 5.4.

4. EXPERIMENTAL METHODOLOGY

We modified GPGPUsim V3.0.1 [2] to model our proposed

schemes to exploit intra- and inter-warp uniform vector

instructions. Our baseline GPU configuration, modeled based on

NVIDIA GTX285 GPUs, is shown in Table 1. The default SIMD

width (or NumSP) is 8 and we vary this parameter in Section 5.3.

In our experiments, we use an 8-entry IRB for inter-warp uniform

vector instructions. Each IRB entry contains a 10-bit partial PC as

the tag, three 32-bit source values, one 32-bit destination value, a

3-bit LRU field, and an 8-bit opcode field. In total, the hardware

overhead of an instruction reuse buffer is 8*(10 + 3*32 + 32 + 3 +

8) = 1192 bits. For our SRF-based design, a SRF of 128 scalar

registers (= 128*32 = 4096 bits) and a renaming table of 512

entries (512*7=3584 bits) are used. Compared to other resources

shown in Table 1, such hardware overhead is quite limited. We

examine the impact of these parameters in Section 5.3.

Table 1. The baseline GPU configuration.

Shader core frequency 1.3GHz

Number of SMs 30

Warp size 32

SIMD width(i.e., NumSP) 8 /16

Max. num. of thread

blocks/threads per SM

8 thread blocks/1024 threads

Register file 64KB

Shared memory 16 KB

L1 cache 8-way set assoc. 64B cache block

(48KB in total)

L2 Cache 8-way set assoc. 64B (256kb per
MEM channel)

Number of MEM channels 16

GDDR Memory 8 banks, 800Mhz, total

bandwidth: 200GB/S, TCL =
10, TRP = 10, TRCD = 12

Table 2. Area and energy consumption of the proposed components

 Area

(mm2)

Static Power

(W)

Energy per

access/operation (J)

VRF 2.44 0.09 2.46/5.82 E -12

SRF 0.005 0.001 1.76/1.62 E -13

To analyze power/energy consumption, we instrumented the

GPGPUsim to collect the statistics including vector register file

accesses, ALU operations, different types of memory accesses, the

number of IRB accesses and the number of SRF accesses. We then

modified McPAT [14] using the similar approach to GPUWattch

[13] to compute the area overhead and energy/power consumption.

The resulting area and the energy per access of the VRF and the

SRF using the 40nm technology are shown in Table 2. The energy

consumption for different ALU operations is extracted from

GPUWattch.

We select 13 benchmarks from Nvidia CUDA SDK [17], the

Rodinia benchmark suite [3] and GPGPUsim to cover a wide range

of application domains. The inputs to the benchmarks, the total

number of scalar instructions as well as the baseline performance

measured with instructions per cycle (IPC) are shown in Table 3.

Table 3. The benchmarks used for evaluation.

Benchmarks Inputs Total inst. IPC

N-Queen solver (NQU) [2] 32 0.78M 89.3

Vector add (VA) [17] (512, 512) 5.5M 207.5

Fast Fourier Trans. (FFT) [17] (128, 128) 14M 164.1

Convolution (CONV) [17] (512, 512) 157M 220.2

Breadth first search (BFS) [2] 4096 11M 12.2

Matrix Multiply (MM) [17] (128,80) 2M 135.2

MersenneTwister (MT) [17] 48000000 1478M 122.9

ScalarProduct (SP) [17] 524288 28M 177.1

Ray Tracing (RAY) [2] (512, 512) 123M 193.6

dxtc (DT) [17] 1024 573M 215.6

HeartWall(HT) [3] (512,1) 4M 169.8

HotSpot (HS) [3] (512, 2, 2) 103M 182.3

PathFinder(PF) [3] 100000 582M 209.0

5. EXPERIMENTAL RESULTS

5.1. Performance Impact from Eliminating

Uniform Vector Instructions
In the first experiment, we examine the performance impact of

eliminating both intra- and inter-warp uniform instructions. As we

propose two designs for intra-warp uniform instructions, we

present the results in Figures 5 and 6, for the token-based design

and the SRF-based design, respectively. In either figure, we also

report the cases when only intra-warp uniform vector instructions

are exploited (labeled ‘Intra’), when only inter-warp uniform

vector instructions are exploited (labeled ‘Inter), and when both are

exploited (‘labeled ‘Combined’). When exploiting only inter-warp

uniform vector instructions, either the token-based design or the

SRF-based design is still used for detecting intra-warp uniform

vector instructions. However, if such an intra-warp uniform vector

instruction does not hit in the IRB, it is not converted to scalar

operations so as to isolate the performance impacts.

Figure 5. Performance gains from eliminating uniform vector

instructions. The token-based design is used to handle intra-warp

uniform vector instructions.

Figure 6. Performance gains from eliminating uniform vector

instructions. The SRF-based design is used to handle intra-warp

uniform vector instructions.

100%
102%
104%
106%
108%
110%
112%
114%
116%
118%
120%
122%
124%

Normalized Performance
Intra Inter Combined

100%
102%
104%
106%
108%
110%
112%
114%
116%
118%
120%
122%
124%

Normalized Performance
Intra Inter Combined

We first examine the performance impact from exploiting intra-

warp uniform vector instructions. As discussed in Section 3.1,

converting an intra-warp uniform vector instruction to a scalar one

can improve the instruction issue rate to one scalar instruction

every cycle. In our baseline GPU model, the warp scheduler in an

SM has an issue rate of one vector instruction every 4 cycles.

Therefore, for an application with sufficient thread-level

parallelism (TLP), eliminating more intra-warp uniform vector

instructions can result in more independent instructions being

issued more promptly, thereby achieving higher performance. This

is the case for the benchmarks CONV, MT, SP, DT, HS, and PF.

On the other hand, when the performance of a workload is limited

by the off-chip memory access bandwidth, as for the benchmarks,

VA, FFT, BFS and HT, the performance gains are limited although

VA and FFT have a high amount of redundant operations due to

intra-warp uniform vector instructions, as shown in Figure 2. For

the benchmark, RAY, many of its intra-warp uniform vector

instructions are long latency ones. Converting them to scalar ones

will not reduce such latency and their dependent instructions are

still stalled. Therefore, its performance gain (8.6%), although not

trivial, is not proportional to its high ratio of redundant operations

(34.5%) shown in Figure 2. The benchmarks, NQU and MM have

a relatively small ratio of intra-warp uniform vector instructions.

Consequently, their performance gains are also small.

Between the token-based and the SRF-based designs, most

benchmarks show similar performance gains from eliminating

intra-warp uniform vector instructions, except a few like CONV,

SP, and PF. The reason is that the detected intra-warp uniform

instructions in these benchmarks define many different vector

registers. Therefore, there is a high pressure on the SRF. Once the

SRF is used up, subsequently detected intra-warp uniform vector

instructions are not utilized. In Section 5.3, we show that these

benchmarks require a 256-entry SRF to achieve similar

performance to the token-based design. On average using GM,

leveraging intra-warp uniform vector instructions using the token-

based design and the SRF-based design achieves 7.4% and 6.7%

performance improvement, respectively.

For inter-warp uniform vector instructions, our proposed IRB can

reduce the execution latency as well as improve the instruction

issue rate, as discussed in Section 3.2. Among the benchmarks,

FFT, RAY, HS and PF, show impressive performance gains as

they have significant amount of inter-warp uniform vector

instructions and most of them are long latency ones. In general, the

performance gains closely follow the ratio of the inter-warp

uniform vector instructions, shown in Figure 2. The only exception

is VA. Although VA has a high inter-warp uniform vector

instruction ratio of 28.5%, the performance gain from skipping

them is 7.3%. The reason is that most of these instructions are

short latency ALU operations such as SHL (shift left) and AND,

while the overall performance for VA is dominated by memory

bandwidth. As discussed in Section 3.2, the IRB is only accessed

when an instruction has been detected as an intra-warp uniform

vector instruction. Therefore, different designs to detect intra-warp

uniform vector instructions also have an impact on IRB

effectiveness. As the token-based design captures more intra-warp

uniform vector instructions, there are more hits in the IRB, thereby

performing better than the SRF-based design. On average,

exploiting only inter-warp uniform vector instruction achieves the

performance gains of 8.1% and 7.2%, using the token-based design

and the SRF-based design, respectively.

When eliminating both intra- and inter-warp uniform vector

instructions, the performance gains are typically smaller than the

sum of those by exploiting the two separately. The reason is that

IRB exploits part of the intra-warp uniform vector instructions.

Overall, as shown in Figures 5 and 6, our proposed token based

and SRF-based designs improve the performance by up to 23.9%

(PF), and 12.0% and 10.7% on average, respectively. Note that for

benchmarks CONV, DT and PF, the resulting performance actually

exceeds the theoretical maximum IPC (240 = 8 SP per SM * 30

SMs). The reason is that our scheme only takes 1 cycle to

‘execute’ an inter-warp uniform vector instruction for 32 threads,

thereby having an IPC of 32. Similarly, for an intra-warp uniform

vector instruction, it takes one cycle to issue rather than 4 cycles,

which also essentially increases the IPC from 8 to 32 for this cycle.

As discussed in Section 3, in the case of a uniform vector register

re-define under a control divergent path, we resort to our proposed

copy-on-write solution. This leads to one extra copy instruction to

be issued and executed. Next, we examine how often such cases

happen. In Figure 7, we report the ratio of the overall number of

copy instructions inserted over the overall number of dynamic

vector instructions. From the figure, we can see that many

benchmarks have no such cases. The benchmark FFT has the

highest ratio of 0.044% and the average is 0.010%. Therefore,

there is no noticeable impact from these extra copy instructions.

Figure 7. The ratio of extra copy instructions introduced over the

overall number of dynamic vector instructions.

5.2 Energy Savings from Eliminating Uniform

Vector Instructions

Our proposed schemes achieve energy savings in three ways: (a)

reducing execution time results in static energy savings, (b)

converting an intra-warp uniform vector instruction to a scalar one

eliminates (warpsize – 1) redundant computations as well as

associated register file accesses, and (c) eliminating an inter-warp

uniform vector instruction eliminate 1 computation. We first look

into the dynamic energy consumption and show the normalized

results over the baseline GPU in Figure 8 for both the token-based

design (‘labeled ‘token’) and the SRF-based design (labeled

‘SRF’).

Figure 8. Dynamic energy consumption of our approaches normalized

over the baseline GPU.

From Figure 8, we can see that eliminating both intra- and inter-

warp redundant operations results in an average of 14.7% and

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%
The ratio of extra copy instructions inserted

30%
40%
50%
60%
70%
80%
90%

100%
Normalized dynamic energy consumption

SRF Token

13.6% dynamic energy reduction using the SRF-based design and

the token-based design, respectively. The SRF-based design saves

more dynamic energy than the token based design. The reason is

that the SRF-based design replaces VRF accesses with SRF

accesses. Among the benchmarks, the benchmark, VA, has the

highest dynamic energy reduction (36.0%) due to its high ratio

(42.4%) of redundant operations shown in Figure 2.

The structures that we introduced for our approaches, including the

8-entry IRB and the 128-entry SRB, are quite small, less than

0.01% based on the area estimation using McPAT, compared to

existing the 8 ALUs, the VRF, and caches in an SM. Therefore, the

static energy savings follows very closely with the execution time

reduction or performance gains. As a result, we only show the total

energy consumption for our two designs in Figures 9 and 10.

Similar to our performance results, we also report the normalized

energy consumption for the case when only the intra-warp uniform

vector instructions are exploited (labeled ‘Intra’), and when only

the inter-warp uniform vector instructions are exploited (labeled

‘Inter’), and when both types of uniform vector instructions are

exploited (labeled ‘Combined’).

Figure 9. Normalized total energy consumption when using the token-

based design to handle intra-warp uniform vector instructions.

Figure 10. Normalized total energy consumption when using the SRF-

based design to handle intra-warp uniform vector instructions.

From Figures 9 and 10, we can see that the intra-warp uniform

vector instruction removal reduces the total energy consumption by

9.8% and 10.3% on average, for the token-based design and the

SRF-based design, respectively. Eliminating inter-warp uniform

vector instructions reduces the total energy consumption by 8.0%

and 7.6%, for the two designs, respectively. When both intra- and

inter-warp uniform vector instructions are exploited, the token

design shows slightly higher energy saving (12.7%) than the SRF

design (12.2%).

5.3. Design Space Exploration

In our first experiment, we analyze the impact of the SRF size in

the SRF-based design. We vary the SRF from 16to 256 registers.

The results in Figure 11 show that for many of the applications

including NQU, VA, FFT, BFS, MM, MT, RAY and DT, a SRF

with 64 entries captures most of the uniform vector instructions.

For remaining workloads, including CONV, HT, HS SP, and PF,

the performance improves as we increase the number of entries. A

256-entry SRF performs almost the same as the unlimited one,

which is equivalent to our token-based design.

Figure 11. The performance impact of the SRF size.

In our second experiment, we analyze the performance impact of

IRB. We vary the IRB size from 2 to 16 and the results in Figure

12 show that the average performance gains of the token-based

design are 10.8%, 11.5%, 12.0% and 12.3% for the IRB size of 2,

4, 8 and 16, respectively. Therefore, we choose the reuse buffer

size as 8 as the cost effective solution. The key reason why small

IRBs (even with 2 entries) work well is that different warps make

similar progress under the round-robin scheduling policy. After

one inter-warp uniform vector instruction is detected from a

leading warp and stored in the IRB, it will be quickly used by other

warps. It is seldom the case that the warps have such different

execution speeds that different warps detect and use a highly

different set of inter-warp uniform vector instructions.

Figure 12. The performance impact of the IRB size.

In our third experiment, we investigate the impact of SIMD width

(i.e., NumSP) on the effectiveness of our proposed approaches. In

order to keep the same ALU-to-MEM bandwidth ratio when we

increase NumSP from 8 to 16 (i.e., there are 16 SPs in each SM),

we reduce the number of SMs from 30 to 15. The performance

gains from eliminating only intra-warp uniform vector instructions

(labeled ‘Intra’), from eliminating only inter-warp uniform vector

instructions (labeled ‘Inter’), and eliminating both types of uniform

vector instructions (labeled ‘Combined’) using the token-based

design are shown in Figure 13. Here, the performance

improvement is over the GPU with 15 SMs and 16 SPs per SM.

Figure 13. The performance improvement from eliminating uniform

vector instructions on a GPU with 15 SMs and 16 SPs per SM.

From Figure 13, we can see that when NumSP is increased to 16,

the performance gains from eliminating intra-warp uniform vector

instructions become marginal. There are two reasons for this

impact. First, with NumSP increased from 8 to 16, the baseline

instruction issue rate is improved from one instruction every four

60%
65%
70%
75%
80%
85%
90%
95%

100%
Normalized total energy consumption

Intra Inter Combined

60%
65%
70%
75%
80%
85%
90%
95%

100%
Normalized total energy consumption

Intra Inter Combined

100%
102%
104%
106%
108%
110%
112%
114%
116%
118%
120%
122%
124%

Normalized Performance
SRF_16
SRF_32
SRF_64
SRF_128
SRF_256
Unlimited

100%

105%

110%

115%

120%

125% Normalized Performance
IRB_2 IRB_4 IRB_8 IRB_16

95%
100%
105%
110%
115%
120%
125%

Normalized Performance

Intra Inter Combined

cycles into one instruction every two cycles. Although converting

an intra-warp uniform vector instruction into a scalar one can

improve the issue rate to one instruction every cycle, the room for

improvement is reduced. Second, as each SM has more SPs, it

requires more concurrent threads to run on each SM to fully utilize

the increased number of SPs. Therefore, the insufficient TLP

becomes the performance bottleneck rather than the instruction

issue rate. On the other hand, with increased NumSP, we are able

to achieve higher performance benefits from exploiting inter-warp

uniform vector instructions for most benchmarks. The reason is

that with more SPs, each SM requires more concurrent threads to

hide execution latencies. For example, considering an instruction

with 4 cycle latency, with 8 SPs per SM, the execution latency can

be completely hidden when there is just 1 warp running on the SM.

With 16 SPs per SM, in comparison, it requires 2 warps to hide the

4 cycle execution latency. With our IRB approach, if an instruction

hits in the IRB, its execution can be skipped and the latency is

reduced to 1 cycle. Therefore, it lowers the requirement on TLP

and becomes more beneficial. One interesting anomaly is the

benchmark MT, for which exploiting inter-warp uniform vector

instructions leads to a 3.1% performance degradation. We looked

into this benchmark and discovered that the performance loss is

due to longer memory access latency resulting from decreased

DRAM row access locality [12]. The DRAM row access locality

means the average number of row accesses after a row is activated.

The reason for such reduced row access locality is due to the fact

that with our IRB approach, some warps, if their instructions hit in

the IRB, make faster progress than others. Combined with the

round-robin scheduling policy, the memory access sequence from

different warps is altered, leading to such an anomaly.

Overall, when NumSP is 16, an average of 0.3%, 8.2%, and 8.5%

performance improvement is achieved from eliminating only intra-

warp uniform vector instruction, from eliminating only inter-warp

uniform vector instruction, and from eliminating both types of

uniform vector instructions, respectively.

We also study the energy savings when NumSP is increased to 16.

Our results show that dynamic energy savings are not affected

when NumSP is increased. It is expected as changing NumSP does

not affect the amount of the redundant operations from uniform

vector instructions. Static energy savings, in contrast, are directly

proportional to execution time reduction. On average, with NumSP

as 16, our token-based approach show an 13.6% reduction in

dynamic energy, an 7.8% reduction in static energy, and a 10.0%

reduction in total energy.

5.4. Leveraging Uniform Vector Instructions

for Reliability Enhancement

In this experiment, we study the effectiveness of the opportunistic

reliability improvement approach discussed in Section 3.3. Figure

14 shows how often the ALUs can be protected against hardware

errors during execution. The reliability coverage is computed as

the average ratio of (number of scalar ALU operations that are

protected using redundancy from uniform vector instructions /

overall number of scalar ALU operations). In Figure 14, we

present the results for both the token-based design and the SRF-

based design. Redundancy from both intra- and inter-warp uniform

instructions is exploited in either design.

From Figure 14, we can see that either design is able to protect a

significant amount of ALU operations, up to 42.9% (VA) and an

average of 19.5% or 21.1%. The token-based design has higher

coverage for CONV, SP, and PF, for the same reason as discussed

in Section 5.2 that these applications require a SRF with more than

128 scalar registers. Therefore, it has higher coverage on average.

Figure 14. Reliability coverage of ALUs by leveraging the redundancy

in uniform vector instructions.

We also study the reliability coverage for the data stored in the

VRFs. The coverage is computed as follows. In each cycle, we

identify the live vector registers, meaning that they will be used

later on as source operands, in a VRF and determine how many

live vector registers are protected using the redundancy provided

from detected uniform vector instructions (i.e., identical copies of

the same data). The average ratio of two accumulated numbers,

i.e., the total number of protected live vector register / the total

number of live registers, across multiple SMs throughout the

execution time, is the reported coverage shown in Figure 15.

Figure 15. Reliability coverage of vector register files by leveraging the

redundancy in uniform vector instructions.

From Figure 15, we can see that the token-based design can protect

up to 40.0% and 14.1% on average of the live registers in VRFs.

For the benchmark BFS, although there exists a non-trivial amount

of uniform vector instructions as shown in Figure 2, its reliability

coverage for the VRFs is minimal (0.1%). The reason is that most

of the uniform vector instructions in BFS define and redefine a

very limited set of the vector registers. The small number of

protected vector register combined with short live time result in

such a low coverage. For the benchmarks MM and MT, the

protected vector registers have relatively long live time. Therefore,

their reliability coverage for VRFs is higher than it for ALUs

shown in Figure 14. In contrast, for the benchmark VA, although it

has very high ALU coverage, the coverage for VRFs is lower due

to the short live time of the protected vector registers. The SRF-

based design has lower VRF reliability coverage than the token-

based design for the same reason as discussed above for ALU

reliability.

As discussed in Section 3.3, the redundancy checks have no

performance overhead. Therefore, we focus on the dynamic energy

consumption impact from such redundant computations and

storage. The results are shown in Figure 16 for both the token

based and the SRF-based designs compared to the same

approaches without redundancy checks.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Reliability coverage for ALUs

SRF
Token

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Relaibility coverage for the vector register files
SRF
Token

Figure 16. The overhead for redundancy checks in dynamic energy

consumption.

From Figure 16, we can see that either the token-based design or

the SRF-based design can offer reliability coverage for ALUs and

VRFs at very little overhead on dynamic energy consumption with

an average of 0.29% and 0.17%, respectively. Such results can be

expected as we only add one additional scalar ALU computation to

protect a vector ALU instruction and one VRF lane access to store

the redundant data. In other words, with the warp size as 32,

converting an intra-warp uniform vector instruction to a scalar

operation (i.e., without redundancy checks) saves 31 scalar

computations while converting an intra-warp uniform vector

instruction to two scalar operations (i.e., one for redundancy

checking) saves 30 scalar computations. The difference is very

small. When total energy is considered, the overhead of the token-

based design and the SRF-based design is 0.14% and 0.08%,

respectively.

Overall, with our proposed approaches to exploit both intra- and

inter-warp uniform vector instructions, we can achieve 12.0%

performance gains, 12.6% energy savings, along with 21.1%

reliability coverage for ALUs and 14.1% reliability coverage for

VRFs.

6. RELATED WORK

It has been observed that there are identical computations across

multiple threads in both CPUs [15] and GPUs [5][9]. In [5], such

scalar behavior in GPU workloads is referred to as uniform

vectors. Compiler analysis approaches have been proposed in

[4][6][7][16] to identify uniform vectors. A hardware approach,

similar to our token-based design, is also presented in [5] to detect

intra-warp uniform vector instructions. Compared to [5], the

novelty of this work includes (1) we introduce inter-warp uniform

vector instructions and exploit them with instruction reuse; (2) we

show that converting an intra-warp uniform vector instruction to a

scalar one can improve the instruction issue rate so as to improve

performance; (3) we propose a new SRF-based design to exploit

intra-warp uniform vector instructions; (4) we propose to leverage

the redundancy from uniform vector instructions to improve

hardware reliability; and (5) we present a detailed performance,

energy, as well as reliability analysis. As shown in Section 5.3,

with high SIMD widths, the performance benefits from intra-warp

uniform vector instructions become very limited while inter-warp

uniform vector instructions provide more performance gains.

Compared to compiler approaches for uniform vector identification

(i.e., scalarization), our proposed hardware approach is more

effective to detect intra-warp uniform vector instructions from

potentially control divergent code as discussed in Section 2. On the

other hand, our proposed approach to leverage inter-warp uniform

vector instructions can work with either compiler- or hardware-

based intra-warp uniform vector detection.

Instruction reuse is exploited in [10] for opportunistic soft error

detection in CPUs. In this work, we adopt the instruction reuse

idea to improve performance and reliability as well as reduce

energy consumption for GPUs.

7. CONCLUSIONS
In this paper, we show that in many GPU applications, besides

(intra-warp) uniform vector instructions observed in previous

work, there exists a significant amount of inter-warp uniform

vector instructions. We propose detailed architectural designs to

exploit both types of uniform vector instructions. For a detected

intra-warp uniform vector instruction, we convert it into a scalar

operation and propose different ways to store the scalar register

data. For inter-warp uniform vector instructions, we leverage

instruction reuse to skip computations so as to reduce instruction

execution latency as well as energy consumption. We also exploit

the redundancy in uniform vector instructions to provide

opportunistic reliability enhancement.

Our experiments show that the proposed approaches can achieve

an average of 12.0% performance gains and 12.7% energy savings

at very little hardware cost. Also, we show that with a little less

energy savings (12.6%) and the same performance gains (12.0%),

we can protect 21.1% ALU operations and 14.1% live vector registers.

8. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments

to improve our paper. This work is supported by an NSF project

1216569, an NSF CAREER award CCF-0968667, a grant from the

DARPA PERFECT program, and a gift fund from AMD Inc.

9. REFERENCES

[1] AMD Accelerated Parallel Processing OpenCL Programming Guide

2.1, May 2012

[2] A. Bakhoda, et al., Analyzing CUDA workloads using a detailed

GPU simulator. IPASS 2009.

[3] S. Che, et al., Rodinia: a benchmark suite for heterogeneous

computing, IISWC 2009.

[4] Z. Chen, et al., Characterizing Scalar Opportunities in GPGPU

Applications, ISPSS, 2013

[5] S. Collange, et al., Dynamic detection of uniform and affine vectors

in GPGPU computations, Euro-Par, 2009

[6] S. Collange. Identifying scalar behavior in CUDA kernels. Technical

report hal-00555134, 2011.

[7] B. Coutinho, et al., Divergence analysis and optimizations, PACT 2011.

[8] M. Dimitrov, et al., Understanding software approaches for GPGPU

reliability, GPGPU-2, 2009

[9] S. Gilani, N. Kim, M. Schulte: Power-efficient computing for

compute-intensive GPGPU applications. PACT 2012.

[10] M. Gomaa and T. Vijaykumar, “Opportunistic Transient-Fault

Detection”, ISCA-32, 2005.

[11] N. B. Lakshminarayana and H. Kim, Effect of Instruction Fetch and

Memory Scheduling on GPU Performance, Workshop on Language,

Compiler, and Architecture Support for GPGPU, 2010.

[12] C. J. Lee, et al. Prefetch-aware DRAM controllers. MICRO-41, 2008.

[13] J. Leng, et al., GPUWattch: Enabling Energy Optimizations in

GPGPUs, ISCA, 2013

[14] S. Li at al., McPAT: an integrated power, area and timing modeling

framework for multicore and manycore architectures, MICRO 2009.

[15] G. Long, et al., Minimal Multi-Threading: Finding and Removing

Redundant Instructions in Multi-Threaded Processors. MICRO, 2010.

[16] Y. Lee, et al. Convergence and Scalarization for Data-Parallel

Architectures. CGO 2013.

[17] NVIDIA GPU Computing SDK 3.1.

[18] J. Sheaffer, et al. A Hardware Redundancy and Recovery Mechanism

for Reliable Scientific Computation on Graphics Processors. Graphics

Hardware 2007.

[19] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. ISCA 1997.

0%

1%

2%
Dynamic energy overhead

SRF Token

http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kim:Nam_Sung.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Schulte:Michael_J=.html
http://www.informatik.uni-trier.de/~ley/db/conf/IEEEpact/pact2012.html#GilaniKS12

