
Systematic Approaches for Precise and
Approximate Quantum State Runtime Assertion

Ji Liu
North Carolina State University

Raleigh, United States
jliu45@ncsu.edu

Huiyang Zhou
North Carolina State University

Raleigh, United States
hzhou@ncsu.edu

Abstract—With the rapid growth of quantum computing tech-
nology, programmers need new tools for debugging quantum
programs. Recent works show that assertions are a promising
way for debugging quantum programs. However, there are two
main drawbacks with the existing schemes. First, the existing
schemes, including both statistical and dynamic assertions are
only capable of asserting limited types of states, namely classical,
superposition, and specific entanglement states. Second, the use
cases of these assertions are limited, since the programmer has
to know the exact/precise state to assert.

In this work, we propose two systematic approaches for
dynamic quantum state assertion and they can assert a much
broader range of quantum states including both pure states
and mixed states. We also introduce the idea of approximate
quantum state assertion for the cases where the programmers
only have limited knowledge of the quantum states. Approximate
assertion is capable of checking membership in a set of states
{|ψ〉, |φ〉, ...}. While precise quantum state assertion can check
a specific quantum state, approximate assertion enables a way
to check whether the qubits of interest are in a super-set of
some expected states, which is analogous to the well-known
Bloom filter for membership checking in classical computing.
Our experiments demonstrate that our systematic approaches
can assert many more quantum states and can be used in various
assertion locations for qubit state checking.

Index Terms—quantum computing, runtime assertion

I. INTRODUCTION

Quantum computing has become an active research area
due to its remarkable potential in chemistry simulation [25],
cryptography [18], machine learning [9], and many more ap-
plications. The fast pace of development in quantum software
platforms and programming languages has necessitated the
development of program debugging tools. However, quantum
computing features a number of unique properties including
superposition and entanglement. These features increase the
difficulty of writing correct quantum programs; even quantum
experts may write them incorrectly. Li et al. [30] reported
that bugs have been found in the example programs in IBM’s
OpenQASM project [16] and Rigetti’s PyQuil project [38].
Previous works by Huang et al. [27], [28] have discussed
several types of bugs in quantum programs. Based on their
study, many bugs in the quantum programs are different from
the ones in classical programs. Nevertheless, they showed that
similar to debugging classical programs, assertions are very
useful primitives for debugging quantum programs.

Assertion is an important technique for program debugging.
It is a predicate that should always be evaluated to be true
during program execution. Huang et al. proposed a statistical
assertion scheme [28] which essentially creates breakpoints
in the program and measures the qubits at breakpoints. Due
to its destructive measurement, a statistical assertion cannot
be implemented dynamically at runtime. To overcome this,
Liu et al. proposed quantum circuits for dynamic runtime
assertions [32], which do not interrupt program execution
if there are no assertion errors. In addition to debugging
quantum programs, it is shown that assertion can also be
used to improve program reliability by filtering out erroneous
results. However, the scope of their supported assertions
is limited. The assertion primitives only support assertions
for classical, superposition, and specific entanglement states.
Li et al. proposed a runtime assertion scheme [30] based
on projective measurements. The projection-based assertions
can cover a broader range of quantum states. However, the
projection-based assertions require architectural support for
measuring the same qubits repeatedly and performing gate
operations after measurement. The state-of-the-art publicly
available quantum computers [41], [42] only provide measure-
ments at the end of the program and cannot take advantage
of the projection-based assertion scheme. Besides such limi-
tations, another key issue is that all these dynamic assertions
require precise state information before debugging. However,
in practical cases, the programmer may not know the exact
state to be asserted beforehand. If the programmer selects an
incorrect assertion state, the quantum state would be destroyed
after assertion. In short, there are four limitations of the prior
assertion schemes: (a) destructive measurement stops program
execution, (b) existing dynamic assertion schemes support
limited assertion states, (c) repeated measurements require
architectural support, and (d) asserting quantum states requires
precise assertion state information.

In this paper, we focus on dynamic assertion as it over-
comes the limitation of destructive measurement. We propose
two systematic approaches: SWAP-based assertion and Non-
destructive-discrimination(NDD)-based assertion, for assertion
circuit design. Both approaches can assert a broad range of
quantum states and both can be performed on the existing
quantum computers (i.e., no need for additional hardware
support). We show that the prior proposed dynamic assertion

circuits by Liu et al. [32] are actually special cases of our
systematic approaches. We analyze the efficiency and effec-
tiveness of both approaches and show that either design has
its own advantages.

We further introduce the idea of approximate quantum state
assertion. It can be used for cases when the programmer has
limited knowledge of the quantum states. For example, the
programmer expects that the quantum state needs to satisfy
some requirements but does not have the knowledge of the
exact quantum state. We propose approximate assertion as
a membership check w.r.t. to a set of quantum states {|ψ〉,
|φ〉, |θ〉,...}. An assertion failure means that the checked state
is not in the set while no assertion error means that the
checked state is within the set but not sure which state. When
we construct the set to be a superset of the expected states,
approximate quantum state assertion is somewhat analogous
to the well-known Bloom filter [10] in classical computing.
We also present the design methodology of approximate
assertion circuits using both the SWAP-based and NDD-based
approaches.

The major contributions of our paper are as follows:
• We propose two systematic approaches for dynamic as-

sertion, which essentially generalize the prior (ad hoc)
assertion schemes.

• We expand the assertion types from classical, superposi-
tion, and entanglement state to a wider range including
arbitrary pure states and many mixed states.

• We analyze the efficiency and effectiveness of different
assertion schemes.

• We introduce the idea of approximate assertion, which
performs membership checks on a set of states.

The remainder of the paper is organized as follows. Sec-
tion II presents the background of quantum computing and
discusses the related work. Section III presents an overview
of our proposed precise and approximate assertions and
highlights how they overcome the limitations of the prior
work. Sections IV and V detail SWAP-based and NDD-based
assertion circuit designs, respectively. Section VI compares our
proposed schemes with existing ones. Section VII presents our
experimental methodology. Section VIII discusses the general
applicability of the assertions. Sections IX and X showcase
the use of precise and approximate assertions for debugging,
respectively. Section XI summarizes the paper.

II. BACKGROUND AND RELATED WORK

A. Quantum Computing
In quantum computing, information is encoded in quantum

bits (qubits). A quantum program consists of a sequence of
quantum gates operating on qubits. During program execution,
qubits can be in pure or mixed states. Pure quantum states
correspond to vectors in a Hilbert space, a complex vector
space with an inner product, and can be represented with
vectors with norm one. For example, a single-qubit pure state
can be represented as |ψ〉 = a |0〉+b |1〉 where |a|2+ |b|2 = 1.

Due to entanglement, qubits can be in mixed states [11],
which are a mixture of pure states. A mixed state cannot be

described with a vector. Instead, it is described with a density
matrix ρ =

∑
i Pi |ψi〉 〈ψi|, where Pi are the probabilities of

each pure state |ψi〉 and
∑
i Pi = 1. The pure state |ψ〉 can

also be represented with a density matrix: ρ = |ψ〉 〈ψ|.
Multiple qubits are entangled if the state can not be rep-

resented with a tensor product of individual qubit states. In
general, suppose we have a system containing two subsystems
A and B, the state of the entire system AB is described by
a state vector |ψAB〉 or a density matrix ρAB . When the
state of the entire system can be represented as the tensor
product of individual subsystems, i.e., |ψAB〉 = |ψA〉 ⊗ |ψB〉,
subsystem A is not entangled with subsystem B or system AB
is separable. If system AB can’t be represented as the tensor
product of individual subsystems, subsystem A is entangled
with subsystem B, and the system AB is not separable. The
state of subsystem A can be derived from the partial trace of
the whole system AB: ρA ≡ trB(ρAB).

Mixed states are not necessarily entangled states. When
determining the mixedness of a system, the entanglement
within the system doesn’t matter. For example, we have a 3-
qubit system with the state |ψ123〉 = 1√

2
(|00〉 + |11〉) ⊗ |0〉,

which means that the first qubit is entangled with the second
qubit while the third qubit is not entangled with the first two.
The density matrix of the system is ρ123 = 1

2 (|00〉 〈00| +
|00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|)⊗ |0〉 〈0|. If we consider the
system of the first two qubits, since they are not entangled with
the third qubit, the two-qubit system is in a pure state, which
can be represented with a vector |ψ12〉 = 1√

2
(|00〉 + |11〉).

Note that the first two qubits are entangled, but the two-
qubit state is a pure state. However, if we consider the system
consisting of the second and third qubits, since this two-qubit
system is entangled with the first qubit, it is in the mixed state
ρ23 = tr1(ρ123) = 1

2 (|0〉 〈0| + |1〉 〈1|) ⊗ |0〉 〈0|. In this case,
although the second and the third qubits are not entangled, the
state of these two qubits is a mixed state. The prior dynamic
assertion schemes [32] can assert the special pure state |ψ12〉
as it is a Bell pair, but they can’t assert the mixed state ρ23
as well as some other pure states.

An n-qubit quantum operation/gate is represented by a 2n×
2n unitary matrix U . A gate U operates on a pure state |ψ〉
results in a state |ψ′〉 = U |ψ〉. A gate U operates on a mixed
state ρ leads to a state ρ′ = UρU† [35].

The state vector |ψ〉 representing a pure state is a unit
vector [35], i.e., 〈ψ|ψ〉 = 1. Two pure states |ψ〉 and |φ〉 are
orthogonal if their inner product is zero [37], i.e., 〈ψ|φ〉 = 0. A
set of states |ψi〉 is orthonormal when each state is represented
by a unit vector and distinct states in the set are orthogo-
nal [35]. In an n-qubit quantum system, a set of n orthonormal
states |ψi〉 forms an orthonormal basis of the system. Any
quantum state |π〉 can be represented as a superposition of
these states, i.e., |π〉 =

∑n
i=0 αi |ψi〉. An orthonormal basis

{|ψi〉} has following properties: (1)〈ψi|ψj〉 = 0, for all i 6= j,
and 〈ψi|ψj〉 = 1, for all i = j. (2)

∑2n−1
i=0 |ψi〉 〈ψi| = I ,

where I is the identity matrix. We call the orthonormal basis,
which only consists of the classical state |0〉 and |1〉, the
computational basis. For example, the computational basis

of a two qubit system is |00〉, |01〉, |10〉, |11〉. In the real
quantum devices, we usually measure the qubit states in the
computational basis.

B. Related work

A few approaches have been proposed to provide assertions
for quantum programs. Huang et al. [28] proposed a statis-
tical approach by measuring the qubits multiple times and
compare the probability distribution with that of the desired
state. However, directly measuring the qubits may change the
quantum state after measurement. Therefore, the statistical
assertion cannot be applied at runtime. SWAP-test [13] is
another candidate for assertions. However, when the ancilla
qubit in the swap test is measured as 0, i.e., no assertion error,
there is no guarantee that the qubit under test is in the desired
state. For example, when the qubit under test and the desired
state are orthogonal (e.g., |0〉 and |1〉), the ancilla qubit has
a probability of 50% being 0. Therefore, it is not suitable for
dynamic runtime assertions.

Liu et al. [32] proposed dynamic runtime assertion primi-
tives for three different types of states: classical, superposition,
and specific entanglement states. These assertion primitives
are designed such that they can measure the qubits non-
destructively through the ancilla qubits. The three types of
states are represented by state vectors, which means they are
pure states. However, asserting these three types of state are
not sufficient, and might lead to an inefficient design. For
example, the highly entangled states such as Bell states [6],
GHZ states [23] and cluster states [12] are widely used in
quantum teleportation [7], [14], quantum secret sharing [29],
and super dense coding [34]. The prior work only describes
assertions for entangled states with even or odd numbers of
ones, leaving many types of entanglement states unaddressed.
Moreover, we might want to assert only a few qubits in a large
entangled system. These qubits are usually in a mixed state
since they are likely to be entangled with the other qubits. The
lack of a wide range of assertion types necessitates finding a
more generic dynamic assertion scheme.

Li et al. [30] proposed assertion schemes based on
projective-measurement. Their assertion schemes are capable
of asserting a broader type of quantum states including mixed
states. However, their approach inserts measurements at each
assertion location and requires the system to operate gates after
measurement. Such an assertion scheme requires architectural
support for measuring the qubits repeatedly and operating
gates after measurement. The state-of-the-art publicly available
quantum computers [41], [42] only provide measurement at
the end of the program and cannot take advantage of this
projection-based assertion scheme.

III. PRECISE AND APPROXIMATE ASSERTION

In this work, we propose systematic approaches for both
precise and approximate assertions. We consider the assertions
that require a quantum state vector |ψ〉 or a density matrix ρ
as precise quantum state assertion as the state to be asserted
for is precise. The precise assertions can be considered as

assertEquals(|ψ〉 , |φ〉). Approximate assertion, on the other
hand, provides a membership check for a set of states.

Compared to prior works, our precise assertion can assert
for a wider range of states. First, our precise assertion for
pure states ensures that any changes in the states, including
the coefficients, will raise an assertion error. In the prior
entanglement state assertion [32], the state in the form of
a |00〉 + b |11〉 is asserted using parity checks. As a re-
sult, it won’t raise an assertion error for an entangled state
with incorrect coefficients. Furthermore, for the GHZ state
|GHZ〉 = 1√

2
|000〉+ 1√

2
|111〉 that is widely used in quantum

communication [19] and cryptography, the prior primitives
for asserting entangled state can’t check for it since not all
the states have even number of ones. Our proposed precise
assertion overcomes the limitations and can check all such
cases. Second, we propose assertion schemes for mixed states
to further increase the range of states that can be checked.

Approximate assertion checks whether a state |ψ〉 is within
a set of states {|φ〉 , |θ〉 , ...}. An assertion error means that the
state |ψ〉 is not in the set. It extends the usage of assertions
when the programmer only has limited knowledge of the
program. For example, in the Deutsch-Jozsa algorithm [17]
we are given a black-box function f(x). The function is
guaranteed to be either constant (output is always 0 or always
1) or balanced (returns 0 for half of the inputs and 1 for
the rest). The Deutsch-Jozsa algorithm determines whether
the function f(x) is constant or balanced. Since the f(x)
is a black-box function, the programmer can’t predict the
output of f(x). If a program bug happens in the black-box
function f(x), which makes the function neither constant nor
balanced, the existing dynamic assertion schemes can’t assert
for such type of bugs. However, since the constant output states
together with the inputs form a set of states, we can resort to
approximate assertion. If the function is neither constant nor
balanced, the program will raise an assertion error. We will
discuss this example in detail in Section X.

Our proposed mixed-state assertion and approximate asser-
tion also enable a new trade-off between assertion accuracy
and circuit complexity. For example, to check the GHZ state,
we can use three different assertions as shown in Figure 1.
With our SWAP-based circuit design, 10 CNOT gates are
needed for the precise assertion for the GHZ state. We can
use two ways to reduce the circuit cost. First, we assert
for fewer qubits. Instead of asserting the three-qubit state,
we can assert the last two qubits since our approach allows
assertion for such a two-qubit mixed state. With our SWAP-
based mixed-state assertion, the circuit requires 4 CNOT gates.
Second, we can disregard the coefficients and assert for a
set of states {|000〉 , |111〉} using approximate assertion. Our
SWAP-based approximate assertion circuit requires 8 CNOT
gates for such approximate assertion. We can expand the
set of states to further reduce the circuit cost. When we
extend the set to {|000〉 , |011〉 , |100〉 , |111〉}, the CNOT gate
count can be reduced to 4. We can also use the NDD-
based approximate assertion circuit along with a different set
of states { |000〉+|111〉√

2
, |001〉+|110〉√

2
, |011〉+|100〉√

2
, |010〉+|101〉√

2
}, the

Fig. 1: Three different assertions for the GHZ state. The
precise pure state assertion asserts for the exact three-qubit
state, including coefficients and states. The precise two-qubit
mixed state assertion asserts for the mixed state of the last two
qubits. The approximate three-qubit state assertion asserts for
a set of states {|000〉, |111〉}.

1 circuit.u2(0, np.pi, qr[0])
2 circuit.cx(qr[0], qr[1])
3 circuit.cx(qr[1], qr[2])

Fig. 2: The pseudo code for GHZ state preparation.

resulting circuit only requires 3 CNOT gates.
Next, let us use the GHZ example to illustrate the capa-

bilities and the cost of different assertion schemes. Figure 2
shows the code for preparing the GHZ state. The code contains
a single qubit u2 gate on qubit qr[0] and two CNOT gates
between qubit qr[0], qr[1], and qr[2]. Considering two types
of bugs in the code. Bug1: In line 1, the programmer specifies
incorrect u2 gate parameter order circuit.u2(np.pi, 0, qr[0]).
This bug would lead to incorrect coefficients in the output state
1√
2
|000〉 − 1√

2
|111〉. Bug2: The programmer reorders line 2

and 3. This bug will lead to incorrect entanglement in the
output state 1√

2
|000〉 + 1√

2
|011〉. Table I compares existing

assertion schemes with our proposed ones in terms debugging
capability and the circuit cost in the number of CNOT (CX)
gates and single-qubit gates (SG), the number of ancilla qubits,
and the number of measurements.

Assertion type Bug1 Bug2 #CX #SG #ancilla #measure
Stat [28] False True N/A N/A N/A N/A

Primitive [32] N/A N/A N/A N/A N/A N/A
Proq [30] True True 4 2 0 3

SWAP-based precise assertion True True 10 2 3 3
SWAP-based mixed state assertion False True 4 0 1 1
NDD-based approximate assertion True True 3 2 1 1

TABLE I: Assertion coverage and circuit cost for different
assertion schemes. True/False means the assertion can/can’t
detect the corresponding bug.

The statistical assertion [28] measures the probability dis-
tribution of quantum states. Therefore, it is capable of de-
tecting incorrect entanglement states (Bug2). However, it

cannot capture the bugs with incorrect coefficients (Bug1)
since the phase changes are not directly measurable in the
computational basis. The prior assertion primitives [32] failed
to provide assertion for the GHZ state as discussed before. The
projection-based assertions (Proq) can capture these two bugs
but it requires additional architectural support. In comparison,
our proposed assertions are applicable to the state-of-the-art
quantum computers and our approaches provide the flexibility
for identifying the bug with different circuit costs.

In the next two sections, we will present two systematic
assertion circuit designs: SWAP-based assertion circuit and
NDD-based assertion circuit. We also propose logical OR
based assertion design as an alternative for SWAP-based
assertion design. For each circuit design approach, we will
introduce the designs for precise and approximate assertion.
For all of the designs, the ancilla qubit being |0〉 means no
assertion error, being |1〉 means assertion error. The reason is
that |1〉 has higher measurement error and may decay into |0〉.

IV. SWAP-BASED ASSERTION CIRCUIT

A. Motivation

To achieve assertEquals(|ψ〉 , |φ〉), we can use a SWAP-
based design as shown in Figure 3. We leverage the fact that
any n-qubit pure state can be generated by applying a unitary
gate U to the n-qubit ground state |0〉⊗n. For asserting an n-
qubit pure state created by the program |ψ〉 = V1...Vn |0〉⊗n
equals to the desired state |φ〉 = U |0〉⊗n, we can apply
the inverse gate U−1 to transfer the pure state |ψ〉 back
to n-qubit state |0〉⊗n. Then we can measure the qubits to
verify whether all the qubits are in |0〉 state. If the n-qubit
state is not |0〉⊗n, the pure state |ψ〉 was not in the |φ〉
state before the inverse transformation, and the circuit will
raise an assertion error. However, the state-of-the-art quantum
computers do not support operations after measurement which
means the program cannot proceed after we measure the
qubits. A solution to this problem is introducing SWAP gates
and ancilla qubits. We can SWAP the qubits under test with
ancilla qubits and measure the ancilla qubits, as shown in
Figure 3. The first n-qubits are the qubits under test, and the
pure state is generated by a sequence of gates V1...Vn. We
can apply the U−1 gate to convert it to |0〉⊗n state. Since we
can’t measure it directly, we introduce SWAP gates to swap the
qubits under test with the ancilla qubits. When we measure the
ancilla qubits, all of the ancilla qubits should be in |0〉 state. In
order to regenerate the desired state |φ〉, we apply the unitary
gate U to the ancilla qubits before swapping and then swap
this prepared state to the qubits under test.

For example, the |+〉 state is generated by applying the
Hadamard gate H to the |0〉 state. The Hadamard gate H is
the inverse gate of itself. Therefore, if we want to assert for
state |+〉, the unitary gate U in the assertion circuit should be
the Hadamard gate. The assertion circuit is shown on the left
side of Figure 4. The assertion circuit proposed by the prior
work [32] is shown on the right side of Figure 4. We can prove
these two circuits are equivalent, and the proof outline is in
Appendix A.

Quantum Program Assertion circuit

. . .

. . .

· · ·

|0〉⊗n V1 Vn |ψ〉 U−1 |φ〉

|0〉⊗n U |φ〉

Fig. 3: The idea of SWAP based assertion circuits.

|+〉 H |+〉

|0〉 H

=
|+〉 H |+〉

|0〉 H

Fig. 4: Circuits for asserting |+〉 state: our circuit design is on
the left side; the one in prior work [32] is on the right side.

Note that the prior work [36] has proved that the state
preparation circuit U has lower cost than the original quantum
program, i.e., V1...Vn. Moreover, when used for debugging,
both U and U−1 are synthesized from the assertion, therefore
they are assumed to be bug free.

B. Precise Assertion for Pure States

The key to our precise assertion for pure states is to generate
the U or U−1 gate from the pure state to assert for. To assert
for an n-qubit pure state |ψ0〉, from Figure 3, we know that
|ψ0〉 = U |0〉 or |0〉 = U−1 |ψ0〉. Besides it, we also would like
to signal an assertion error for other states. In other words, our
goal is that by applying the unitary gate U−1, we transform
the “correct” state |ψ0〉 to the zero state |0〉⊗n, and other
“incorrect” states to the states in the computational basis, that
contain at least one |1〉. This way, when we measure the qubits
after U−1, if all the qubits are in the |0〉 state, the circuit won’t
raise an assertion error. If any of the qubit is in |1〉 state, the
pure state was not in the |ψ0〉 state before the transformation,
and the circuit will raise an assertion error. Figure 5 explains
the idea. From the n-qubit pure state |ψ0〉, we find an orthonor-
mal basis {|ψi〉}i∈[0,2n−1] that includes state |ψ0〉 using the
Gram-Schmidt process [22]. Then, based on the proposition in
Appendix B, we generate U−1 to transform the states in this
orthonormal basis to the states in the computational basis and
U−1 = |0〉⊗n 〈ψ0|+ |0〉⊗n−1 |1〉 〈ψ1|+ ...+ |1〉⊗n 〈ψ2n−1|.

For example, to assert for the Bell state 1√
2
(|00〉 + |11〉),

we can find the orthonormal basis that includes the state
as:{ 1√

2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉), 1√

2
(|00〉 − |11〉),

1√
2
(− |01〉 + |10〉)}. Then we can calculate the two-qubit

unitary gate U−1 = 1√
2
|00〉 (〈00| + 〈11|) + 1√

2
|01〉 (〈01| +

〈10|) + 1√
2
|10〉 (〈00| − 〈11|) + 1√

2
|11〉 (−〈01|+ 〈10|). With

gate decomposition, we find this gate consists of a CNOT gate
followed by a Hadamard gate on the control qubit.

On current quantum computers, we can only measure the
qubits once at the end of the program. To overcome this

Fig. 5: The unitary gate transformation for pure states.

limitation, we can swap the qubits with the ancilla qubits and
measure the ancilla qubits. In order to reconstruct the qubit
state |ψ0〉, we need to prepare the state |ψ0〉 by applying the
gate U to the |0〉⊗n state:|ψ0〉 = U |0〉⊗n. The general scheme
of the SWAP based assertion circuit is illustrated in Figure 6.
Since we are swapping the qubits with ancilla qubits in |0〉
state, the SWAP gates can be optimized with only two CNOT
gates [31]. Depending on where we place the U gate and U−1

gate w.r.t. the SWAP gate, there are four different designs. For
example, the design in Figure 3 and Figure 6 are two different
designs with U gate at different places. We prefer to use the
design in Figure 6 since the compiler has a better chance to
optimize the gates with the gates before and after the assertion
circuit.

· · ·

|ψ〉 U−1 U |ψ〉

|0〉⊗n

Fig. 6: General scheme of SWAP based assertion circuit for
pure state assertions.

C. Precise Assertion for Mixed States

In this section, we generalize the assertion scheme to assert
for mixed states. The main idea is that for a mixed state ρ0
to be asserted for, we can generate an unitary gate U−1 to
transform the state ρ0 to the |0〉 states while keeping the
entanglement with other qubits intact. A mixed state is a
probability mixture of pure states, and can be defined with
a density matrix, i.e., ρ0 =

∑t
i=0 Pi |ψi〉 〈ψi|, where Pi are

the probabilities of each pure state |ψi〉 and these pure states
may not be orthogonal to each other.

In our design, the first step is to diagonalize the den-
sity matrix with singular value decomposition (SVD) and
find orthonormal eigenstates. Since the density matrix is a
square Hermitian matrix, it is always diagonalizable [26],
i.e., ρ0 = DΛD−1, where D is a unitary matrix, and
Λ = diag(λ′0, λ

′
1, ...λ

′
n−1) is a diagonal matrix. The columns

vectors |ψ′0〉 , |ψ′1〉 , ..., |ψ′n〉 of D form an orthonormal basis

and are eigenvectors of ρ0 with eigenvalues λ′0, λ
′
1, ..., λ

′
n−1,

respectively. We use the orthonormal basis formed by the
eigenvectors |ψ′i〉. Since some of the eigenvalues might be
zero, we reorder the eigenvalues and the eigenvectors such that
the first t eigenvalues are non-zero, where t is the rank of the
density matrix. Now the density matrix can be represented as
ρ0 =

∑t−1
i=0 λi |ψi〉 〈ψi|, where λi are the non-zero eigenvalues

and |ψi〉 are the corresponding eigenvectors. The rank t of the
density matrix should be less than or equal to the total number
of bases, 2n. The mixed state ρ0 can fall into these t basis
states |ψi〉i∈[0,t−1], but would never fall into the other 2n − t
states |ψi〉i∈[t,2n−1]. Therefore, these t states, from |ψ0〉 to
|ψt−1〉, are considered as the “correct” states and the assertion
circuit should not raise an assertion error. However, the other
2n−t states from |ψt〉 to |ψ2n−1〉 are considered as “incorrect”
states and the assertion circuit should raise an assertion error
for them. The unitary gate U−1 is generated to transform the
states in the basis formed by |ψ′i〉 to the computational basis.
It is worth noting that by checking the “correct” states, we
can guarantee the state under test is a probability mixture of
t “correct” states when there is no assertion error. However,
we can’t guarantee the probability of each “correct” state is
the same as the desired state. The prior work [30] also has
the same limitation. In section IX-A2, we will show that
our proposed mixed state assertion is capable of identifying
program bugs.

In the second step, we discuss assertion circuit designs for
different rank values, t:

1) t = 2m and t ≤ 2n−1, where m is an integer.
Figure 7 shows the main idea of gate transformation and
Figure 8 shows the assertion circuit. As shown in Figure 7,
we can generate a unitary gate U−1, which transforms the 2m

“correct” states to the states with the leading n − m qubits
in |0〉 state. Therefore, when we measure the leading n −m
qubits after unitary gate transformation, if the n −m qubits
are all in |0〉 state, the circuit won’t raise an assertion error.
If any of the leading n −m qubits is in |1〉 state, the circuit
will raise an assertion error.

As indicated in Figure 8, although the qubits under test
are entangled with other qubits (therefore they are in a mixed
state), after U−1, the leading n−m qubits are not entangled
with any other qubits (as they are in |0〉 state). Therefore, they
can be measured without affecting the existing entanglement.

Fig. 7: The unitary gate transformation for mixed states when
t = 2m.

· · ·
|ψ〉 U−1 U |ψ〉

|0〉
⊗
n−m

Fig. 8: General scheme of SWAP based assertion circuit for
mixed state assertion when t = 2m.

2) 2m < t < 2m+1 and t < 2n−1. In this case, we
can take advantage of the assertion design for the case when
t = 2m by finding two supersets of states. Either superset
of states contains 2m+1 states and the t correct states are
the intersection of these two supersets of states. By asserting
for these two supersets of states, when there is no assertion
error for both assertions, we can guarantee the state is within
“correct” states. For example, we want to assert for a mixed
state ρ = 0.5 |000〉 〈000|+ 0.25 |001〉 〈001|+ 0.25 |010〉 〈010|.
Here, t = 3 and 21 < t < 21+1, the “correct” states
are |000〉, |001〉, and |010〉. We can first assert for the
superset with 22 states:{|000〉,|001〉,|010〉,|011〉}. If there is
no assertion error, we assert for another superset with 22

states:{|000〉,|001〉,|010〉,|100〉}. When both assertion don’t
raise an assertion error, the mixed state is a probability mixture
of the “correct” states.

Fig. 9: The unitary gate transformation for mixed states when
2n−1 < t < 2n.

3) 2n−1 < t < 2n. As t increases, the number of “incorrect”
states decreases and the number of qubits that we need
to measure also decreases. When t > 2n−1, the ratio of
“incorrect” states is less than half and we do not have enough
qubit to measure. Therefore, we need one extra ancilla qubits
to enlarge the number of “incorrect” states. The ancilla qubit
is initialized in |0〉 state. As shown in Figure 9, we pick some
states as the “virtually correct” states. These “virtually correct”
states won’t raise an assertion error, but we also know they
won’t happen since the ancilla qubit is prepared in |0〉 state.
The unitary gate transforms the union of “virtually correct”
and “correct” states to the computational basis states with

· · ·|ψ〉
U−1 U

|ψ〉

|0〉 |0〉

|0〉

Fig. 10: General scheme of SWAP based assertion circuit for
mixed state assertion when 2n−1 < t < 2n.

leading |0〉. Therefore, we can measure the leading qubit to
assert for the union of “virtually correct” and “correct” states,
which is functionally equivalent to asserting only the “correct”
states.

Similarly, due to the measurement limitation, we need to
swap the qubits with the ancilla qubits. When t ≤ 2n−1, the
circuit design would be similar to the design in Figure 8. When
2n−1 < t < 2n we need an extra qubit and the design is shown
in Figure 10.

One corner case worth discussion is t = 2n, where the
mixed state is the probability mixture of all the 2n basis states.
In this case, all the basis states are marked as “correct” states,
which means that we can’t assert for this special mixed state.

D. Approximate Assertion

In Section III we discussed the idea of approximate assertion
which asserts a set of states. We can see that asserting a
set of states is actually similar to asserting mixed states. A
mixed state is a probability mixture of pure states, which is
analogous to a set of pure states. Therefore, we can reuse
the same methodology as asserting mixed states. Given a set
of quantum states {|ψ〉 , |φ〉 , ...}, since the states may not be
orthogonal, we can form a density matrix from these states
with equal probability and use the same process to diagonalize
it and calculate the orthonormal basis states. After finding the t
orthonormal basis states, we can treat this problem as asserting
for the mixed state composed of these t basis states. We mark
these t basis states as “correct” states and follow the assertion
process as described for mixed states.

E. Alternative Design: Logical OR Based Assertion Circuit

The circuit for asserting an n-qubit pure state requires n
SWAP gates and n ancilla qubits. When the number n is
large, the design becomes inefficient. Here, we present another
design, which only requires one ancilla qubit. After the U−1

gate, the state of the qubits under test should be transformed
to all |0〉 state. If any of them is in |1〉 state, the circuit should
raise an assertion error. Therefore, we can apply logical OR
gate to the qubits and store the result in one ancilla qubit.
When the ancilla qubit is in |0〉 state, the circuit won’t raise
an assertion error. When the ancilla qubit is in |1〉 state,
some of the qubits are in |1〉 state after U−1 gate and the
circuit will raise an assertion error. The circuit design is shown
in Figure 11. An n-qubit logical OR gate can be linearly

decomposed into basic operators with one ancilla qubit [5],
[24]

OR gate

· · ·

|ψ〉 U−1 U |ψ〉

|1〉

Fig. 11: Logical OR based assertion circuits.

Although both SWAP-based and logical OR-based designs
can detect the incorrect states, their functionalities are slightly
different. In the SWAP based assertion circuit, we prepare the
desired state for the ancilla qubits and swap the qubits under
test with the ancilla qubits. When the qubits under test are not
in the desired state, after the assertion circuit, the state of the
qubits will be “corrected” to the desired state. However, the
logical OR based design doesn’t have this property. When the
ancilla qubit is in |1〉 state and an assertion error is raised, the
qubits under test are not “corrected” by the assertion circuit.
In the following discussion, we will find that the NDD based
assertion circuit has the same property as this logical OR based
design.

V. NDD-BASED ASSERTION CIRCUIT

Liu et.al. [32] proposed quantum assertion circuits for
superposition states based on Non Destructive Discrimination
(NDD). Here, we extend the idea to assert for pure and mixed
states.

A. Precise Assertion for Pure States

The general scheme for asserting a pure state is shown in
Figure 12. The design consists of a controlled-U gate and two
Hadamard gates and is a phase-kickback circuit. It has the
following properties: (i) when the quantum state |ψ〉 is the
eigenstate of the unitary matrix U with the eigenvalue of 1,
i.e., |ψ〉 = U |ψ〉, the ancilla qubit’s output state is |0〉. (ii)
When the quantum state |ψ〉 is the eigenstate of the unitary
matrix U with the eigenvalue of -1, the ancilla qubit’s output
state is |1〉. Based on these two properties, we can design the
assertion circuit for asserting a pure state |ψ0〉.

Similar to the SWAP based design, the first step of our
design is to find an orthonormal basis {|ψi〉}i∈[0,2n−1] that
includes state |ψ0〉. Since we want to distinguish between the
“correct” state |ψ0〉 and the other “incorrect” states |ψi〉i 6=0, we
can find an unitary matrix U such that the “correct” state |ψ0〉
is its eigenstate with the eigenvalue being 1 and the “incorrect”
states |ψi〉i 6=0 are its eigenstates with eigenvalues being -1.
Based on this property, when the qubits under test are in |ψ0〉
state, we will get |0〉 state when measuring the ancilla qubit,
i.e., the assertion circuit won’t raise an assertion error. When
the qubits under test are in any other state |ψi〉i6=0, we will
get |1〉 when measuring the ancilla qubit, i.e., the assertion
circuit will raise an assertion error. Based on the spectral
decomposition [20], the unitary matrix U can be calculated

as U = |ψ0〉 〈ψ0| −
∑2n−1
i=1 |ψi〉 〈ψi|. The controlled-U gate

can be generated by adding controls [43] to the unitary gate
U .

· · ·

|ψ〉 U |ψ〉

|0〉 H H

Fig. 12: General scheme of NDD-Based assertion circuits.
Except the assertion circuit shown in Figure 4, all the

assertion circuits proposed in the prior work [32] can be
categorized as NDD based assertion circuits. For example, in
order to assert for classical state |0〉, we can find orthonormal
basis {|0〉 , |1〉} that includes state |0〉. The matrix U can be
calculated as U = |0〉 〈0| − |1〉 〈1| = Z. Here Z is the matrix
of the Pauli Z operator. Therefore, the controlled-U gate is
indeed a controlled-Z gate. The corresponding assertion circuit
is shown on the left side of Figure 13. The assertion circuit
proposed by the prior work [32] is shown on the right side
of Figure 13. It can be proven that these two circuits are
equivalent based on the quantum circuit equivalence rules [21].

|0〉 Z |0〉

|0〉 H H

=
|0〉 |0〉

|0〉

Fig. 13: Circuits for asserting |0〉 state: our circuit is on the
left side; the one in prior work is on the right side.

B. Precise Assertion for Mixed States

The assertion scheme in Figure 12 can be generalized to
assert for mixed states ρ0. After performing SVD on the
density matrix of the mixed state, we can find an orthonormal
basis {|ψi〉}i∈[0,2n−1] and represent the mixed state as a
mixture of the basis states: ρ0 =

∑t−1
i=0 λi |ψi〉 〈ψi|. The

number of basis states t should be less than or equal to the total
number of bases 2n. Similar to the discussion in Section IV-C,
the circuit should not raise an assertion error when the qubits
under test are in the t “correct” states from |ψ0〉 to |ψt−1〉.
When the state belongs to the 2n − t “incorrect” states from
|ψt〉 to |ψ2n−1〉 , the circuit should raise an assertion error. The
assertion circuit structure is the same as the design for pure
states shown in Figure 12. We can find a unitary matrix U for
which the “correct” states are its eigenstate with the eigenvalue
being 1, and the “incorrect” states are its eigenstates with the
eigenvalues being -1. The unitary matrix U is calculated as
U =

∑t−1
i=0 |ψi〉 〈ψi|−

∑2n−1
i=t |ψi〉 〈ψi|. The ancilla qubit will

stay in |0〉, i.e., no assertion error, when the qubits under test
is in a probability mixture of the “correct” states. The ancilla
qubit will stay in |1〉, i.e., an assertion error, when the qubits
under test is in a probability mixture containing “incorrect”
states. Note that since the expected states are the eigenstates

of U with eigenvalue of 1, the existing entanglement between
the qubits under test and others are not affected.

C. Approximate Assertion

Similar to the discussion in Section IV-D, to assert a set of
quantum states {|ψ〉 , |φ〉 , ...}, we can form a density matrix
and use the same process to diagonalize it and calculate the
orthonormal basis states. After finding the t orthonormal basis
states, we can treat this problem as asserting for the mixed
state composed of these t basis states. We mark these t basis
states as “correct” states and follow the assertion process as
described for mixed states.

Based on the idea of parity check, the prior work [32]
described the circuit for asserting entanglement state with even
numbers of ones: a |00〉+b |11〉. Since coefficients a and b are
not fixed, this can be considered as an approximate assertion
for a set of states with even numbers of ones:{|00〉 , |11〉}. We
will show that our approximate assertion circuit and the circuit
proposed in prior work are equivalent.

First, we form a density matrix from these states with equal
probability: ρ = 1

2 |00〉 〈00| + 1
2 |11〉 〈11|. After performing

SVD on the density matrix ρ, we can find an orthonormal
basis {|00〉 , |01〉 , |10〉 , |11〉}. Then, we mark |00〉 and |11〉
as “correct” states and |01〉 and |10〉 as “incorrect” states. The
unitary matrix U is calculated as U = |00〉 〈00|+ |11〉 〈11| −
|01〉 〈01|−|10〉 〈10| = Z⊗Z. Here Z is the matrix of the Pauli
Z operator. The controlled-U gate is indeed two controlled-Z
gates. The corresponding assertion circuit is shown on the left
side of Figure 14. The assertion circuit proposed in the prior
work [32] is shown on the right side of Figure 14. It can be
proven that these two circuits are equivalent.

|ψ〉
Z

|ψ〉
Z

|0〉 H H

=
|ψ〉 |ψ〉

|0〉

Fig. 14: Circuits for asserting |ψ〉 = a |00〉+b |11〉: our circuit
is on the left side; the one in prior work is on the right side.

VI. DESIGN COMPARISON

In this section, we compare the assertion coverage and
circuit cost of different designs. We propose three different
assertion circuit designs, namely the SWAP based assertion
circuit, logical OR based assertion circuit, and NDD based
assertion circuit. We compare them with the statistical asser-
tion (Stat) [28], runtime assertion primitives (Primitive) [32],
and projection-based assertion (Proq) [30].

A. Assertion Coverage

The statistical assertions and runtime assertion primitives
support assertion for classical, superposition, and entangle-
ment states. Nevertheless, the discussions of these three types
of states are not complete. The superposition states with dif-
ferent relative phase have not been discussed in the statistical

assertion. Beyond that, some types of entanglement states have
not been discussed either, for example, state |00〉+e

i π
4 |11〉√
2

. All
these three types of quantum states can be represented by
a state vector, which means that they are pure states. Proq
proposed assertions for both pure states and mixed states but
the assertion for a set of states has not been discussed. The
coverages of different assertion designs are shown in Table II.
Since our check for the mixed states cannot evaluate the
probabilities, we mark the assertions for mixed states and for
a set of states as “Part”. The three designs proposed in this
paper have the broadest coverage.

Assertion state type Stat [28] Primitive [32] Proq [30] SWAP based logical OR based NDD based

Pure states

Classical ALL ALL ALL ALL ALL ALL
Superposition Part ALL ALL ALL ALL ALL
Entanglement Part Part ALL ALL ALL ALL

Other N/A N/A ALL ALL ALL ALL
Mixed states N/A N/A Part Part Part Part
Set of states N/A N/A N/A Part Part Part

TABLE II: Assertion coverage for different designs. AL-
L/Part/NA means the scheme supports all/part/none of the
corresponding quantum states.

B. Assertion Circuit Cost

Since the runtime assertion circuits are inserted in the
quantum programs, the circuit cost is an important factor.
Intuitively, the SWAP-based assertion circuits may be costly
since we are reverting the quantum state to the ground state
and recomputing it and the cost of the matrix U may be
similar to the quantum program itself. This, however, is not
the case. For a quantum program, we don’t know the answer
and need to run the costly circuit to find the answer. In
comparison, for asserting a known state, the circuit could be
much smaller. As shown in the prior work [36], an n-qubit
gate decomposition reaching the lower bound of O(4n) CNOT
gates can lead to state preparation with O(2n) CNOT gates.
Since the cost of the SWAP gates and the logical OR gates
with one ancilla qubit both scale linearly O(n), the resulting
SWAP-based assertion circuit will have O(2n) CNOT gates
which is much smaller than the original circuit. In addition,
quantum machine learning [3], [39] has been used to prepare
high fidelity quantum states with low depth circuits.

Given that the unitary gates in the designs need to be
decomposed to the basis gates and different decomposition
will result in different quantum gate counts, it is difficult to
judge the circuit cost for an arbitrary state. Here, we present
the circuit cost comparison for several common cases. We use
four metrics: number of CNOT gates (#CX), number of single-
qubit gates (#SG), number of ancilla qubits (#ancilla), number
of measurements (#measure). The resulting cost of each circuit
design is shown in Table III.

First, we discuss the cost for asserting arbitrary single-qubit
pure states. The single-qubit state assertion is like the basic
unit of assertions. The circuit cost for each design is shown
in Table III. Even though the proq design has the least cost, it
is not applicable to the recent quantum computers.When there
is only one qubit under test, the logical OR gate in Figure 11
can be simplified to an open CNOT gate. The logical OR

based assertion circuit consists of two single-qubit gates and
a CNOT gate. Therefore, we choose logical OR based design
for asserting single-qubit pure states.

Then, we discuss the cost for asserting arbitrary n-qubit
separable state. The qubits in an n-qubit separable state are not
entangled and the state can be expressed as the tensor product
of individual single-qubit states:|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ... |ψn−1〉.
This kind of state often appears as the initial state or the
output state of quantum programs. Since the qubits in this
state are not entangled, asserting an n-qubit separable state is
equivalent to asserting each qubit individually. For the logical
OR based assertion circuit, the multi-qubit OR gate is indeed a
multiple open-controlled Toffoli gate. There are multiple ways
to decompose multi-controlled Toffoli gates [4], [33]. Hereby,
we choose a simple design [35] which consists of 12n + 1
CNOT gates and 16n single-qubit gates. For the NDD based
circuit, the number of CNOT gates in the circuit is not fixed,
depending on the actual assertion state.

When asserting for the n-qubit entangled states with even
numbers of ones, for example Bell state |00〉+|11〉√

2
and n-qubit

GHZ state |0〉
⊗n+|1〉⊗n√

2
, the NDD based design has the least

gate count among the assertion circuits we propose. The NDD
based circuit only consists of n CNOT gates. When asserting
for the entangled gates, the decomposition of unitary gate U in
the SWAP based and logical OR based design will include at
least one CNOT gates. Therefore, the gate count for asserting
entanglement state should be greater than that of the separable
state.

We will introduce the circuit design for asserting constant
functions in Section X. In that case, the SWAP based design
has the least number of gates.

Since each design performs the best for their special cases,
none of the designs outperforms the rest for every situation.
In our assertion function, the programmer can specify the
assertion circuit design. The programmer can also let the
assertion function to estimate the circuit cost of each design
and select the design with the lowest cost.

VII. METHODOLOGY

Qiskit [2] is an open-source quantum computing framework.
We augmented the Qiskit version 0.18.0 with the function
to insert assertion circuits. We also provided several tools
for finding orthonormal basis and calculating the number of
basis states. The augmented version of Qiskit is publicly
available [1]. The assertion function is in the form:
assert(circuit,qubitList,stateSet,design)
The assertion function takes four arguments. The first ar-

gument “circuit” specifies the quantum circuit. The second
argument “qubitList” specifies a list of qubits under test. The
“stateSet” argument represents a set of desired state variables.
The state variable can be either a vector representing a pure
state or a matrix representing a mixed state. If the size of
the set is one, the assertion function will assert for that
particular state. If the size of the set is greater than one,
the assertion function will use approximate assertion to assert

Primitive [32] Proq [30] SWAP based Logical OR based NDD based
State single separable even single separable even single separable even single separable even single separable even
#CX 2 2n n 0 0 > 0 3 3n > 3n 1 12n+1 > 12n+ 1 2 State dependent n
#SG 6 12n 0 2 2n ≥ 2n 2 2n ≥ 2n 2 16n ≥ 16n 6 State dependent 0

#ancilla 1 n 1 0 0 0 1 n n 1 1 1 1 1 1
#measure 1 n 1 1 n n 1 n n 1 1 1 1 1 1

TABLE III: Circuit cost for different assertion circuit designs.

for the set of states. The “design” argument specifies the
circuit design among the three different designs we proposed.
If the “design” argument is set to NONE, the function will
estimate the circuit cost of each design and select the design
with the least CNOT gate count. We use the UnitaryGate
function from Qiskit to generate gates from unitary matrices.
We perform our experiments on a 15-qubit quantum computer
ibmq-melbourne and the qasm simulator from Qiskit Aer. Each
experiment is executed for 8192 shots.

|0〉⊗4

H

QFT †
H

H

H

|ψ〉 U20 U21 U22 U23 |ψ〉

1 2 3 4 5 6

Fig. 15: Quantum phase estimation circuit.

VIII. GENERAL APPLICABILITY

Quantum programs usually operate on a finite number of
qubits. These qubits only entangle with the other qubits within
the system, thus the system stays in a pure state for every
instruction. As a result, our systematic assertion scheme can
essentially assert the state after every instruction. Using n-
qubit QPE as an example, there are n+2 slots available for
assertion as illustrated in Figure 15, which shows the 4-
qubit QPE circuit. The corresponding code for the 4-qubit
QPE algorithm is shown in Figure 16. In this example, all
the assertions are precise assertions since we can calculate
qubit state vectors beforehand. With the capability to assert
for mixed states or a set of states, we also have the flexibility
to choose different assertions, from single-qubit state assertion
to multi-qubit state assertion, and from precise state assertion
to approximate assertion.

While there is a variety of quantum programs, the quantum
programs usually share common subroutines or program pat-
terns. For example, the phase-kickback circuit is widely used
in quantum algorithms such as Shor’s algorithm [40], phase
estimation algorithm [15], Deutsch algorithm [17], Bernstein-
Vazirani algorithm [8], etc. In the next section, we will use the
QPE circuit as a case study to introduce the debugging process
for the phase-kickback subroutine. The debugging scheme
is applicable to the other algorithms that contain the same
subroutine. Similarly, many quantum programs also share
the same program pattern. The prior paper [28] points out
common program patterns such as superposition precondition,

gates with recursion, and de-allocation of ancillary qubits.
As another example, we illustrate debugging the gates with
recursion in Appendix D.

IX. DEBUGGING CASE STUDY: QUANTUM PHASE
ESTIMATION

In this section, we use quantum phase estimation (QPE)
to showcase that our proposed circuits significantly improve
the effectiveness of assertions. In subsection IX-A, we use
several case studies to demonstrate the debugging process. In
subsection IX-B, we run the experiments on a 15-qubit real
quantum device to show our work is practical for near-term
quantum computers.

1 #n−qubit quantum phase estimation
2 qr = QuantumRegister(4)
3 #ancilla qubit
4 ar = QuantumRegister(1)
5 cr = ClassicalRegister(4)
6 circuit = QuantumCircuit(qr, ar, cr)
7
8 # Precalculated state vectors for each assertion
9 stateVectorList = [V1, V2, ..., V6]

10
11 # Initialize the n−qubits to |+> state
12 circuit.h(qr[0:4])
13
14 # Assertion slot 1, we choose the logical OR based design:
15 qubitList = [qr[0],qr[1]...,qr[3], ar[0]]
16 assert(circuit, qubitList, set(V1), ”ORbased”)
17
18 # Controlled U23 gate
19 for j in range(4):
20 circuit.cu3(0, 0, 2j × π

8
, qr[j], ar[0])

21 #Assertion slot 2 to slot 5, the function choose best design
22 assert(circuit, qubitList, set(Vj+2), NONE)
23
24 # 4−qubit inverse QFT
25 iQFT(circuit, qr, 4)
26
27 # Assertion slot 6:
28 assert(circuit, qubitList, set(V6), NONE)
29
30 circuit.measure(qr, cr)

Fig. 16: The pseudo code for 4-qubit QPE with assertions.

A. Assertions for Program Debugging

Given a unitary operator U and its eigenstate |ψ〉, U |ψ〉 =
eiθ |ψ〉, QPE estimates the phase θ of the corresponding
eigenvalue eiθ. The circuit consists of the superposition pre-
condition (line 12), a phase-kickback subroutine (line 19-
20) and an inverse QFT subroutine (line 25). Let’s consider

the 4-qubit QPE program for which the unitary operator
U is u3(0, 0, π8) gate operator with the eigenstates |0〉 and
|1〉. The state |ψ〉 is in the superposition of the eigenstates:
|ψ〉 = 1√

2
|0〉+ 1√

2
|1〉. Assuming the following two types of

bugs at line 20. Bug1: the programmer didn’t include the loop
index at line 20: circuit.cu3(0, 0, π8). Due to this mistake in
rotation angles, slot3, 4, and 5 in Figure 15 will have incorrect
quantum states. Bug2: the programmer missed the word “c”
when coding for “cu3” gate, which makes all the controlled-
u3 gates become single qubit gate u3. This is a bug due to
choosing incorrect gates, and slots 2 to 5 will have incorrect
quantum states. These two bugs can’t be captured by the prior
primitives since they do not support the assertion for the states
from slots 2 to 5.

1) Pure State Assertion: We can assert for all the five
qubits. For example, the qubit state at slot 5 in Figure 15 is
a five qubit pure state:|φ5〉 = 1√

2
|+ + ++〉 |0〉+ 1√

2
|θ4〉 |1〉,

where |θ4〉 = (|0〉+eiπ |1〉)(|0〉+e
iπ
2 |1〉)(|0〉+e

iπ
4 |1〉)(|0〉+

e
iπ
8 |1〉). For bug1, the assertion at slot 1, and 2 will not

raise an assertion error, but the assertion at other slots will.
Therefore, we can check the gates between slot 2 and slot 3
to locate the bug. For bug2, only the assertion at slot 1 will
not raise an assertion error. Therefore, we can check the gates
between slot 1 and slot 2 to pinpoint the bug. We verified the
results on both a noise-free simulator and a noisy simulator to
simulate the ideal and real cases.

2) Mixed State Assertion: The assertion at slot 5 asserts
for a five-qubit pure state:|φ5〉. The circuit for asserting five
qubits can be costly. For example, the SWAP based assertion
circuit requires 26 CNOT gates. In this case, our mixed state
assertion offers flexibility to assert for fewer qubits.

The first four qubits’ state is a mixed state, and we can
calculate it by taking the partial trace: ρ1234 = tr5(|φ5〉 〈φ5|)
= 1

2 |+ + ++〉 〈+ + ++|+ 1
2 |θ4〉 〈θ4|. Since the state |θ4〉 is

orthogonal to state |+ + ++〉, they are eigenvectors of the
mixed state. We can diagonalize the density matrix ρ1234 to
find the orthonormal basis that includes |θ4〉 and |+ + ++〉
as basis states. We mark state |+ + ++〉 and |θ4〉 as “correct”
states, which also means that the number of decomposed basis
states is 2. The circuit for asserting this four-qubit mixed state
requires 20 CNOTs, less costly than asserting all five qubits.

Similar to our pure state discussion, we assume two types
of bugs at line 20. When the loop index is not included
(Bug1), the five qubit state at slot 5 would be a different state
|φ′5〉 = 1√

2
|+ + ++〉 |0〉 + 1√

2
|θ′4〉 |1〉, where |θ′4〉 = (|0〉 +

e
iπ
8 |1〉)(|0〉+ e

iπ
8 |1〉)(|0〉+ e

iπ
8 |1〉)(|0〉+ e

iπ
8 |1〉). The four

qubit mixed state will be ρ′1234 = 1
2 |+ + ++〉 〈+ + ++| +

1
2 |θ
′
4〉 〈θ′4|. When we represent the state with the basis states,

we can find that besides basis state |+ + ++〉 and |θ4〉, the
state has other components, which means the mixed state has
“incorrect” basis states. Our mixed state assertion circuit will
raise an assertion error as a result. For bug2, the first four
qubits are not entangled with the fifth qubit, and the state is
|+ + ++〉. Since it is the “correct” basis state, our mixed state
assertion would not report an assertion error.

We can also assert mixed states with even fewer qubits
to reduce the circuit cost. There’s a tradeoff in using mixed
state assertions: the fewer qubits we assert, the lower assertion
circuit cost, but the higher chance to miss program bugs.

3) Approximate Assertion: We can use approximate asser-
tion to reduce the circuit cost. For example, the assertion at slot
5 asserts for pure state |φ5〉 = 1√

2
|+ + ++〉 |0〉+ 1√

2
|θ4〉 |1〉.

We can use approximate assertion to assert for a set of two
states: {|+ + ++〉 |0〉 , |θ4〉 |1〉}. Both of the bugs will lead
to states outside this set, therefore, we can capture both bugs
with less circuit cost using approximate assertion.

B. Experiment on Real Quantum Computer

We run our experiment on a 15-qubit quantum computer
ibmq-melbourne. When running the assertion circuit on real
quantum computers, we actually check for the errors caused
by both system noise and program bugs. To compare with the
prior work [32], we assert for single-qubit pure state |ψ〉 at
slot 6. We set the gate cu3(2j × π

8 , 0, 0) and the eigenstate
|ψ〉 = 1√

2
|0〉 + i√

2
|1〉. The swap-based design only requires

two CNOTs and two single-qubit gates. On the other hand,
the assertion primitives in the prior work requires two CNOTs
and six single-qubit gates. Hereby, we reduced the number of
single-qubit gates by four. When we don’t introduce any bug,
due to the system noise, 36% of the output states have assertion
errors. When we insert a bug (changing the controlled-u3
gate to circuit.cu3(0, 2j × π

8 , 0, qr[j], ar[0])), 45% of the
output states have assertion errors. Therefore, we can detect
the program bug based on the increment in the number of
assertion errors. In comparison, the circuit using the assertion
primitives in the prior work [32] has 42% assertion errors and
50% assertion errors after inserted a bug.

The prior work highlights that the assertion circuit can also
be used to improve the success rate. The success rate of the
original circuit is 19%. After filtering out the erroneous results
using the assertion primitives, the success rate improves to
33%. In comparison, our lower-cost assertion circuit further
improves the success rate to 36%.

X. DEBUGGING CASE STUDY: PROGRAMS WITH LIMITED
KNOWLEDGE OF STATES

In this section, we use the Deutsch-Jozsa algorithm to
show the effectiveness of approximate assertion for debugging
programs with limited knowledge of states. None of the
existing works supports this kind of assertion.

In the Deutsch-Jozsa algorithm [17], we are given a black-
box function f(x), which takes n-bit binary values as input and
produces either 0 or 1 as output for each value. The function
is guaranteed to be constant (output is always 0 or always 1)
or balanced (returns 0 for half of the inputs and 1 for the rest
of the inputs). When we try to debug the program, we can’t
predict the output of the black-box function f(x). If a program
bug happens in the black-box function f(x), which makes the
function neither constant nor balanced, the existing dynamic
assertion schemes can’t detect such a bug.

(a) Constant function (b) Inconstant function
Fig. 17: The results for asserting the constant function and inconstant function.

We can assert the function in two steps: 1) initialize all
the input qubits in |+〉 state, which is the superposition of all
possible inputs, and 2) assert for the joint output state of the
function: |ψ〉 = |x〉 |f(x)〉. When the function is constant, the
joint output state is either |x〉 |0〉 or |x〉 |1〉, and these states
form a set of states. Similarly, the balanced functions form
another set of states. We can use approximate assertion to
assert for the joint state |ψ〉 is in the constant state set, balanced
state set, or the combined constant and balanced set.

For example, we have a hidden function f(x) with two input
qubits. We set the input state x in state |++〉, which is the
superposition of all possible inputs: |++〉 = 1

2 (|00〉+ |01〉+
|10〉+ |11〉). If the function is a constant function, the output
qubit is either all |0〉 or all |1〉 for any possible input. The joint
output state |x〉 |f(x)〉 has two possibilities: 1

2 (|000〉+ |010〉+
|100〉+ |110〉) or 1

2 (|001〉+ |011〉+ |101〉+ |111〉). These two
possible states are shown in the first two rows in Table IV.
We can use the approximate assertion to assert for this set of
constant output states. If the function is a balanced function,
the possible output states are shown in Table IV from row 3 to
row 8. We can use the approximate assertion function to assert
for constant state set, balanced state set, or both of them.

We use the constant state set as an example to illustrate
our assertion circuit designs. The first design is SWAP based
assertion circuit. Our assertion function calculates that the
unitary gate U in the SWAP based design consists of two
Hadamard gates on the first two qubits U = H ⊗H ⊗ I . The
resulting assertion circuit is shown in Appendix C. It consists
of four CNOT gates and four single-qubit gates. The second
design is logical OR based assertion circuit. The unitary gate
U is the same as the gate in the SWAP based design. The
assertion circuit consists of six CNOT gates and twelve single-
qubit gates. The third design is NDD based assertion circuit.
After decomposing the controlled U gate, the assertion circuit
consists of fourteen CNOT gates and twenty single-qubit gates.
Among these three circuits, the SWAP based assertion circuit
has the least number of gates. Therefore, we prefer to use the
SWAP based assertion circuit for asserting n-qubit constant
function.

If the function f(x) is not a constant function due to
program bugs, our assertion circuit will raise assertion errors.
For example, when the output state is 1

2 (|000〉+|010〉+|100〉+
|111〉), f(x) is zero for three input states and 1 for one input
state. The function is neither constant nor balanced. We run
the program with assertion for constant set on Qiskit simulator,

First two qubit state |00〉 |01〉 |10〉 |11〉

Third qubit state

Constant |0〉 |0〉 |0〉 |0〉
|1〉 |1〉 |1〉 |1〉

Balanced

|0〉 |0〉 |1〉 |1〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |0〉 |1〉
|0〉 |1〉 |1〉 |0〉
|1〉 |0〉 |1〉 |0〉
|1〉 |1〉 |0〉 |0〉

TABLE IV: Set of constant and balanced output states.

and the result is shown in Figure 17b. In comparison, the result
when f(x) is a constant function is shown in Figure 17a. In
the figure, the first two qubits are the ancilla qubits. When
the function is not a constant function, the ancilla qubit has a
chance to be |1〉 state, and the circuit will raise assertion error.
The reason that it does not raise an assertion error 100% of
the time is that the state 1

2 (|000〉+ |010〉+ |100〉+ |111〉) is
not orthogonal to the constant states meaning that it still has
constant components.

XI. CONCLUSIONS

In this paper, we proposed two systematic approaches,
namely SWAP-based and NDD-based designs for quantum
state runtime assertion. The systematic approaches are capable
of asserting a broader range of quantum states than existing
works. We present detailed analysis of the efficiency and
effectiveness of different assertion schemes. We also introduce
the idea of approximate assertion, which performs membership
check on a set of states. We showcase that both the precise
and approximate assertions can help with debugging quantum
programs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments. This work is funded in part by NSF grants 1717550
and 1908406.

REFERENCES

[1] https://github.com/revilooliver/Systematic-Approaches-for-Precise-and-
Approximate-Quantum-State-Runtime-Assertion, 2020.

[2] H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,
G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya,
P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S.
Bishop, S. Bolos, S. Bosch, S. Bravyi, D. Bucher, F. Cabrera, P. Calpin,
L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, R. Chen,
J. M. Chow, C. Claus, C. Clauss, A. J. Cross, A. W. Cross, S. Cross,
J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, T. E.
Dandachi, M. Dartiailh, DavideFrr, A. R. Davila, D. Ding, J. Doi,
E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty,
E. Eastman, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández,
A. H. Ferrera, A. Frisch, A. Fuhrer, M. GEORGE, J. Gacon, Gadi,

B. G. Gago, J. M. Gambetta, A. Gammanpila, L. Garcia, S. Garion,
J. Gomez-Mosquera, S. de la Puente González, J. Gorzinski, I. Gould,
D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, M. Haglund, I. Haide,
I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii,
C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi, K. Ishizaki,
R. Iten, T. Itoko, A. Javadi, A. Javadi-Abhari, Jessica, K. Johns,
T. Kachmann, N. Kanazawa, Kang-Bae, A. Karazeev, P. Kassebaum,
S. King, Knabberjoe, A. Kovyrshin, R. Krishnakumar, V. Krishnan,
K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone, S. Lawrence,
D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Marecek, M. Marques,
D. Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay,
D. McPherson, S. Meesala, M. Mevissen, A. Mezzacapo, R. Midha,
Z. Minev, A. Mitchell, N. Moll, M. D. Mooring, R. Morales, N. Moran,
P. Murali, J. Müggenburg, D. Nadlinger, K. Nakanishi, G. Nannicini,
P. Nation, Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan,
O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Per-
riello, A. Phan, F. Piro, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov,
D. Puzzuoli, J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo,
M. Reuter, J. Rice, D. M. Rodrı́guez, RohithKarur, M. Rossmannek,
M. Ryu, T. SAPV, SamFerracin, M. Sandberg, H. Sargsyan, N. Sathaye,
B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten, E. Schoute,
J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva,
A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B.
Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov, SooluThomas,
D. Steenken, M. Stypulkoski, J. Suen, K. J. Sung, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin,
C. R. Valcarce, F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot,
J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J.
Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton,
D. Yeralin, R. Young, J. Yu, C. Zachow, L. Zdanski, C. Zoufal,
Zoufalc, a matsuo, azulehner, bcamorrison, brandhsn, chlorophyll zz,
dan1pal, dime10, drholmie, elfrocampeador, enavarro51, faisaldebouni,
fanizzamarco, gadial, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x,
merav aharoni, michelle4654, ordmoj, sethmerkel, strickroman, sumit-
puri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yelojakit,
and yotamvakninibm, “Qiskit: An open-source framework for quantum
computing,” 2019.

[3] J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Brádler,
and N. Killoran, “Machine learning method for state preparation and
gate synthesis on photonic quantum computers,” Quantum Science and
Technology, vol. 4, no. 2, p. 024004, 2019.

[4] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Decomposing
quantum generalized toffoli with an arbitrary number of ancilla,” arXiv
preprint arXiv:1904.01671, 2019.

[5] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457,
1995.

[6] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique
Fizika, vol. 1, no. 3, p. 195, 1964.

[7] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters, “Teleporting an unknown quantum state via dual classical
and einstein-podolsky-rosen channels,” Physical review letters, vol. 70,
no. 13, p. 1895, 1993.

[8] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[9] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970. [Online].
Available: https://doi.org/10.1145/362686.362692

[11] K. Blum, Density matrix theory and applications. Springer Science &
Business Media, 2012, vol. 64.

[12] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of
interacting particles,” Physical Review Letters, vol. 86, no. 5, p. 910,
2001.

[13] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum finger-
printing,” Physical Review Letters, vol. 87, no. 16, Sep 2001. [Online].
Available: http://dx.doi.org/10.1103/PhysRevLett.87.167902

[14] S. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum tele-
portation and state sharing using a genuinely entangled six-qubit state,”

Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 11, p.
115303, 2009.

[15] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum algo-
rithms revisited,” Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 454, no. 1969,
pp. 339–354, 1998.

[16] I. Corporation, “Gate and operation specification for quantum circuits,”
https://github.com/Qiskit/openqasm, 2019, [Online; accessed 3-9-2020].

[17] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558,
1992.

[18] M. Ekerå and J. Håstad, “Quantum algorithms for computing short dis-
crete logarithms and factoring rsa integers,” in International Workshop
on Post-Quantum Cryptography. Springer, 2017, pp. 347–363.

[19] A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov,
M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, “Robust general
n user authentication scheme in a centralized quantum communication
network via generalized ghz states,” Frontiers of Physics, vol. 13, no. 2,
p. 130306, 2018.

[20] J. N. Franklin, Matrix theory. Courier Corporation, 2012.
[21] J. C. Garcia-Escartin and P. Chamorro-Posada, “Equivalent quantum

circuits,” arXiv preprint arXiv:1110.2998, 2011.
[22] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,

2012, vol. 3.
[23] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond

bell’s theorem,” in Bell’s theorem, quantum theory and conceptions of
the universe. Springer, 1989, pp. 69–72.

[24] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang, “Decomposi-
tions of n-qubit toffoli gates with linear circuit complexity,” International
Journal of Theoretical Physics, vol. 56, no. 7, pp. 2350–2361, 2017.

[25] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen,
P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush et al., “Quantum
chemistry calculations on a trapped-ion quantum simulator,” Physical
Review X, vol. 8, no. 3, p. 031022, 2018.

[26] R. A. Horn and C. R. Johnson, “Norms for vectors and matrices,” Matrix
analysis, pp. 313–386, 1990.

[27] Y. Huang and M. Martonosi, “Qdb: From quantum algorithms towards
correct quantum programs,” arXiv preprint arXiv:1811.05447, 2018.

[28] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns
and finding bugs in quantum programs,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 541–553.

[29] S. Jain, S. Muralidharan, and P. K. Panigrahi, “Secure quantum con-
versation through non-destructive discrimination of highly entangled
multipartite states,” EPL (Europhysics Letters), vol. 87, no. 6, p. 60008,
2009.

[30] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Proq: Projection-
based runtime assertions for debugging on a quantum computer,” arXiv
preprint arXiv:1911.12855, 2019.

[31] J. Liu, L. Bello, and H. Zhou, “Relaxed peephole optimization: A novel
compiler optimization for quantum circuits,” in Proceedings of the 2021
International Symposium on Code Generation and Optimization, 2021.

[32] J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic runtime
assertions in quantum computation,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1017–1030.

[33] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-control toffoli gates,” in 2011 41st IEEE In-
ternational Symposium on Multiple-Valued Logic. IEEE, 2011, pp.
288–293.

[34] S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum-
state sharing, and superdense coding through a genuinely entangled five-
qubit state,” Physical Review A, vol. 77, no. 3, p. 032321, 2008.

[35] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[36] M. Plesch and Č. Brukner, “Quantum-state preparation with universal
gate decompositions,” Physical Review A, vol. 83, no. 3, p. 032302,
2011.

[37] E. Rieffel and W. Polak, “An introduction to quantum computing for
non-physicists,” ACM Computing Surveys (CSUR), vol. 32, no. 3, pp.
300–335, 2000.

[38] Rigetti, “A Python library for quantum programming using Quil,”
https://github.com/rigetti/pyquil, 2019, [Online; accessed 3-9-2020].

[39] K. K. Sabapathy, H. Qi, J. Izaac, and C. Weedbrook, “Production
of photonic universal quantum gates enhanced by machine learning,”
Physical Review A, vol. 100, no. 1, p. 012326, 2019.

[40] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[41] I. Q. team, “IBM Q 16 Melbourne V1.1.0 backend specification V1.1.0,”
https://quantum-computing.ibm.com, 2019, [Online; accessed 3-9-2020].

[42] R. F. team, “Forest SDK,” https://www.rigetti.com/forest, 2019, [Online;
accessed 3-9-2020].

[43] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P.
Lanyon, and J. L. O’brien, “Adding control to arbitrary unknown
quantum operations,” Nature communications, vol. 2, no. 1, pp. 1–8,
2011.

APPENDIX A
ASSERTION CIRCUIT EQUIVALENCE

The prior work [21] has proved the two circuits shown in
Figure 18 are equivalent.

H

H

=
H

H

Fig. 18: H gates mirroring through CNOT inversion

Based on the circuit equivalence, we can transform our
assertion circuit step by step as shown in Figure 19. In the
last step, since the first CNOT gate is controlling over the |0〉
state, it can be substituted with a quantum wire, the resulting
circuit is equivalent to the assertion circuit proposed by prior
work [32].

|+〉 H |+〉

|0〉 H

=
|+〉 H |+〉

|0〉 H

=
|+〉 H |+〉

|0〉 H

=
|+〉 H |+〉

|0〉 H

=
|+〉 H |+〉

|0〉 H

Fig. 19: Circuit transformation of the assertion circuit for |+〉
state

APPENDIX B
ORTHONORMAL BASIS TRANSFORMATION

Proposition: In an n-qubit quantum system, given
two orthonormal quantum bases {|ψi〉}i∈[0,2n−1] and
{|ψ′i〉}i∈[0,2n−1], we can always find a unitary gate U that
transforms each basis state |ψ′i〉 to the corresponding state
|ψi〉 in the other basis. In other words, |ψi〉 = U |ψ′i〉 for
every i in [0, 2n − 1]. The unitary gate U can be calculated
as U =

∑2n−1
i=0 |ψi〉 〈ψ′i|.

Proof: An orthonormal basis {|ψi〉} have following proper-
ties: (1)〈ψi|ψj〉 = 1 for all i = j, and 〈ψi|ψj〉 = 0 for all i 6=
j. (2)

∑2n−1
i=0 |ψi〉 〈ψi| = I , here I is the identity matrix. First,

we need to prove |ψ〉 = U |ψ′i〉 for every i ∈ [0, 2n−1]. Based
on the first property, we have U |ψ′i〉 =

∑2n−1
j=0 |ψj〉〈ψ′j |ψ′i〉 =

|ψi〉 〈ψ′i|ψ′i〉 +
∑
i 6=j |ψj〉〈ψ′j |ψ′i〉 = |ψi〉. Then, we need to

prove that the matrix U is a unitary matrix such that we
can find a corresponding gate. Based on the first and the
second property, we have UU† =

∑2n−1
i=0 |ψi〉 〈ψ′i| |ψ′i〉 〈ψi|

=
∑2n−1
i=0 |ψi〉 〈ψi| = I . Similarly, we can prove U†U = I .

Therefore, U is a unitary matrix.

The computational basis is indeed an orthonormal basis.
In our assertion circuit, we transform an orthonormal basis
that includes the assertion state |ψ〉 to the computational
basis. Note that we can change the order of basis states in
computational basis to form a new correspondence, the unitary
gate U will change accordingly.

APPENDIX C
SWAP BASED CIRCUIT FOR ASSERTING CONSTANT SET

|ψconst〉
H H

|ψconst〉H H

|0〉⊗2

Fig. 20: SWAP based circuit for asserting constant set

APPENDIX D
DEBUGGING CASE STUDY: CONTROLLED ADDER

SUBROUTINE

In quantum computing, it is a common practice to use
recursion of quantum operations. Bugs may happen when
coding for such recursive patterns. In Figure 21, we show
the pseudo code for controlled adder using QFT. The program
computes qr = a + qr, where a is a constant integer with
length “width” and qr is an integer encoded in Fourier space
with “width” numbers of qubits.

1 def controlled adder(num ctrl, qr ctrl0, qr ctrl1, width, a, qr):
2 for i in range(width−1, −1, −1):
3 for j in range(i, −1, −1):
4 if (a >> j) & 1: //shift out bits in constant a
5 angle = np.pi/ pow(2, i−j) //rotation angle
6 if num ctrl is 0:
7 circuit.rz(qr[i], angle)
8 elif num ctrl is 1:
9 circuit.crz(qr ctrl0, qr[i], angle)

10 elif num ctrl is 2:
11 circuit.ccrz(qr ctrl0, qr ctrl1, qr[i], angle)
12 return circuit

Fig. 21: The pseudo code for controlled adder using QFT

Since quantum algorithms need varying control and target
qubits, the same subroutine might occur multiple times with
different numbers of controlled qubits. For example, line 7, 9,
and 11 in Figure 21 are the codes for rz gate with different
control qubits. Now, let’s consider a bug happens in line 11,
where the programmer used variable j instead of i. This bug
leads to an incorrect entangled state and it can’t be asserted by
the prior primitives. We can insert precise pure state assertions
after each rz, crz or ccrz gate to capture this bug. Since i and
j are the same for the first rz gate and they start to differ from
the second rz gate, asserting the state after the second rz gate
should be sufficient to capture the bug. The bug also leads to
changes in the mixed states of a subset of qubits, thus it is also
detectable with mixed state assertions. Similarly, the incorrect

entanglement will lead to states out of the expected set of
states and the bug is detectable with approximate assertions
as well. We confirmed such analysis with experiments using
a quantum simulator.

