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Abstract 
State-of-art graphics processing units (GPUs) employ the single-

instruction multiple-data (SIMD) style execution to achieve both 

high computational throughput and energy efficiency. As previous 

works have shown, there exists significant computational 

redundancy in SIMD execution, where different execution lanes 

operate on the same operand values. Such value locality is referred 

to as uniform vectors. In this paper, we first show that besides 

redundancy within a uniform vector, different vectors can also 

have the identical values. Then, we propose detailed architecture 

designs to exploit both types of redundancy. For redundancy 

within a uniform vector, we propose to either extend the vector 

register file with token bits or add a separate small scalar register 

file to eliminate redundant computations as well as redundant data 

storage. For redundancy across different uniform vectors, we adopt 

instruction reuse, proposed originally for CPU architectures, to 

detect and eliminate redundancy. The elimination of redundant 

computations and data storage leads to both significant energy 

savings and performance improvement. Furthermore, we propose 

to leverage such redundancy to protect arithmetic-logic units 

(ALUs) and register files against hardware errors. Our detailed 

evaluation shows that our proposed design has low hardware 

overhead and achieves performance gains, up to 23.9% and 12.0% 

on average, along with energy savings, up to 24.8% and 12.6% on 

average, as well as a 21.1% and 14.1% protection coverage for 

ALUs and register files, respectively. 
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1. INTRODUCTION 

State-of-art GPUs manage, schedule, and execute parallel threads 

in groups. While each individual thread has its own register state, a 

group of threads, called a warp/wavefront, share a single program 

counter (PC) as well as the instruction fetch, decode, and 

processing logic. When executing an instruction, different threads 

in a warp operate upon different data, which are typically specified 

using their thread identifiers (ids). To hide instruction execution 

latencies, especially off-chip memory accesses, GPUs are designed 

to host a high number of warps so that when one warp is stalled, 

another warp can issue instructions so as to keep the 

arithmetic/logic units (ALUs) busy. As a result, throughput-

oriented GPUs can spend most energy budget and die area on 

computational logic rather than sophisticated instruction 

processing logic as in latency-oriented central processing units 

(CPUs). The combined single-instruction multiple-data (SIMD) 

style execution and warp-level parallelism, also referred to as 

single-instruction multiple-thread (SIMT) processing, is the key for 

GPU’s high energy efficiency and computational throughput. In 

this paper, we propose a novel approach to further improve the 

performance, energy efficiency and reliability of GPU computing. 

Our approach is built upon the following observations on SIMT 

processing. During SIMD execution, different threads in the same 

warp are supposed to operate upon different data. However, certain 

program structures in the kernel code, such as loops, and some 

intermediate computations, including loading data from the same 

address, calculating configuration numbers, or initializing registers 

with constant values, result in identical computations among the 

threads in a warp. In such cases, different threads in a warp have 

the same source values and therefore produce the same output. 

This value locality was referred to as uniform vectors [5]. In this 

paper, we observe that such computational redundancy does not 

only exist among the threads within a warp, but also happens at the 

warp level. In other words, different warps may have identical 

input and output values. Therefore, we refer to them as intra-warp 

and inter-warp uniform vector instructions, respectively.  

We propose detailed architecture designs to detect and remove 

redundancy resulting from intra- and inter-warp uniform vector 

instructions to achieve both performance gains and energy savings, 

and to leverage such redundancy for reliability enhancement. For 

intra-warp uniform vector instructions, we present two designs. 

The first one adds a token bit to each vector register to detect and 

track intra-warp redundancy. For an instruction, when all of its 

source operands have this token bit set and there is no control 

divergence, this instruction is recognized as an intra-warp uniform 

vector instruction. In this case, only one thread in the warp will 

carry out the computation, store the result in its destination scalar 

register, and set the token bit associated with the destination vector 

register. Additional multiplexers (MUXes) are introduced to reuse 

the existing broadcast logic to feed the register value to other 

threads, when it is used in subsequent instructions as a source 

operand. In our second design, we propose to add a separate small 
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scalar register file (SRF) to eliminate redundant values in the 

vector register file (VRF). For uniform vector accesses, this 

approach replaces VRF reads and writes with SRF operations, 

thereby lowering the power consumption. Furthermore, the SRF 

simplifies the design for the corner case when a uniform vector 

register is used as both a source and the destination operand. A 

register renaming table and a freelist are introduced to manage the 

SRF. Note that although register renaming apparently adds the 

complexity of instruction processing, it is done at the warp level, 

therefore the overhead is amortized by the high number of threads 

(e.g., 32) in a warp. 

To detect and eliminate inter-warp redundancy, we leverage the 

idea of instruction reuse [19] and propose a warp-level instruction 

reuse buffer (IRB). When an instruction hits in the IRB, it skips 

execution and directly writes back the results stored in the IRB into 

the destination register. To reduce the complexity of the warp-level 

IRB, we choose to allow only the instructions, which are detected 

as intra-warp uniform, to access it. This eliminates the need for the 

IRB to store and compare the input values of all the threads in a warp. 

We model our proposed designs in a cycle-accurate GPGPU 

architecture simulator and our experimental results show that our 

proposed deigns achieve significant energy savings, up to 25.3% 

and 12.7% on average, along with performance gains of up to 

23.9% and 12.0% on average. 

Since GPUs are getting more and more popular in general-purpose 

computations, there is a growing concern on reliability [8][18]. We 

propose to leverage both intra- and inter-warp uniform vector 

instructions for opportunistic reliability enhancement. For intra-

warp uniform vector instructions, we simply use two threads to 

carry out the computations and store the two results to provide the 

necessary redundancy. For inter-warp uniform vector instructions, 

we choose to protect the warp-level IRB with parity bits. Our 

results show that our approach achieves 21.1% and 14.1% 

reliability coverage for ALUs and register files, respectively, with 

no performance penalty and only 0.29% dynamic energy overhead 

(or 0.14% in total energy) compared to our proposed designs that 

completely eliminate the redundancy from uniform vector 

instructions.  

The rest of the paper is organized as follows. Section 2 presents the 

background and quantifies how often intra- and inter-warp uniform 

vector instructions exist in typical GPGPU workloads. Section 3 

describes in detail our architectural designs. The experimental 

methodology and results are discussed in Section 4 and Section 5, 

respectively. Related work is addressed in Section 6. Section 7 

concludes the paper. 

2. BACKGROUND AND MOTIVATION 

Modern GPUs employ the SIMT programming model. A GPU 

program, commonly referred to as a kernel, follows the single-

program multiple-data (SPMD) model. A kernel specifies the 

workloads of all threads and differentiates them using thread ids. 

The threads are organized into a two-level hierarchy. The kernel is 

launched to a GPU as a grid of threads, which contains multiple 

thread blocks/workgroups. Each thread block/workgroup in turn 

contains multiple warps/wavefronts. A warp/wavefront is a group 

of threads that are executed in the SIMD manner by sharing the PC. 

In GPU hardware, a high number of cores are also organized in a 

hierarchy. Each GPU has multiple Streaming Multiprocessors 

(SMs) or Compute Units (CUs). Each SM/CU in turn has multiple 

streaming processors (SPs)/processing elements (PEs). The 

resources in each SM/CU include a vector register file, the shared 

memory, and L1 caches. The threads in the same thread 

block/workgroup will be executed on the same SM/CU so as to 

support synchronization and data exchange among the threads in 

the same thread block/workgroup. One SM can host one or more 

thread blocks depending on the resource requirement of each 

thread block. 

In the SIMT model, each thread has its own register state. As a 

result, each thread needs to carry out computations even they are 

essentially scalar operations. For example, in the code shown in 

Figure 1 , we can see that the loop control ‘(int i = 0; i < width; 

i++)’ on line 3 is independent on the thread id. As all the threads in 

a warp are executed in lock steps, the corresponding instructions to 

the loop control will have identical input and output values for all 

the threads in the warp. Such value locality among the threads in a 

warp has also been observed in [5] and is referred to as uniform 

vectors given the similarity between a warp in SIMT architecture 

and a vector in vector processors. In this paper, we adopt this term 

to indicate that an operand is the same for all the threads in a warp. 

For an instruction, if all of its source operands, including the 

current active mask, are uniform vectors, it is called a uniform 

vector instruction. 

 
Figure 1. A code example to illustrate both intra- and inter-warp 

uniform vector instructions. 

The code in Figure 1 also shows that besides the identical 

computation (or redundancy) among the threads within a warp, 

there exist identical computations among different warps. For 

example, the computation on line 2 ‘blockIdx.x*blockDim.x’ only 

depends on thread block ids. All the warps in the same thread 

block will perform the same computation. In addition, the loop 

control on line 3 may also result in redundancy across different 

warps as long as one warp reaches the same loop iteration before 

another leaves it. Due to the commonly used round-robin warp 

scheduling policy [11], the warps in a thread block usually make 

similar progress. As a result, these warps tend to carry out identical 

loop iterator update and bound check operations. To differentiate 

identical computations within a warp and across multiple warps, 

we refine the definition of uniform vector instructions and refer to 

them as intra-warp uniform vector instructions and inter-warp 

uniform vector instructions.  

In the current GPU architectures, both intra- and inter-warp 

uniform vector instructions result in redundant computations as 

well as redundant register file reads and writes since the exactly 

same computation is repeated for many threads in the same warp 

or different warps. As a warp/wavefront contains 32/64 threads in 

NVIDIA/AMD GPUs, one intra-warp uniform vector will lead to 

31/63 redundant computations. To address this issue, a scalar unit 

is added to each CU in AMD’s latest Graphics Core Next (GCN) 

architecture [1] and it relies on the compiler to identify the uniform 

vector instructions and to encode them as scalar instructions to be 

executed in the scalar unit. The scalar unit in AMD’s GCN 

architecture has a scalar register file, which can forward scalar 

register values to the SPs/PEs when they are used as source 

1. __global__ void foo (float *A, float *B, float *C, int width) { 

2.    int idx = (blockIdx.x*blockDim.x+threadIdx.x); 
3.    for (int i = 0; i < width; i++) { 

4.        a = A[i+idx*width]; 

5.        if(B[idx] > 0) 
6.            b = C[i]; 

7.        else 

8             b = 0; 

9.   }…} 



 

 

operands for vector instructions, and a scalar ALU to perform 

scalar computations.  

Although the GCN architecture reduces redundant operations, 

several limitations remain. First, the scalar instructions are 

generated using the compiler and there are fundamental limitations 

of static analysis by the compiler. For example, the if-statement ‘if 

(B[idx]>0)’ on line 5 in Figure 1 may result in control divergence 

among the threads in a warp, i.e., some threads satisfy the 

condition while others do not. Therefore, the compiler cannot 

classify the operations ‘b = C[i]’ on line 6 and ‘b = 0’ on line 8 as 

scalar operations although they do not have data dependence on the 

thread id. In other words, the control dependency on thread id 

makes the static analysis very challenging. Second, the scalar unit 

incurs additional hardware cost and the dedicated scalar 

instructions are not compatible with previous GPUs with the same 

vector instruction set architecture (ISA). Third, the AMD GCN 

cannot handle inter-warp uniform vectors since the scalar 

instructions are embedded in the same instruction stream as vector 

operations, which are executed separately for each warp.  

Before discussing our proposed solution, we quantify how often 

uniform vector instructions present in typical GPGPU workloads. 

We profile a set of applications using GPGPUSim [2] with the 

detailed methodology presented in Section 4. Our results are 

shown in Figure 2. In this experiment, for each vector instruction 

that is not control divergent, we consider that there are 32 scalar 

operations, one for each thread due to the warp size of 32. For each 

intra-warp uniform instruction, we consider that there are 31 

redundant operations. For each inter-warp uniform vector 

instruction being detected, we consider that there are 32 redundant 

operations when we focus only on inter-warp uniform vector 

instructions. When we target at both types of uniform vector 

instructions, for each inter-warp uniform vector instruction being 

detected, we consider that there is 1 redundant operation since 31 

of them are already counted as intra-warp redundant ones. Then, 

we normalize the numbers of redundant operations to the total 

number of dynamic scalar instructions and report the ratios in 

Figure 2. The reason why we do not use the number of vector 

instructions is due to the presence of control divergence. In such a 

case, the number of scalar instructions captures the application’s 

computational needs more accurately than the number of vector 

instructions. Note that in our redundant instruction statistics, we do 

not include branch instructions as the PC is already updated at a 

per-warp basis in SIMT architectures. Memory instructions are not 

considered as redundant operations either as we assume the 

memory coalescing logic and miss status handling registers 

(MSHRs) already detect/merge redundant memory requests.  

 Figure 2 Percentage of redundant operations resulting from intra-and 

inter-warp uniform vector instructions. 

As we can see from Figure 2, among the 13 applications under our 

study, there exist significant redundant operations. The 

contribution from intra-warp uniform vector instructions can be as 

high as 41.5% and 18.1% on average using the geometric mean 

(GM). The inter-warp uniform vector instructions also result in up 

to 28.5% and an average of 8.9% redundant operations. When both 

types are combined, up to 42.4% and an average of 18.4% of all 

scalar operations are redundant. Although the difference between 

intra-warp and combined intra- and inter-warp results is apparently 

small, it does not mean that the contribution from inter-warp 

uniform vector instruction would be low. The reason is that we 

only count 1 redundant scalar operation for each inter-warp 

uniform vector instruction as discussed above. As shown in 

Section 5, eliminating redundancy from inter-warp uniform vector 

instructions can lead to significant performance gains and energy 

savings even after we already leverage intra-warp uniform vector 

instructions. 

3. ARCHITECTURE DESIGN 

The significant amount of uniform vector instructions presents an 

interesting opportunity for optimizing SIMT architectures. First, 

eliminating redundant computations and register file accesses can 

reduce dynamic power consumption. Second, when the number of 

SPs in an SM is smaller than the warp size, converting an intra-

warp uniform vector instruction to a scalar operation can improve 

the instruction issue rate so as to improve the performance. 

Considering a warp size of 32 and a SIMD width of 8 (i.e., 8 SPs 

per SM), it takes 4 cycles to issue a regular vector instruction. As 

discussed in Section 3.1.1, by converting a uniform vector 

instruction into a scalar one, we can increase the instruction issue 

rate to 1 instruction per cycle as only one SP is needed to carry out 

the computation. Third, the execution of any inter-warp uniform 

vector instruction can be skipped after it is detected, resulting in 

performance enhancement due to the reduced execution latency. 

Fourth, redundant computations and data storage can also be 

leveraged for hardware error detection to opportunistically 

improve the reliability. In this section, we present our proposed 

architecture design to achieve these goals. Figure 3 shows the 

baseline architecture of an SM for our discussion. 

 

Figure 3. The baseline architecture of an SM. The number of EX stage 

depends on the instruction latency.        

As shown in Figure 3, there is a warp scheduler in an SM and it 

issues instructions from the ‘ready’ warps, meaning that they have 

all the source operands ready for their current instructions. During 

the register read (RR) stage, the multi-lane vector register file 

(VRF) is accessed to provide the source operands for each thread 

in the warp. The aggregated registers from all the threads in a warp 

can be viewed as a vector register. For example, for an instruction 

‘ADD r1, r2, r3’, the register r1 for all the threads in warp can be 

viewed as a vector register VR1, which contains 32 scalar 

registers. Here, we use the notation ‘VR1.i’ to denote the scalar 

register r1 of the ith thread in a warp. Depending on the number of 
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SPs (denoted as ‘NumSP’) in an SM, which are used for executing 

instructions from a warp, the warp scheduler issues one instruction 

to the SPs every ‘warpsize/NumSP’ cycles. In NVIDIA GTX285 

GPUs, NumSP is 8, and in GTX480 (aka Fermi architecture), 

NumSP is 16 as each warp occupies 16 SP lanes. Typically, the 

threads in a warp are assigned to the SPs in a round-robin manner. 

In other words, if NumSP is 8, the first SP (i.e., SP0) executes the 

instruction for thread 0, 8, 16, 24; the second SP executes thread 1, 

9, 17, 25; etc. Also, the VRF lane in each SP provides the 

corresponding register operands. For example, with 8 SPs in an 

SM, the VRF lane in SP0 provides VR1.0, VR1.8, VR1.16, and 

VR1.24. The warp id in the warp scheduler is used to map the 

same architectural registers in different warps into different 

physical vector registers. 

3.1. Exploiting Intra-Warp Uniform Vector 

Instructions 

To detect intra-warp uniform vectors, we start with the instruction 

decode (ID) stage in the GPU pipeline. During the ID stage, an 

instruction’s source operands are checked to see whether they are 

uniform vectors. If an operand is an immediate or a special register 

used for thread id independent information such as thread block 

dimensions, it is detected as a uniform vector. An instruction is 

detected as a uniform vector instruction if all its source operands 

are uniform and the current active mask is all 1’s, indicating that 

the instruction is not under a control divergent path. In this case, 

the destination register will be a uniform vector. Next, we propose 

two architectural designs to implement the propagation of uniform 

vectors. The two designs differ in where to store uniform vectors. 

One reuses the VRF and extends it with token bits. The other 

introduces a small scalar register file (SRF) to replace VRF 

accesses with SRF accesses.      

3.1.1. Token-based design 
In this design, we add a token file, which contains 1 token bit for 

each vector register. A token bit is set in two scenarios: (1) when a 

uniform vector instruction is detected and is updating its 

destination vector register, and (2) when the value to be written 

back is from the broadcast path even the instruction is not yet 

detected as uniform. The broadcast path, which is used for 

accessing the same address in either shared memory or global 

memory, ensures that all the threads in the warp will have the same 

value. A token bit is reset when the corresponding vector register is 

redefined by a regular (i.e., non-uniform) vector instruction.  

 
Figure 4. Reusing the existing broadcast logic to feed the scalar value 

to multiple SPs. 

The token file will be accessed during the ID stage to determine 

whether an instruction is a uniform vector one. If so, once this 

instruction is issued, it does not need to update all the 32 scalar 

registers in the destination vector register. Instead, updating one of 

them is sufficient. As this vector register can be used as a source 

operand of a non-uniform vector instruction, we add a MUX to 

reuse the existing broadcast bus, as shown in Figure 4, to provide 

the data. This way, an intra-warp uniform vector instruction is 

essentially converted to a scalar one. Compared to a regular vector 

instruction, it saves (warpsize – 1) computations as well as the 

associated read and write accesses to the VRF lanes. 

Another important advantage of converting a uniform vector 

instruction into a scalar one is the opportunity to improve 

instruction issue rate. As our uniform vector instruction detection 

happens in the ID stage, the warp scheduler can increase the issue 

rate from one per ‘warpsize/NumSP’ cycle to one every cycle for 

uniform vector instructions. In other words, after a uniform vector 

instruction, which is converted to a scalar one, is issued, the warp 

scheduler can issue another ready instruction in the next cycle. 

Although the token-based design is relatively straightforward, 

there are several corner cases that need to be carefully considered. 

First, when a uniform vector register is used as both a source and 

the destination register, such as in the case of ‘VR1 = VR1 + VR2’ 

where the token bit of VR1 is set but the token bit of VR2 is not. 

Depending on the number of SPs in an SM, the source scalar value 

may be overwritten before its due time. For example, assuming 8 

SPs in an SM, threads 0-7 in the warp will execute the instruction 

before other threads. If the scalar value of the uniform vector VR1 

is stored in VR1.0 (i.e., the register for the first thread in the warp), 

this value (VR1.0) may be updated with ‘VR1.0+VR2.0’ before it 

is used for the remaining threads, e.g., thread 31 ‘VR1.31 = 

VR1.0+VR2.31’. To resolve this issue, we propose to store the 

scalar value of a uniform vector VRx in VRx.N, where N is 

determined as ‘N = warp size – NumSP’. In the case of NumSP 

being 8, VR1.24 is used to store the scalar value of the uniform 

vector register VR1. This ensure that there is no write-after-read 

data hazard for instructions like ‘Add VR1, VR1, VR2’ as thread 

24 is among the last patch of threads to be executed in a warp. 

When there are as many SPs as the warp size, all the threads in a 

warp will be executed at the same time, this hazard disappears 

naturally and the formula can still be used to specify VRx.0 to be 

used for the scalar value. Note that for the instruction ‘Add VR1, 

VR1, #2’ with the token bit set for VR1, there is no hazard since 

this instruction will be detected as a uniform vector instruction. 

The token bit will remain set and only the ALU in SP0 will be used 

to carry out the computation (VR1.24 = VR1.24 + #2). 

Second, control divergence complicates the processing of uniform 

vectors. Consider the case with the instruction ‘VR1 = VR1 + 2’ 

with the token bit of VR1 set and the active mask indicates that 

only threads 24-31 are to be executed in a warp. Although our 

intra-warp uniform vector instruction detection logic will detect it 

as a non-uniform vector instruction due to the condition on the 

active mask, there still is a correctness issue. The reason is that the 

scalar value VR1.24 will be overwritten with ‘VR1.24+2’ and for 

threads 0 to 23, the register VR1’s value would be corrupted. To 

resolve this problem, we propose the following copy-on-write 

solution. When the warp scheduler finds that the current instruction 

is under a control divergent path by checking the active mask and 

the instruction has its destination register being the same as one of 

its source uniform vector operands, the warp scheduler inserts a 

copy instruction, which explicitly copies the scalar value of the 

uniform vector to all of its scalar registers. This way, all the 

threads have their private copy of the register and the correctness is 

ensured. As we show in Section 5.1, this copy-on-write happens 

fairly infrequently, resulting in negligible performance overhead.  

... 
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3.1.2. Scalar register file based design 
In this design, we introduce a separate scalar register file (SRF) to 

store the scalar value of uniform vectors. The intra-warp vector 

instruction detection logic is the same as the token-based design 

described in Section 3.1.1. The advantage of the SRF-based design 

over the token-based design is that for uniform vectors, it replaces 

the vector register file (VRF) accesses with SRF accesses. In state-

of-art GPUs, an SM typically has a very large vector register file 

(e.g., 64/128 kB in GTX285/GTX480 GPUs, corresponding to 

16k/32k scalar registers or 512/1024 vector registers). Each access 

incurs nontrivial energy consumption. Using a small scalar register 

file reduces the energy consumption at a small area overhead. 

To manage the SRF, we add a freelist and a renaming map table to 

dynamically allocate and free the scalar registers in the SRF. In the 

ID stage, the renaming map table is accessed to see whether its 

source vector register operands are remapped to scalar registers. 

For a detected uniform vector instruction, its destination vector 

register will be renamed by obtaining a scalar register from the 

freelist and updating the renaming map table accordingly. Decoded 

and renamed instructions will be kept in the warp scheduler 

waiting to be issued to the SPs. During instruction execution, the 

renamed register operands specify whether the SRF or the VRF is 

to be accessed. For an intra-warp uniform vector instruction, both 

its source and destination registers will be from the SRF. In this 

case, the ALU of the first SP is reused to carry out the 

computation. The register renaming logic may affect the timing of 

the ID stage and lead to an additional register renaming stage. Such 

a new pipeline stage at the frontend will not increase pipeline 

hazards, thereby having very limited performance impact as 

confirmed in our experiments.  

The SRF is also connected to the existing broadcast path to handle 

the case when a scalar register is needed for a regular vector 

instruction. For a regular vector instruction, its destination vector 

register number will be used to check the renaming map table at 

the ID stage. If this vector register is currently being mapped to a 

scalar register, the mapping information will be cleared and the 

scalar register is pushed back to the freelist. 

Our SRF-based design simplifies the processing of the corner case 

where the destination and a source operand share the same register, 

like in the case of ‘VR1 = VR1 + VR2’ where VR1 is currently 

mapped to a scalar register, e.g., SR4, but VR2 is not. With the 

renaming process, the instruction becomes ‘VR1 = SR4 + VR2’. 

During execution, the value of SR4 is broadcasted to all the SPs 

from the SRF. Since SR4 will not be overwritten during the 

execution, the correctness is ensured.  

For the corner case of control divergence, we resort to the same 

copy-on-write solution as in our token-based design when the 

destination operand shares the same register with a source operand, 

which is currently mapped to a scalar register. In other words, for 

the instruction ‘VR1 = VR1 + 2’ under a control divergent path 

with VR1 being currently mapped a scalar register SR5, the warp 

scheduler will insert a copy instruction ‘VR1 = SR5’, before 

issuing the instruction ‘VR1 = VR1 + 2’.  

Note that our renaming process is based on physical vector register 

numbers. For the same architectural register, different warps map 

them to different physical vector registers based on their warp ids. 

Therefore, there is no conflict among the warps when the same 

registers are used.  

Compared to the token-based design, the disadvantage of the SRF-

based design is that due to the SRF’s limited size, when all the 

scalar registers are used up, we cannot convert newly detected 

intra-warp uniform vector instructions to scalar ones until a scalar 

register is freed to the freelist. We study this structural hazard 

effect in Section 5.3.  

3.2. Exploiting Inter-Warp Uniform Vector 

Instructions 

As shown in Section 2, different warps may perform the same 

computations. To exploit such inter-warp uniform vector 

instructions, we propose to leverage the idea of instruction reuse 

[19], which was proposed to reduce repeating computations in 

CPU architecture. In each SM, we add an instruction reuse buffer 

(IRB), which is a cache structure with the partial PC as the tag. 

Each entry in the data store includes opcode, three source operand 

values and one destination operand value. Here, we focus on 

instruction reuse only for intra-warp uniform vector instructions. 

Otherwise, for an arbitrary vector instruction, we have to compare 

the source operands for all 32 threads with those stored in the IRB, 

which would incur too much overhead. Partial PCs are used as tags 

to reduce the power consumption of fully associative searches. To 

avoid possible aliases due to partial PC match, we include the 

opcode field in the data store since identical inputs and opcode 

ensure the same outputs. Therefore, a hit in IRB means that both 

the partial PC and opcode match. 

The IRB is accessed during the Register Read (RR) stage. If there 

is a hit in the IRB, the source operand values from the IRB will be 

compared with those read from either the first lane of the VRF, 

when our token-based design is used, or the SRF, when our SRF-

based design is used. If all the source operands match, the 

execution stage will be skipped and the destination operand value 

from the IRB will be used to update either the first lane of the VRF 

or the SRF. If the source operand values do not match, the 

instruction will be executed in the first SP and the result will be 

used to update the corresponding IRB entry. If the PC misses in the 

IRB, the least-recently-used (LRU) replacement policy is used to 

find a victim entry in the IRB.  

3.3. Leveraging Uniform Vector Instructions 

for Reliability Enhancement 

As discussed in Section 1, reliability is an important issue for 

general purpose computation on GPUs (GPGPU). Both intra- and 

inter-warp uniform vector instructions can be leveraged for 

hardware error detection. For intra-warp uniform vector 

instructions, we choose to use two vector lanes (or two SPs) to 

carry out the computation and compare them before updating the 

register file. Furthermore, we also store two copies of a scalar 

value to protect the VRF against errors. In our token-based design, 

the two copies can be stored in the first two lanes of the VRF. For 

our SRF-based design, one copy is stored in the SRF and the other 

is stored in the first lane of the VRF. Adding parity bits to each 32-

bit scalar value is another option to detect errors in either the VRF 

or the SRF. Redundant data storage, however, adds error correction 

capability when used together with the parity protection: when two 

copies differ, the parity bit detects which one is uncorrupted.  

For inter-warp uniform vector instructions, we propose to protect 

the IRB with parity bits so as to protect the ALUs in an indirect 

manner. In this scheme, we add 1 parity bit for each IRB entry. For 

an instruction with uniform vector operands, if its PC hits in the 

IRB and an error is detected in the IRB entry using the parity bit, 



 

 

the instruction will be executed and the IRB will be updated 

accordingly. When there is no error detected in IRB, the ALU 

computation is skipped. This way, the ALUs become less 

vulnerable to errors as they are being used less often to carry out 

computations. 

Since redundant computations or parity bit checks are performed in 

parallel with original computations, there is no performance 

impact. The additional energy spent on redundant computations is 

analyzed in Section 5.4.   

4. EXPERIMENTAL METHODOLOGY 

We modified GPGPUsim V3.0.1 [2] to model our proposed 

schemes to exploit intra- and inter-warp uniform vector 

instructions. Our baseline GPU configuration, modeled based on 

NVIDIA GTX285 GPUs, is shown in Table 1. The default SIMD 

width (or NumSP) is 8 and we vary this parameter in Section 5.3. 

In our experiments, we use an 8-entry IRB for inter-warp uniform 

vector instructions. Each IRB entry contains a 10-bit partial PC as 

the tag, three 32-bit source values, one 32-bit destination value, a 

3-bit LRU field, and an 8-bit opcode field. In total, the hardware 

overhead of an instruction reuse buffer is 8*(10 + 3*32 + 32 + 3 + 

8) = 1192 bits. For our SRF-based design, a SRF of 128 scalar 

registers (= 128*32 = 4096 bits) and a renaming table of 512 

entries (512*7=3584 bits) are used. Compared to other resources 

shown in Table 1, such hardware overhead is quite limited. We 

examine the impact of these parameters in Section 5.3.  

Table 1. The baseline GPU configuration. 

Shader core frequency 1.3GHz 

Number of SMs 30 

Warp size 32 

SIMD width(i.e., NumSP) 8 /16  

Max. num. of thread 

blocks/threads per SM 

8 thread blocks/1024 threads 

Register file 64KB 

Shared memory 16 KB 

L1 cache  8-way set assoc. 64B cache block 

(48KB in total) 

L2 Cache 8-way set assoc. 64B (256kb per 
MEM channel) 

Number of MEM channels 16 

GDDR Memory 8 banks, 800Mhz, total 

bandwidth: 200GB/S,   TCL = 
10, TRP = 10, TRCD = 12 

Table 2. Area and energy consumption of the proposed components 

 Area 

(mm2) 

Static Power 

(W) 

Energy per 

access/operation (J) 

VRF 2.44 0.09 2.46/5.82 E -12 

SRF 0.005 0.001 1.76/1.62 E -13 

To analyze power/energy consumption, we instrumented the 

GPGPUsim to collect the statistics including vector register file 

accesses, ALU operations, different types of memory accesses, the 

number of IRB accesses and the number of SRF accesses. We then 

modified McPAT [14] using the similar approach to GPUWattch 

[13] to compute the area overhead and energy/power consumption. 

The resulting area and the energy per access of the VRF and the 

SRF using the 40nm technology are shown in Table 2. The energy 

consumption for different ALU operations is extracted from 

GPUWattch.  

We select 13 benchmarks from Nvidia CUDA SDK [17], the 

Rodinia benchmark suite [3] and GPGPUsim to cover a wide range 

of application domains. The inputs to the benchmarks, the total 

number of scalar instructions as well as the baseline performance 

measured with instructions per cycle (IPC) are shown in Table 3. 

Table 3. The benchmarks used for evaluation. 

Benchmarks Inputs Total inst. IPC 

N-Queen solver (NQU) [2] 32 0.78M 89.3 

Vector add (VA)  [17] (512, 512) 5.5M 207.5 

Fast Fourier Trans. (FFT) [17] (128, 128) 14M 164.1 

Convolution (CONV) [17] (512, 512) 157M 220.2 

Breadth first search (BFS) [2] 4096 11M 12.2 

Matrix Multiply (MM) [17] (128,80) 2M 135.2 

MersenneTwister (MT) [17] 48000000 1478M 122.9 

ScalarProduct (SP) [17] 524288 28M 177.1 

Ray Tracing (RAY) [2] (512, 512) 123M 193.6 

dxtc (DT) [17] 1024 573M 215.6 

HeartWall(HT) [3] (512,1) 4M 169.8 

HotSpot (HS) [3] (512, 2, 2) 103M 182.3 

PathFinder(PF) [3] 100000 582M 209.0 

5. EXPERIMENTAL RESULTS 

5.1. Performance Impact from Eliminating 

Uniform Vector Instructions 
In the first experiment, we examine the performance impact of 

eliminating both intra- and inter-warp uniform instructions. As we 

propose two designs for intra-warp uniform instructions, we 

present the results in Figures 5 and 6, for the token-based design 

and the SRF-based design, respectively. In either figure, we also 

report the cases when only intra-warp uniform vector instructions 

are exploited (labeled ‘Intra’), when only inter-warp uniform 

vector instructions are exploited (labeled ‘Inter), and when both are 

exploited (‘labeled ‘Combined’). When exploiting only inter-warp 

uniform vector instructions, either the token-based design or the 

SRF-based design is still used for detecting intra-warp uniform 

vector instructions. However, if such an intra-warp uniform vector 

instruction does not hit in the IRB, it is not converted to scalar 

operations so as to isolate the performance impacts.  

 

Figure 5. Performance gains from eliminating uniform vector 

instructions. The token-based design is used to handle intra-warp 

uniform vector instructions. 

 

Figure 6. Performance gains from eliminating uniform vector 

instructions. The SRF-based design is used to handle intra-warp 

uniform vector instructions. 
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We first examine the performance impact from exploiting intra-

warp uniform vector instructions. As discussed in Section 3.1, 

converting an intra-warp uniform vector instruction to a scalar one 

can improve the instruction issue rate to one scalar instruction 

every cycle. In our baseline GPU model, the warp scheduler in an 

SM has an issue rate of one vector instruction every 4 cycles. 

Therefore, for an application with sufficient thread-level 

parallelism (TLP), eliminating more intra-warp uniform vector 

instructions can result in more independent instructions being 

issued more promptly, thereby achieving higher performance. This 

is the case for the benchmarks CONV, MT, SP, DT, HS, and PF. 

On the other hand, when the performance of a workload is limited 

by the off-chip memory access bandwidth, as for the benchmarks, 

VA, FFT, BFS and HT, the performance gains are limited although 

VA and FFT have a high amount of redundant operations due to 

intra-warp uniform vector instructions, as shown in Figure 2. For 

the benchmark, RAY, many of its intra-warp uniform vector 

instructions are long latency ones. Converting them to scalar ones 

will not reduce such latency and their dependent instructions are 

still stalled. Therefore, its performance gain (8.6%), although not 

trivial, is not proportional to its high ratio of redundant operations 

(34.5%) shown in Figure 2. The benchmarks, NQU and MM have 

a relatively small ratio of intra-warp uniform vector instructions. 

Consequently, their performance gains are also small.  

Between the token-based and the SRF-based designs, most 

benchmarks show similar performance gains from eliminating 

intra-warp uniform vector instructions, except a few like CONV, 

SP, and PF. The reason is that the detected intra-warp uniform 

instructions in these benchmarks define many different vector 

registers. Therefore, there is a high pressure on the SRF. Once the 

SRF is used up, subsequently detected intra-warp uniform vector 

instructions are not utilized. In Section 5.3, we show that these 

benchmarks require a 256-entry SRF to achieve similar 

performance to the token-based design. On average using GM, 

leveraging intra-warp uniform vector instructions using the token-

based design and the SRF-based design achieves 7.4% and 6.7% 

performance improvement, respectively. 

For inter-warp uniform vector instructions, our proposed IRB can 

reduce the execution latency as well as improve the instruction 

issue rate, as discussed in Section 3.2. Among the benchmarks, 

FFT, RAY, HS and PF, show impressive performance gains as 

they have significant amount of inter-warp uniform vector 

instructions and most of them are long latency ones. In general, the 

performance gains closely follow the ratio of the inter-warp 

uniform vector instructions, shown in Figure 2. The only exception 

is VA. Although VA has a high inter-warp uniform vector 

instruction ratio of 28.5%, the performance gain from skipping 

them is 7.3%. The reason is that most of these instructions are 

short latency ALU operations such as SHL (shift left) and AND, 

while the overall performance for VA is dominated by memory 

bandwidth. As discussed in Section 3.2, the IRB is only accessed 

when an instruction has been detected as an intra-warp uniform 

vector instruction. Therefore, different designs to detect intra-warp 

uniform vector instructions also have an impact on IRB 

effectiveness. As the token-based design captures more intra-warp 

uniform vector instructions, there are more hits in the IRB, thereby 

performing better than the SRF-based design. On average, 

exploiting only inter-warp uniform vector instruction achieves the 

performance gains of 8.1% and 7.2%, using the token-based design 

and the SRF-based design, respectively.  

When eliminating both intra- and inter-warp uniform vector 

instructions, the performance gains are typically smaller than the 

sum of those by exploiting the two separately. The reason is that 

IRB exploits part of the intra-warp uniform vector instructions. 

Overall, as shown in Figures 5 and 6, our proposed token based 

and SRF-based designs improve the performance by up to 23.9% 

(PF), and 12.0% and 10.7% on average, respectively. Note that for 

benchmarks CONV, DT and PF, the resulting performance actually 

exceeds the theoretical maximum IPC (240 = 8 SP per SM * 30 

SMs). The reason is that our scheme only takes 1 cycle to 

‘execute’ an inter-warp uniform vector instruction for 32 threads, 

thereby having an IPC of 32. Similarly, for an intra-warp uniform 

vector instruction, it takes one cycle to issue rather than 4 cycles, 

which also essentially increases the IPC from 8 to 32 for this cycle.  

As discussed in Section 3, in the case of a uniform vector register 

re-define under a control divergent path, we resort to our proposed 

copy-on-write solution. This leads to one extra copy instruction to 

be issued and executed. Next, we examine how often such cases 

happen. In Figure 7, we report the ratio of the overall number of 

copy instructions inserted over the overall number of dynamic 

vector instructions. From the figure, we can see that many 

benchmarks have no such cases. The benchmark FFT has the 

highest ratio of 0.044% and the average is 0.010%. Therefore, 

there is no noticeable impact from these extra copy instructions. 

 
Figure 7. The ratio of extra copy instructions introduced over the 

overall number of dynamic vector instructions. 

5.2 Energy Savings from Eliminating Uniform 

Vector Instructions 

Our proposed schemes achieve energy savings in three ways: (a) 

reducing execution time results in static energy savings, (b) 

converting an intra-warp uniform vector instruction to a scalar one 

eliminates (warpsize – 1) redundant computations as well as 

associated register file accesses, and (c) eliminating an inter-warp 

uniform vector instruction eliminate 1 computation. We first look 

into the dynamic energy consumption and show the normalized 

results over the baseline GPU in Figure 8 for both the token-based 

design (‘labeled ‘token’) and the SRF-based design (labeled 

‘SRF’). 

 
Figure 8. Dynamic energy consumption of our approaches normalized 

over the baseline GPU.  

From Figure 8, we can see that eliminating both intra- and inter-

warp redundant operations results in an average of  14.7% and 
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13.6% dynamic energy reduction using the SRF-based design and 

the token-based design, respectively. The SRF-based design saves 

more dynamic energy than the token based design. The reason is 

that the SRF-based design replaces VRF accesses with SRF 

accesses. Among the benchmarks, the benchmark, VA, has the 

highest dynamic energy reduction (36.0%) due to its high ratio 

(42.4%) of redundant operations shown in Figure 2. 

The structures that we introduced for our approaches, including the 

8-entry IRB and the 128-entry SRB, are quite small, less than 

0.01% based on the area estimation using McPAT, compared to 

existing the 8 ALUs, the VRF, and caches in an SM. Therefore, the 

static energy savings follows very closely with the execution time 

reduction or performance gains. As a result, we only show the total 

energy consumption for our two designs in Figures 9 and 10. 

Similar to our performance results, we also report the normalized 

energy consumption for the case when only the intra-warp uniform 

vector instructions are exploited (labeled ‘Intra’), and when only 

the inter-warp uniform vector instructions are exploited (labeled 

‘Inter’), and when both types of uniform vector instructions are 

exploited (labeled ‘Combined’). 

 
Figure 9. Normalized total energy consumption when using the token-

based design to handle intra-warp uniform vector instructions. 

 
Figure 10. Normalized total energy consumption when using the SRF-

based design to handle intra-warp uniform vector instructions. 

From Figures 9 and 10, we can see that the intra-warp uniform 

vector instruction removal reduces the total energy consumption by 

9.8% and 10.3% on average, for the token-based design and the 

SRF-based design, respectively. Eliminating inter-warp uniform 

vector instructions reduces the total energy consumption by 8.0% 

and 7.6%, for the two designs, respectively. When both intra- and 

inter-warp uniform vector instructions are exploited, the token 

design shows slightly higher energy saving (12.7%) than the SRF 

design (12.2%).  

5.3. Design Space Exploration 

In our first experiment, we analyze the impact of the SRF size in 

the SRF-based design. We vary the SRF from 16to 256 registers. 

The results in Figure 11 show that for many of the applications 

including NQU, VA, FFT, BFS, MM, MT, RAY and DT, a SRF 

with 64 entries captures most of the uniform vector instructions. 

For remaining workloads, including CONV, HT, HS SP, and PF, 

the performance improves as we increase the number of entries. A 

256-entry SRF performs almost the same as the unlimited one, 

which is equivalent to our token-based design. 

 
Figure 11. The performance impact of the SRF size. 

In our second experiment, we analyze the performance impact of 

IRB. We vary the IRB size from 2 to 16 and the results in Figure 

12 show that the average performance gains of the token-based 

design are 10.8%, 11.5%, 12.0% and 12.3% for the IRB size of 2, 

4, 8 and 16, respectively. Therefore, we choose the reuse buffer 

size as 8 as the cost effective solution. The key reason why small 

IRBs (even with 2 entries) work well is that different warps make 

similar progress under the round-robin scheduling policy. After 

one inter-warp uniform vector instruction is detected from a 

leading warp and stored in the IRB, it will be quickly used by other 

warps. It is seldom the case that the warps have such different 

execution speeds that different warps detect and use a highly 

different set of inter-warp uniform vector instructions.  

 

Figure 12. The performance impact of the IRB size. 

In our third experiment, we investigate the impact of SIMD width 

(i.e., NumSP) on the effectiveness of our proposed approaches. In 

order to keep the same ALU-to-MEM bandwidth ratio when we 

increase NumSP from 8 to 16 (i.e., there are 16 SPs in each SM), 

we reduce the number of SMs from 30 to 15. The performance 

gains from eliminating only intra-warp uniform vector instructions 

(labeled ‘Intra’), from eliminating only inter-warp uniform vector 

instructions (labeled ‘Inter’), and eliminating both types of uniform 

vector instructions (labeled ‘Combined’) using the token-based 

design are shown in Figure 13. Here, the performance 

improvement is over the GPU with 15 SMs and 16 SPs per SM. 

 
Figure 13. The performance improvement from eliminating uniform 

vector instructions on a GPU with 15 SMs and 16 SPs per SM. 

From Figure 13, we can see that when NumSP is increased to 16, 

the performance gains from eliminating intra-warp uniform vector 

instructions become marginal. There are two reasons for this 

impact. First, with NumSP increased from 8 to 16, the baseline 

instruction issue rate is improved from one instruction every four 
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cycles into one instruction every two cycles. Although converting 

an intra-warp uniform vector instruction into a scalar one can 

improve the issue rate to one instruction every cycle, the room for 

improvement is reduced. Second, as each SM has more SPs, it 

requires more concurrent threads to run on each SM to fully utilize 

the increased number of SPs. Therefore, the insufficient TLP 

becomes the performance bottleneck rather than the instruction 

issue rate. On the other hand, with increased NumSP, we are able 

to achieve higher performance benefits from exploiting inter-warp 

uniform vector instructions for most benchmarks. The reason is 

that with more SPs, each SM requires more concurrent threads to 

hide execution latencies. For example, considering an instruction 

with 4 cycle latency, with 8 SPs per SM, the execution latency can 

be completely hidden when there is just 1 warp running on the SM. 

With 16 SPs per SM, in comparison, it requires 2 warps to hide the 

4 cycle execution latency. With our IRB approach, if an instruction 

hits in the IRB, its execution can be skipped and the latency is 

reduced to 1 cycle. Therefore, it lowers the requirement on TLP 

and becomes more beneficial. One interesting anomaly is the 

benchmark MT, for which exploiting inter-warp uniform vector 

instructions leads to a 3.1% performance degradation. We looked 

into this benchmark and discovered that the performance loss is 

due to longer memory access latency resulting from decreased 

DRAM row access locality [12]. The DRAM row access locality 

means the average number of row accesses after a row is activated. 

The reason for such reduced row access locality is due to the fact 

that with our IRB approach, some warps, if their instructions hit in 

the IRB, make faster progress than others. Combined with the 

round-robin scheduling policy, the memory access sequence from 

different warps is altered, leading to such an anomaly.  

Overall, when NumSP is 16, an average of 0.3%, 8.2%, and 8.5% 

performance improvement is achieved from eliminating only intra-

warp uniform vector instruction, from eliminating only inter-warp 

uniform vector instruction, and from eliminating both types of 

uniform vector instructions, respectively.  

We also study the energy savings when NumSP is increased to 16. 

Our results show that dynamic energy savings are not affected 

when NumSP is increased. It is expected as changing NumSP does 

not affect the amount of the redundant operations from uniform 

vector instructions. Static energy savings, in contrast, are directly 

proportional to execution time reduction. On average, with NumSP 

as 16, our token-based approach show an 13.6% reduction in 

dynamic energy, an 7.8%  reduction in static energy, and a 10.0%  

reduction in total energy.  

5.4. Leveraging Uniform Vector Instructions 

for Reliability Enhancement 

In this experiment, we study the effectiveness of the opportunistic 

reliability improvement approach discussed in Section 3.3. Figure 

14 shows how often the ALUs can be protected against hardware 

errors during execution. The reliability coverage is computed as 

the average ratio of (number of scalar ALU operations that are 

protected using redundancy from uniform vector instructions / 

overall number of scalar ALU operations). In Figure 14, we 

present the results for both the token-based design and the SRF-

based design. Redundancy from both intra- and inter-warp uniform 

instructions is exploited in either design.  

From Figure 14, we can see that either design is able to protect a 

significant amount of ALU operations, up to 42.9% (VA) and an 

average of 19.5% or 21.1%. The token-based design has higher 

coverage for CONV, SP, and PF, for the same reason as discussed 

in Section 5.2 that these applications require a SRF with more than 

128 scalar registers. Therefore, it has higher coverage on average. 

 
Figure 14. Reliability coverage of ALUs by leveraging the redundancy 

in uniform vector instructions. 

We also study the reliability coverage for the data stored in the 

VRFs. The coverage is computed as follows. In each cycle, we 

identify the live vector registers, meaning that they will be used 

later on as source operands, in a VRF and determine how many 

live vector registers are protected using the redundancy provided 

from detected uniform vector instructions (i.e., identical copies of 

the same data). The average ratio of two accumulated numbers, 

i.e., the total number of protected live vector register / the total 

number of live registers, across multiple SMs throughout the 

execution time, is the reported coverage shown in Figure 15.  

 
Figure 15. Reliability coverage of vector register files by leveraging the 

redundancy in uniform vector instructions. 

From Figure 15, we can see that the token-based design can protect 

up to 40.0% and 14.1% on average of the live registers in VRFs. 

For the benchmark BFS, although there exists a non-trivial amount 

of uniform vector instructions as shown in Figure 2, its reliability 

coverage for the VRFs is minimal (0.1%). The reason is that most 

of the uniform vector instructions in BFS define and redefine a 

very limited set of the vector registers. The small number of 

protected vector register combined with short live time result in 

such a low coverage. For the benchmarks MM and MT, the 

protected vector registers have relatively long live time. Therefore, 

their reliability coverage for VRFs is higher than it for ALUs 

shown in Figure 14. In contrast, for the benchmark VA, although it 

has very high ALU coverage, the coverage for VRFs is lower due 

to the short live time of the protected vector registers. The SRF-

based design has lower VRF reliability coverage than the token-

based design for the same reason as discussed above for ALU 

reliability.  

As discussed in Section 3.3, the redundancy checks have no 

performance overhead. Therefore, we focus on the dynamic energy 

consumption impact from such redundant computations and 

storage. The results are shown in Figure 16 for both the token 

based and the SRF-based designs compared to the same 

approaches without redundancy checks. 
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Figure 16.  The overhead for redundancy checks in dynamic energy 

consumption. 

From Figure 16, we can see that either the token-based design or 

the SRF-based design can offer reliability coverage for ALUs and 

VRFs at very little overhead on dynamic energy consumption with 

an average of 0.29% and 0.17%, respectively. Such results can be 

expected as we only add one additional scalar ALU computation to 

protect a vector ALU instruction and one VRF lane access to store 

the redundant data. In other words, with the warp size as 32, 

converting an intra-warp uniform vector instruction to a scalar 

operation (i.e., without redundancy checks) saves 31 scalar 

computations while converting an intra-warp uniform vector 

instruction to two scalar operations (i.e., one for redundancy 

checking) saves 30 scalar computations. The difference is very 

small. When total energy is considered, the overhead of the token-

based design and the SRF-based design is 0.14% and 0.08%, 

respectively.  

Overall, with our proposed approaches to exploit both intra- and 

inter-warp uniform vector instructions, we can achieve 12.0% 

performance gains, 12.6% energy savings, along with 21.1% 

reliability coverage for ALUs and 14.1% reliability coverage for 

VRFs. 

6. RELATED WORK 

It has been observed that there are identical computations across 

multiple threads in both CPUs [15] and GPUs [5][9]. In [5], such 

scalar behavior in GPU workloads is referred to as uniform 

vectors. Compiler analysis approaches have been proposed in 

[4][6][7][16] to identify uniform vectors. A hardware approach, 

similar to our token-based design, is also presented in [5] to detect 

intra-warp uniform vector instructions. Compared to [5], the 

novelty of this work includes (1) we introduce inter-warp uniform 

vector instructions and exploit them with instruction reuse; (2) we 

show that converting an intra-warp uniform vector instruction to a 

scalar one can improve the instruction issue rate so as to improve 

performance; (3) we propose a new SRF-based design to exploit 

intra-warp uniform vector instructions; (4) we propose to leverage 

the redundancy from uniform vector instructions to improve 

hardware reliability; and (5) we present a detailed performance, 

energy, as well as reliability analysis. As shown in Section 5.3, 

with high SIMD widths, the performance benefits from intra-warp 

uniform vector instructions become very limited while inter-warp 

uniform vector instructions provide more performance gains. 

Compared to compiler approaches for uniform vector identification 

(i.e., scalarization), our proposed hardware approach is more 

effective to detect intra-warp uniform vector instructions from 

potentially control divergent code as discussed in Section 2. On the 

other hand, our proposed approach to leverage inter-warp uniform 

vector instructions can work with either compiler- or hardware-

based intra-warp uniform vector detection.    

Instruction reuse is exploited in [10] for opportunistic soft error 

detection in CPUs. In this work, we adopt the instruction reuse 

idea to improve performance and reliability as well as reduce 

energy consumption for GPUs.  

7. CONCLUSIONS 
In this paper, we show that in many GPU applications, besides 

(intra-warp) uniform vector instructions observed in previous 

work, there exists a significant amount of inter-warp uniform 

vector instructions. We propose detailed architectural designs to 

exploit both types of uniform vector instructions. For a detected 

intra-warp uniform vector instruction, we convert it into a scalar 

operation and propose different ways to store the scalar register 

data. For inter-warp uniform vector instructions, we leverage 

instruction reuse to skip computations so as to reduce instruction 

execution latency as well as energy consumption. We also exploit 

the redundancy in uniform vector instructions to provide 

opportunistic reliability enhancement. 

Our experiments show that the proposed approaches can achieve 

an average of 12.0% performance gains and 12.7% energy savings 

at very little hardware cost. Also, we show that with a little less 

energy savings (12.6%) and the same performance gains (12.0%), 

we can protect 21.1% ALU operations and 14.1% live vector registers. 
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