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Abstract 

 
Hard-to-predict branches depending on long-

latency cache-misses have been recognized as a major 
performance obstacle for modern microprocessors. 
With the widening speed gap between memory and 
microprocessors, such long-latency branch 
mispredictions also waste substantial power/energy in 
executing instructions on wrong paths, especially for 
large instruction window processors. 

This paper presents a novel program locality that 
can be exploited to handle long-latency hard-to-
predict branches. The locality is a result of an 
interesting program execution behavior: for some 
applications, major data structures or key components 
of the data structures tend to remain stable for a long 
time. If a hard-to-predict branch depends on such 
stable data, the address of the data rather than the 
data value is sufficient to determine the branch 
outcome. This way, a misprediction can be resolved 
much more promptly when the data access results in a 
long-latency cache miss. We call such locality address-
branch correlation and we show that certain memory-
intensive benchmarks, especially those with heavy 
pointer chasing, exhibit this locality. We then propose 
a low-cost auxiliary branch predictor to exploit 
address-branch correlation. Our experimental results 
show that the proposed scheme reduces the execution 
time by 6.3% (up to 27%) and energy consumption by 
5.2% (up to 24%) for a set of memory-intensive 
benchmarks with a 9kB prediction table when used 
with a state-of-art 16kB TAGE predictor.  
 

1. Introduction 
 

The performance of modern microprocessors for 
single-threaded applications is mainly constrained by 
two factors, long-latency memory accesses and hard-
to-predict branches. Although large instruction-
window processors [1],[5],[8],[17],[20] can effectively 
exploit memory-level parallelism to overcome the 

memory wall problem, the pressure is essentially 
shifted to branch predictors to fetch a large number 
(thousands) of instructions from correct paths. 
Particularly, if a program features hard-to-predict 
branches whose operands depend on long-latency 
cache-misses, those high-penalty mispredictions 
become serious performance obstacles and cause 
substantial energy to be wasted in executing 
instructions from wrong paths.  

It has been shown in the 2nd JILP Championship 
Branch Prediction Competition (CBP-2)  [21] that 
scaling the state-of-art branch correlation based branch 
predictor unlimitedly can only reduce the 
misprediction rates by about 21% compared to a 32kB 
realistic predictor [15]. To further improve prediction 
accuracy, we have to discover novel locality that can 
be explored to predict those branches, which are not 
predicted accurately by exploring branch correlation. 
Pre-execution has been proposed as one solution to 
handle hard-to-predict branches  [4],[12]. Besides the 
additional cost and complexity, pre-execution is less 
effective for large instruction window processors since 
it is difficult for a pre-execution thread to be far ahead 
of a main thread with a large instruction window.  

We focus on hard-to-predict branches that depend 
on long-latency cache-missing loads and we refer to 
them as hard-to-predict long-latency branches. When 
the outcomes of such branches depend on loaded 
values with irregular patterns, branch prediction 
schemes exploiting correlation in branch histories 
often fail to predict them accurately. In this paper, we 
present a novel locality to handle those branches. The 
new locality is based on the following observation: for 
some applications, major data structures or key data 
components tend to remain stable, i.e., the addresses of 
the key components do not change for a long time. For 
example, after a linked list is initialized, the address of 
the ending node remains the same until a new node is 
appended to it. If a branch is dependent on such stable 
data, e.g., the branch determining the end of a linked 
list traversal, the load address instead of the loaded 
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value is sufficient to determine the branch outcome. 
Therefore, the branch can be resolved once the 
corresponding load address is known, which is much 
more promptly than waiting for the loaded value. Since 
the locality is based on the correlation between load 
addresses and branch outcomes, we call it address-
branch correlation. In a load/branch pair that exhibits 
address-branch correlation, the load address is referred 
to as a ‘producer address’ and the branch is referred to 
as a ‘consumer branch’. 

In this paper, we present a study on address-branch 
correlation for memory-intensive applications given 
the importance of long-latency hard-to-predict 
branches in those applications. An in-depth analysis of 
benchmark source codes reveals common program 
patterns that lead to address-branch correlation. We 
analyze the performance potential of exploiting 
address-branch correlation and find that a large portion 
of branch misprediction penalties can be eliminated by 
focusing on a few (3 to 4) hard-to-predict branches that 
exhibit address-branch correlation. For example, 57% 
of the total branch misprediction penalties of mcf can 
potentially be eliminated by exploiting address-branch 
correlation in 4 branches. We then propose an 
auxiliary branch predictor, named Address-Branch 
Correlation (ABC) predictor, to exploit the locality. In 
the ABC predictor, stable address-branch correlation 
information is stored in a prediction table. When a 
producer address is known, this prediction table is 
accessed to see whether the address has stable 
correlation with a consumer branch. If so, the branch 
outcome is predicted and the prediction is used as 
either a prioritized one when the branch has not been 
fetched or an overriding one when the branch has 
already been fetched using the prediction from the 
primary branch predictor. Our experimental results 
show that augmenting a 16kB TAGE branch predictor 
[13],[14] with a 9kB ABC predictor reduces the 
execution time by 6.3% (up to 27%) and the energy 
consumption by 5.2% (up to 24%) of a set of memory-
intensive applications, which outperforms a 64kB 
TAGE branch predictor. 

The paper is organized as follows. Section 2 
presents a study of address-branch correlation. The 
ABC predictor is described in Section 3. The 
experimental methodology and results are in Sections 4 
and 5, respectively. Section 6 highlights the limitation 
and potential optimizations of the proposed approach. 
Section 7 concludes the paper. 

 

2. Address-Branch Correlation 
 

In this section, we present an in-depth study of 
address-branch correlation. We focus on long-latency 

hard-to-predict branches, i.e., those branches that incur 
high performance penalties and can not be predicted 
accurately using existing branch predictors including 
perceptron branch predictors [6],[7],[18] and recently 
proposed predictors based on the Prediction by Partial 
Matching (PPM) algorithm  [11],[13]. We observe that 
the outcomes of many long-latency hard-to-predict 
branches show stable correlation with their producer 
load addresses. Therefore, the branch outcome can be 
predicted accurately using the load addresses instead 
of waiting for the loaded values. We use source-code 
examples to reveal the inherent reason why such 
address-branch correlation exists. We then analyze a 
set of memory-intensive benchmarks to examine the 
potential benefit. All simulation results in this section 
are based on the processor configuration described in 
Section 4 unless otherwise stated. 

 

2.1. Motivation 
 

We first use a microbenchmark to illustrate the 
correlation between producer load addresses and 
consumer branch outcomes. The key data structure in 
the microbenchmark, as shown in Figure 1, is a linked 
list. The linked list is initialized to contain 10 nodes. 
Then it is traversed 100000 times. Before each 
traversal, the linked list is updated by either inserting 
or deleting a node at a random position except the 
ending node. The maximum length of the linked list is 
restricted to 20. Although completely random behavior 
is rare in real applications, many hard-to-predict 
branches exhibit similar irregular behavior to the 
branches in the microbenchmark.  
 

Node 1 

Initialization(); 
for (i = 0; i < 100000; i++) { 
    RandomOp();  //Insert or delete a node at a random 

position except the end node 
    node = head; 

        while( node ) {                //Branch 1 
            node = node->next;    //Load 1 
        } 
    } 

next 

Node 2 

next 
… 

next 

Node N 
node->next = NULL

Figure 1. A microbenchmark to illustrate the 
address-branch correlation. 

The branch labeled ‘Branch 1’ in Figure 1 is the 
one of interest. It depends on the pointer-chasing load, 
“node = node−>next” (labeled ‘Load 1’), to determine 
the end of the linked list. If the linked list has N nodes, 
the while loop will iterate N times and the branch 
outcomes would be (N–1) ‘Takens’ followed by one 
‘Not-Taken’. Because of the random node insertion/ 
deletion operation, neither gshare  [10] nor TAGE 
branch predictors predict Branch 1 accurately. A 16kB 
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gshare predictor reports a 9% misprediction rate and a 
16kB TAGE predictor has a 6.5% misprediction rate. 
Furthermore, since Branch 1 depends on Load 1, a 
misprediction can not be resolved until Load 1 returns 
the value. If Load 1 has a high L2 cache miss rate, the 
branch misprediction penalties of Branch 1 will have 
significant impact on the overall performance. 
However, as shown in the source code, the traversal 
always ends at the last node. As long as this node 
remains stable, i.e., it is not deleted and no new nodes 
are appended to it, the address of the ‘next’ field of the 
node (i.e., the load address of Load 1) is sufficient to 
determine the outcome of Branch 1. Assuming that the 
address of the ‘next’ field of the last node is X, Branch 
1 would be always taken until the load address of Load 
1 becomes X. From this example, we can see that 
strong correlation exists between the address of the 
producer load and the outcome of the consumer branch 
and the correlation is a direct result of stable data 
structures during program execution. 

The microbenchmark in Figure 1 highlights the 
branch-address correlation between a load and a 
branch in the same loop iteration. We can also extend 
the scope to extract correlation between load addresses 
and branch outcomes across different iterations. For 
example, in the linked list traversal microbenchmark, if 
the last two nodes (i.e., Node N-1 and Node N) of the 
linked list are stable, the address of the ‘next’ field of 
node N-1 also correlates with the outcome of Branch 1 
of the next iteration, as shown in Figure 2. In other 
words, once node N-1 is accessed, it is certain that 
Branch 1 will be ‘Not-Taken’ in the next iteration. 
Correlation across iterations is helpful when both node 
N-1 and node N accesses (dependent loads) are cache 
misses. Rather than waiting for the ‘next’ field of node 
N to be loaded, the address of node N-1 provides 
sufficient information to determine the outcome of 
Branch 1. We use the term ‘correlation distance’ to 
describe address-branch correlation across multiple 
iterations. Address-branch correlation with a distance 
of k means that the correlation exists between the load 
and the branch across k iterations. When the load and 
the branch are in the same iteration, the correlation 
distance is zero.  

… 
Load_1  //accessing Node 1 
Branch_1   //taken 
… 
Load_1 //accessing Node N-1 
Branch_1  // taken 
Load_1 //accessing Node N 
Branch 1  //not taken (misprediction) 

correlated 
load/branch pair 
with distance 1

correlated 
load/branch 

pair with 
distance 0 

 
Figure 2. Address-branch correlation with 
different correlation distances. 

2.2. Benchmark Study 
 

After illustrating address-branch correlation using a 
microbenchmark, we now examine real workloads. As 
our focus is on long-latency hard-to-predict branches, 
we select the notorious pointer-intensive benchmark 
mcf from the SPEC CINT 2000 benchmark suite as a 
representative workload. Using program profiling, we 
found that the function refresh_potential is invoked 
frequently to refresh a huge tree structure that is larger 
than typical L2 caches. As a result, the pointer-chasing 
code in this function has high L2 cache miss rates. 
Furthermore, the loaded values that determine the 
conditional branch outcomes are irregular, which 
makes the branches hard to predict. Overall, frequent 
cache misses combined with branch mispredictions 
make this function a critical performance bottleneck of 
mcf. Figure 3 shows the key segments of the function, 
in both C (Figure 3a) and assembly (Figure 3b).  
long refresh_potential( network_t *net )  
 … 
    while( node != root ) { 
        while( node ) { //long-latency branch  
            if( node->orientation == UP ) //long latency branch 
                node->potential = node->basic_arc->cost + node->pred-
>potential;  
            else { /* == DOWN */  
                node->potential = node->pred->potential - node-
>basic_arc->cost;  
                checksum++;  
            }  
            tmp = node;  
            node = node->child;  
        } 

… 
} (a) C source code 

… 
00400808 lw $v0[2],28($a0[4])  // Load 1 “node->orientation” 
00400810 bne $v0[2],$a3[7],00400848  
                // Branch 1 “node->orientation == UP” 
00400818 lw $v0[2],32($a0[4]) 
00400820 lw $v1[3],8($a0[4]) 
… 
00400878 sw $v0[2],44($a0[4])  
00400880 addu $v1[3],$zero[0],$a0[4]  
00400888 lw $a0[4],12($a0[4]) // Load 2 “node = node->child” 
00400890 bne $a0[4],$zero[0],00400808 //Branch 2 “while( node )”

(b) Assembly code 

Figure 3. A code example extracted from mcf.  
The code segment in Figure 3b consists of two 

hard-to-predict branches, labeled as ‘Branch 1’ and 
‘Branch 2’, respectively. Our simulation results show a 
17.4% misprediction rate for Branch 2 using a 16 kB 
TAGE branch predictor. The average misprediction 
penalty of Branch 2, measured as the latency between 
fetching the branch instruction and resolving the 
misprediction, is as high as 636 cycles due to 
dependent cache misses resulting from pointer chasing. 
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Compared to Branch 2, Branch 1 enjoys much lower 
misprediction rate, 3.1% with a 16kB TAGE branch 
predictor. However, it still suffers from high 
misprediction cost, 542 cycles on average. Overall, 
Branch 1 and Branch 2 contribute 9.5% and 62.1% of 
the overall branch misprediction penalties of mcf. 

Either of the two high-cost branches is dependent 
on a load instruction, labeled as ‘Load 1’ and ‘Load 2’ 
in Figure 3b. A trace containing the load addresses 
and branch outcomes reveals that both of the 
load/branch pairs exhibit strong address-branch 
correlation. The correlation between Load 2 and 
Branch 2 is similar to the linked list traversal 
microbenchmark presented in Section 2.1. The 
load/branch pair (Load 1 and Branch 1) shows a 
different type of code exhibiting address-branch 
correlation. Rather than searching for a NULL field, 
the branch outcome is dependent on comparing the 
loaded value with a constant non-zero value. By 
inspecting the source code shown in Figure 3a, we can 
see why the load/branch pair exhibits strong address-
branch correlation. Although the code continuously 
refreshes the ‘potential’ field of many nodes, the 
address of each node and the ‘orientation’ field of the 
nodes, which affects the branch outcomes, remain 
stable. Therefore, once the load address is known, 
branch outcomes can be determined since those loaded 
values are not changing over time.  

Besides pointer-intensive code, we also found 
stable address-branch correlation in workloads using 
other types of data structures. One such example is 
large sparse matrices. As long as the matrix stays 
stable (i.e., non-zero entries are not reset to zero), the 
load address provides enough information to determine 
the outcome of a dependent branch.  

 

2.3. Performance Potential 
 

If a program exhibits strong address-branch 
correlation, the load address can be used to either 
accurately predict a branch or promptly override a 
misprediction when the branch has already been 
fetched. In this section, we examine the performance 
potential of exploiting address-branch correlation.  

In our experiments, we select memory-intensive 
benchmarks from the SPEC2000 benchmark suite 
using the following criterion: the benchmarks that gain 
at least 40% performance improvement with an ideal 
L2 cache are considered memory intensive. We used 
the reference inputs and simulated 300M instructions 
for each benchmark. The simulation points are 
determined using the Simpoint toolset  [16] except 
parser. In parser, key data structures are refreshed for 
each new input sentence. The simulation point of 

parser selected by Simpoint includes the processing of 
many different sentences, in which stable address-
branch correlation only exists for short periods. 
Therefore, for parser we use a simulation point (skip 
the first 700M instructions) in which most of the time 
is spent on processing a single complex sentence.  

We focus on the branches that have a large number 
of mispredictions if predicted by a 16kB TAGE 
predictor. For each of them, we perform the following 
analysis to examine whether it has correlation with its 
producer load addresses and how much misprediction 
penalty can be reduced if such correlation exists. As 
the first step, we identify the producer loads of each 
hard-to-predict branch. For each dependent 
load/branch pair, we then generate a trace of its 
dynamic instances. For each producer load, the trace 
contains its load address and the cycle when the 
address is generated (Addr_cycle). For each consumer 
branch, the trace includes the cycle when the branch is 
fetched (Fetch_cycle), the cycle when the branch is 
resolved (Resolve_cycle), the prediction from the 
TAGE predictor, and the actual branch outcome. 

Based on the trace, we keep track of the correlation 
between producer addresses and consumer branch 
outcomes of a certain correlation distance k. If a 
producer address correlates to a consumer branch 
outcome and the branch is mispredicted, we assume 
that this misprediction can be eliminated by exploiting 
address-branch correlation. The misprediction penalty 
reduction is calculated as (Resolve_cycle of the 
consumer branch – Addr_cycle of the producer load of 
correlation distance k) if the branch is fetched before 
the correlated address is available. In this case, the 
prediction based on the correlated address serves as an 
early misprediction resolution. If the branch has not 
been fetched when the correlated address is available, 
the misprediction penalty reduction is (Resolve_cycle 
of the consumer branch – Fetch_cycle of the consumer 
branch) assuming that the prediction is used as a 
prioritized one to direct the instruction fetch unit. The 
sum of all misprediction penalty reductions is then the 
performance potential of exploiting address-branch 
correlation for this load/branch pair of a correlation 
distance k. If a branch has multiple correlated producer 
loads, we select the one with the highest reduction.  

To examine the relationship between correlation 
distances and potential reductions, we present 4 
load/branch pairs with large potential reductions from 
4 different benchmarks as shown in Figure 4. The 
reductions are normalized to the total misprediction 
penalties of the branch. The figure shows that a large 
portion of the misprediction penalties could be 
eliminated if a branch has strong address-branch 
correlation. The maximum reduction is typically 
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achieved with a correlation distance larger than 0. 
Larger correlation distances offer higher reduction 
since mispredictions can be resolved more promptly. 
On the other hand, longer correlation distances 
requires more stable data components, e.g., a 
correlation distance k requires the last (k+1) nodes in a 
linked list to be stable rather than just the last node. If 
data structures fail to provide such high degree of 
stability, address-branch correlation will drop 
dramatically with the increased correlation distance, as 
observed from the load/branch pair from vpr. 
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Figure 4.  The relationship between potential 
reduction and correlation distance. 

After determining the optimal correlation distance 
for each load/branch pair, we select the top N (N =1 to 
8) pairs from each benchmark. The normalized 
reductions from these N pairs are reported in Figure 5. 
The results show that among all the benchmarks, 
ammp, art, mcf and parser show the strongest address-
branch correlation. By exploiting address-branch 
correlation in the top 8 branches, 45% to 57% of the 
overall branch misprediction penalties could be 
eliminated. Among the remaining benchmarks, equake, 
twolf, and vpr show reductions ranging from 11% to 
17% while the benchmarks gcc and swim report very 
limited address-branch correlation. Another important 
observation from Figure 5 is that most of the 
performance benefits can be achieved with only few (3 
or 4) load/branch pairs. Since correlated branches and 
addresses need to be stored in order to exploit address-
branch correlation, limiting the number of load/branch 
pairs will reduce the associated storage requirement.  

0%
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20%

30%

40%

50%

60%

ammp art equake swim gcc mcf parser twolf vpr

1 2 3 4 5 6 7 8#  of load/branch pairs:

 
Figure 5. Potential reductions in branch 
misprediction penalties by exploiting address-
branch correlation from the top N (N = 1 to 8) 
load/branch pairs. 

3. An Address-Branch Correlation Based 
Predictor (ABC predictor) 
 

In order to explore address-branch correlation, we 
need to identify load/branch pairs showing strong 
address-branch correlation. Such identification can be 
done either statically with program profiling or 
dynamically with hardware support. In this paper, we 
propose a two-step dynamic approach to capture 
load/branch pairs with strong address-branch 
correlation. In step 1, we select the hard-to-predict 
branches and their producer loads. In step 2, we 
determine whether the selected load/branch pairs have 
strong address-branch correlation and what correlation 
distances are optimal. The detailed hardware 
implementation of this two-step identification is 
presented in Section 3.1.  

After the load/branch pairs are identified, their PCs 
and correlation distances stay in a small content-
addressable memory (CAM), which is used to check 
whether a dynamic load or branch instruction needs to 
access an Address-Branch Correlation based predictor 
(ABC predictor). Since the proposed ABC predictor is 
only used to handle those long-latency hard-to-predict 
branches, we use it as an auxiliary predictor to a 
primary branch predictor such as a gshare or TAGE 
predictor.  

In our proposed ABC predictor, the prediction 
process starts with a producer load address, which is 
computed in the Address Generation (AGEN) stage of 
a producer load instruction. A prediction table, which 
keeps track of address-branch correlation information, 
is then accessed with the producer address. If this 
address correlates to a consumer branch outcome, the 
prediction table returns a prediction. Based on whether 
the consumer branch has been fetched, the prediction 
can be used as either an overriding prediction to 
resolve a misprediction or a prioritized one to direct 
the instruction fetch unit. The prediction table is 
updated when a consumer branch commits. The 
detailed design of the prediction table is presented in 
Section 3.2. 

Unlike traditional branch predictors, the proposed 
ABC predictor involves two correlated instructions, a 
producer load and a consumer branch. As a result, it is 
necessary to link the dynamic instances of the 
load/branch pair in order to determine the 
producer/consumer relationship. In the proposed 
design, a FIFO structure, named Address-Branch 
Correlation Queue (ABCQ), is used for this purpose 
and the associated operations to link load/branch pairs 
are discussed in Section 3.3.  
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3.1. Capturing Load/Branch Pairs with Strong 
Address-branch Correlation 
 

To capture load/branch pairs with strong address-
branch correlation, a two-step approach is used and the 
associated hardware implementation is shown in 
Figure 6.  

 
Figure 6. Hardware structures to capture 
load/branch pairs with strong address-branch 
correlation. 

The first step is to capture hard-to-predict branches 
and to find their producer loads. To do so, a Hard-to-
predict Branch Tracking Table (HBTT) is used to keep 
track of branches with high misprediction penalties. 
The HBTT is organized as a 16-entry 4-way cache 
structure. As shown in Figure 6, each entry has two 
fields: the branch PC (BrPC) and its accumulative 
misprediction penalties (MisPen). This table is 
accessed when a mispredicted branch is retired. If the 
branch hits in the table, its misprediction penalty is 
added into the MisPen field. If the branch misses in the 
table, a new entry is allocated. The misprediction 
penalty is measured in the following way. Besides the 
renaming table, each shadow map saves the timestamp 
when a branch is dispatched. When the branch is 
resolved, the difference between the current timestamp 
and the one stored in the shadow map is the latency to 
resolve this branch. This latency is carried with the 
branch and used at the retire stage to update the HBTT. 
After training the HBTT for 2M instructions, a branch 
is determined hard-to-predict if it has an accumulative 
misprediction penalty larger than 10000 cycles. If there 
is at least one such branch, we stop training the HBTT 
and select out 5 hard-to-predict branches. Otherwise, 
we clear the HBTT and train it for another 2M 
instructions. We performed experiments with varying 
the training period and found that training 2M 
instructions provides a good balance between the 
quickness in capturing hard-to-predict branches and 
the accuracy to capture the most important ones. The 
PCs of those selected hard-to-predict branches are 
copied into the ABC Information Table (AIT) and we 
start to identify the producer load for each branch in 
the AIT using a structure named Producer Loads 
Register File (PLRF) in Figure 6. The PLRF tracks 

the dynamic data dependency among instructions. It is 
indexed by the logical register number and the content 
of each entry is the PC of the load instruction that 
affects the corresponding register, either directly or 
indirectly. The PLRF works as follows. When an 
instruction is retired, it updates the PLRF indexed by 
its destination register. If it is a load, it updates the 
PLRF entry with its PC. If the instruction is not a load 
but has a destination register, the PCs stored in the 
PLRF entries corresponding to its source registers are 
read out. Then the PC, which is closer to the current 
instruction’s PC, is selected to update the PLRF. For 
example, if an add instruction with the PC 
0x4000ABC8 retires, the PLRF entries corresponding 
to its two source registers contain 0x4000ABC0 and 
0x4000ABB0. 0x4000ABC0 will be used to update the 
PLRF as it is closer to 0x4000ABC8 than 
0x4000ABB0. If a register-writing instruction has no 
source registers (or using r0, the constant zero), we 
reset the entry in the PLRF entry corresponding to its 
destination register. This way, when a branch that hits 
in the AIT is retired, it can access the PLRF with its 
source registers to determine its producer load.  

The second step is to determine whether the 
selected load/branch pairs have strong address-branch 
correlation and which correlation distances are 
optimal. To do so, for each selected load/branch pair in 
AIT, we keep track of the benefit by exploiting 
address-branch correlation with three pre-selected 
correlation distances (1, 3 and 5). We select those three 
correlation distances since most load/branch pair’s 
optimal distances are from those three or very close to 
one of them. Each distance is utilized by the ABC 
predictor (see Sections 3.2 and 3.3) for at least 512 hits 
in the predictor and at least 2M instructions. In this 
period, we don’t actually use the ABC prediction to 
substitute or override the primary predictor’s 
prediction. We only use the prediction to estimate how 
much misprediction penalty could be saved. At the 
retire stage of a selected branch, if the ABC prediction 
is correct and the primary predictor is wrong, the Save 
field of this branch is incremented by the misprediction 
penalty. On the other hand, if the ABC prediction is 
wrong and the primary predictor is correct, we 
decrement the Save field. After the benefits of all three 
correlation distances are estimated, we compare the 
Save fields and decide which correlation distance is 
best for a load/branch pair. The PCs and correlation 
distances of those load/branch pairs remain in the AIT, 
which are used to check whether a dynamic load or 
branch instruction needs to access the ABC predictor.  

Depending on the density of hard-to-predict 
branches, the overall training period ranges from 8M 
instructions (mcf, parser, twolf) to 148M instructions 

Producer Loads 
Register File (PLRF)

Hard-to-predict Branch 
Tracking Table (HBTT) 

ABC Information Table (AIT) 

Producer 
loads 

BrPC MisPen 

Hard-to-predict 
branches 

BrPC LoadPC Save1 Dis 

LoadPC 

Save2 Save3
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(equake). The length of the overall training period and 
the number of load/branch pairs captured for each 
benchmark are reported in Table 1. To evaluate the 
effectiveness of our dynamic learning scheme, we 
performed profiling to select out the correlated 
load/branch pairs and their optimal correlation 
distances. Our experimental results show that the 
performance benefit of profiling over the proposed 
dynamic learning scheme is only 0.7%.  

 

Table 1. Length of the training period and the 
number of selected load/branch pairs. 

 ammp art equake mcf parser twolf vpr
Training (M Insts.) 13 18 148 8 8 8 9 
#  of selected pairs 1 3 1 3 4 2 3 

 

3.2. Tracking Address-Branch Correlation 
with a Prediction Table 
 

We use a prediction table to keep track of address-
branch correlation information. The prediction table is 
organized as a 2-way set-associative structure. Each 
entry of the prediction table contains three fields, a 
partial ‘Tag’ containing several bits of a producer 
address; a 1-bit ‘Correlated’ flag indicating whether 
the address has correlation to the branch outcome, and 
a 1-bit ‘Pred’ field keeping the outcome of a consumer 
branch, as shown in Figure 7. 

 
Figure 7. An Address-Branch Correlation 
Prediction Table. 

 The prediction table is accessed when a producer 
address is available. If the producer address hits in the 
table and the ‘Correlated’ flag is true, a valid 
prediction is generated using the ‘Pred’ field. 

When a consumer branch is retired, the prediction 
table is updated with the producer address (obtained 
from the ABCQ described in Section 3.3), the actual 
branch outcome, and whether the branch is 
mispredicted by the primary predictor. If the producer 
address misses in the prediction table and the primary 
predictor has a misprediction, a new entry is allocated 
in the prediction table, the ‘Pred’ field is set to the 
branch’s actual outcome, and the ‘Correlated’ flag is 
set to true. If the address hits in the prediction table, 
the ‘Correlated’ flag is set to false if the actual branch 

outcome doesn’t match with the ‘Pred’ field, indicating 
that there is no stable correlation with this address.  

When a new entry is required at a set where no 
empty entry is available, an existing entry is replaced 
only if its ‘Correlated’ flag is false. The reason is that 
we do not want to replace useful correlation 
information. To overcome the problem of out-dated 
correlation, which means that some addresses in the 
prediction table will not be accessed anymore and will 
not be replaced, we resort to resetting the table 
periodically at an interval of 100M instructions. Since 
long-latency mispredictions incur much higher branch 
penalties than short-latency ones, among the first 2M 
executed instructions after each reset, only long-
latency mispredictions are allocated a new entry in the 
prediction table. Short-latency mispredictions compete 
for the rest of the entries afterwards. We treat a 
misprediction with more than 100-cycle resolution 
latency as a long-latency misprediction. 

 

3.3. Linking Producer Loads and Consumer 
Branches 
 

We use Address-Branch Correlation Queues 
(ABCQs) to link dynamic instances of producer loads 
and their consumer branches. Each selected 
load/branch pair has its own ABCQ. Each ABCQ 
maintains information of dynamic instances of a 
particular branch that have been fetched but not yet 
been committed. Each ABCQ entry contains four 
fields: Prediction Available (PredAvail), Prediction 
(Pred), Address Available (AddrAvail), and Address 
(Addr). The first two fields indicate whether a valid 
ABC prediction is available and what the prediction is 
whereas the next two fields show whether a valid 
producer address is available and what the address is. 
The Pred field is also used to store the primary 
predictor’s prediction if an ABC prediction is not 
available when a consumer branch is fetched. The 
queue is managed by three pointers: ‘Head’, which 
points to the dynamic instance of the consumer branch 
that will retire next; ‘Dispatch’, which points to the 
instance that will be dispatched next; and ‘Fetch’, 
which points to the instance that will be fetched next. 
Those pointers are updated when a dynamic instance 
of the corresponding branch is retired, dispatched and 
fetched, respectively. The reorder buffer (ROB) is also 
augmented with an ‘ABCQ_ptr’ field, which provides 
a link to the corresponding ABCQ entry.  The queue 
structure and its relationship with ROB are shown in 
Figure 8. 

 

Tag Pred Correlated 

Address-Branch Correlation  
Prediction Table 

Producer  
Address 

Prediction 

Prediction Available  

80



  
Figure 8. Linking producer loads and consumer branches using an address-branch correlation 
queue (ABCQ). 
 

When a producer load of interest is dispatched, the 
current Dispatch pointer of the corresponding ABCQ 
is stored in the ABCQ_ptr field of its ROB entry. 
When its consumer branch is dispatched, the same 
pointer is stored in its ABCQ_ptr field, as shown in 
Figure 8. Since the ABCQ maintains the branch’s 
dynamic instances in the program order, it provides an 
efficient way to link producer loads and consumer 
branches across multiple iterations. For example, a 
load can reach its correlated branch with correlation 
distance 1 using (ABCQ_ptr + 1) % ABCQ_size, as 
illustrated in Figure 8.  

When the address of a producer load is known, it is 
used to access the prediction table to retrieve an ABC 
prediction. The prediction as well as the address will 
be used to update the ABCQ entry through the 
ABCQ_ptr. In other words, the entry 
ABCQ[(ABCQ_ptr + k) % ABCQ_size] is updated if 
address-branch correlation of distance k is to be 
exploited for this load instruction. Since the Pred field 
may also be used to store the primary predictor’s 
prediction, we need to check the current ‘Fetch’ 
pointer of the ABCQ before updating the field with the 
ABC prediction. The ‘Fetch’ pointer of the ABCQ 
shows whether the dynamic instance of the consumer 
branch has been fetched or not. If it has been fetched, 
the fetch pointer will exceed (ABCQ_ptr + k) and the 
Pred field maintains the existing prediction generated 
by the primary predictor. In this case, the Pred field is 
compared with the ABC prediction to decide whether 
to override the existing prediction and invoke a 
misprediction recovery. Then, the ABC prediction will 
be stored in the Pred field. If the dynamic instance has 
not been fetched, the PredAvail flag will be set to true 
and the ABC prediction will be used as a prioritized 
prediction when it is fetched, i.e., when the ‘Fetch’ 
pointer equals to (ABCQ_ptr + k).  

When a consumer branch is ready to commit, its 
actual outcome as well as the information maintained 
in its assigned ABCQ entry, pointed through its 
ABCQ_ptr, will be used to update the prediction table. 
After the branch is committed, its ABCQ entry is de-
allocated.  

Since an ABCQ allocates an entry for each fetched 
instance of a particular branch, some of those dynamic 
instances may be on wrong paths. In order to recover 
the ABCQs in case of branch mispredictions, their 
Dispatch and Fetch pointers are checkpointed along 
with the rename map table when a branch is 
dispatched. When a branch misprediction is detected, 
the checkpointed pointers are used to recover the 
ABCQ’s state.  

 

3.4. Hardware Cost 
 

The storage requirement of our design includes two 
parts: the hardware to capture load/branch pairs and 
the ABC predictor. The HBTT has 16 entries and each 
entry includes a 32-bit PC and a 24-bit saturating 
counter to store the misprediction penalty. The AIT 
has 5 entries and each entry includes two 32-bit PCs, a 
3-bit counter to store correlation distance and three 21-
bit saturating counters. The PLRF has 64 entries and 
each entry stores a 32-bit PC. The overall storage 
requirement of those three tables is 3594 bits (449 
bytes). 

The storage requirement of the proposed ABC 
predictor depends on the sizes of the prediction table 
and ABCQs. In our design, we use a 7-bit partial tag. 
Therefore, each entry in the prediction table has 9 bits, 
including the correlation and prediction flags. A larger 
prediction table can capture more correlated addresses, 
but results in larger hardware cost and higher access 
latency. We experimentally found that a 9kB 2-way 
associative table achieves good balance between 
performance and hardware cost (See Section 5.1).  

Each ABCQ entry has three 1-bit fields and an 
address field. Since the address field is used to access 
the prediction table, only the index and the partial tag 
need to be stored. For a 9kB 2-way prediction table, 
the index needs 12 bits and the partial tag has 7 bits. 
Therefore, each entry of the ABCQs has 22 bits. We 
use 64-entry ABCQs since our results show that the 
performance with 64-entry ABCQs is very close to the 
performance of queues with infinite number of entries. 
The reason is that the selected branches are hard to 
predict. If a large number of these branches have been 
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fetched, it is very likely that the front end is already on 
a wrong path and there is no performance loss to stall 
the front end. Considering the requirement of training 
5 load/branch pairs as described in Section 3.1, we use 
5 ABCQs and the total cost of the queues is 7040 bits 
(880 bytes). 

 

4. Simulation Methodology 
 

Our simulator infrastructure is built upon the 
SimpleScalar toolset [3] but our execution-driven 
timing simulator is completely rebuilt to model MIPS 
R10000-style out-of-order superscalar processors. The 
processor configuration is shown in Table 2. We 
model a large instruction window processor to 
highlight the performance impact of branch 
mispredictions since the memory wall problem can be 
resolved effectively with large instruction windows. 
The primary branch predictor is a 16kB TAGE 
predictor which uses 130-bit global branch histories 
with ideal 1-block ahead configuration. The 
performance of the proposed ABC predictor is 
evaluated by using SPEC 2000 benchmarks with the 
reference inputs and the same selection criterion and 
simulation points as described in Section 2.3. The 
dynamic load/branch pairs selecting period is also 
included in the total simulation range of 300M 
instructions. We exclude swim and gcc because their 
estimated branch misprediction penalty reductions are 
too small (less than 2%) as shown in Figure 5.  
Table 2. Configuration of the processor. 

Instruction 
Cache 

32 kB, 2-way; Line size=16 Inst.; Miss 
penalty=10 cycles. 

Data Cache 32 kB, 2-way; Line size = 64 bytes; Miss 
penalty =10 cycles. 

Unified L2 
Cache 

1024 kB, 8-way; Line size=128 bytes; 
Miss penalty=300 cycles. 

Primary Branch 
Predictor 

16kB TAGE: 8 prediction tables. Min 
branch mispred. penalty = 20 cycles. 

Superscalar 
Core 

Reorder buffer: 1024 entries; 
Dispatch/issue/retire bandwidth: 4-way 
superscalar; 4 fully-symmetric function 
units; Data cache ports: 4. Issue queue: 
512 entries. LSQ: 512 entries. Rename 
map table checkpoints: 256. 

Execution 
Latencies 

Addr. Gen.: 1 cycle; Mem. access: 2 
cycles (hit in data cache); Int. ALU ops = 
1 cycle; Complex ops = MIPS R10000 
latencies. 

Memory 
Disambiguation 

Perfect memory disambiguation. 

Hardware 
Prefetcher 

Stride-based stream buffer: 8 four-entry 
stream buffers with a PC-based two-way 
512-entry stride prediction table. 

 

5. Experimental Results 
 
5.1 Performance 
 

In this experiment, we examine the performance of 
our proposed ABC predictor. We augment the baseline 
processor with an ABC predictor and vary the size of 
its prediction table from 4.5kB to 72kB. The 
normalized execution time with respect to the baseline 
processor is reported in Figure 9. For reference, we 
also include the results of using ideal predictions for 
those selected branches.  
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Figure 9. Normalized execution time of the 
baseline processor augmented with ABC 
predictors. 

Two observations can be made from Figure 9. First, 
among the memory-intensive benchmarks that we 
examined, the ABC predictors always result in positive 
performance improvements and higher performance 
improvements are achieved in integer benchmarks than 
floating-point benchmarks, which is expected as even 
ideal prediction has limited performance impact in 
floating-point benchmarks. Among the integer 
benchmarks, mcf and parser show strong address-
branch correlation which confirms the performance 
potential study shown in Figure 5. Second, although 
larger prediction tables can capture more address-
branch correlation information and result in better 
performance, a small 4.5kB prediction table is 
sufficient to keep track of the majority of useful 
producer addresses. An exception is the benchmark 
mcf, for which increasing the table size has significant 
performance impact, the execution time is reduced by 
15% with a 4.5kB table and by 41% with a 72kB table. 
The reason is that its large working set and pointer-
chasing code result in a large number of producer 
addresses that correlate to consumer branches. On 
average, the ABC predictor reduces the execution time 
by 4.1% with a 4.5kB prediction table and 9.5% with a 
72kB table. Among the different prediction table sizes, 
a 9kB prediction table reduces the execution time by 
6.3% (up to 27%), which provides a good tradeoff 
between performance improvement and hardware cost. 
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5.2 Prediction Accuracy and the Reduction in 
Branch Misprediction Penalties 
 

In this experiment, we examine the prediction 
accuracy achieved by the proposed ABC predictors 
and what fraction of the branch misprediction penalties 
can be eliminated. For those selected branches a 9kB 
ABC predictor achieves 96.8% prediction accuracy, 
which is much higher than a 16kB TAGE predictor 
(87.8%) and the idealistic GTL predictor [15] with 
nearly unlimited storage budget (91.8%). However, 
since the ABC predictor only provides a prediction 
when a producer load address is highly correlated with 
the branch outcome, it does not cover all dynamic 
instances of those selected branches. For a fair 
comparison, we report in Table 3 the number of 
mispredictions of those selected branches using a 16kB 
TAGE predictor with and without a 9kB ABC 
predictor. The ABC predictor reduces the 
mispredictions of those selected hard-to-predicted 
branches by 37.7% on average.  

Next, we examine the reduction in overall 
misprediction penalties achieved by the ABC 
predictor. We use the interval between the time when a 
mispredicted branch is fetched and the time when the 
misprediction is resolved as the misprediction penalty. 
The reductions are normalized to the misprediction 
penalty of the baseline processor with a 16kB TAGE 
predictor and are shown in Figure 10. We can see that 
although the ABC predictor only provides predictions 
for one to four (static) selected branches, the proposed 
ABC predictors successfully reduce overall 
misprediction penalties and a 9kB ABC predictor can 
achieve up to 29% and an average of 11% reduction. 

 

5.3 Impact of Primary Branch Predictors 
 

In this experiment, we vary the primary predictor to 
evaluate its impact on the proposed ABC predictor. 
We simulate gshare predictors, which are less accurate 

but relatively easy to implement, and large TAGE 
predictors, which provide state-of-art prediction 
accuracy but have higher implementation complexity. 
The execution time of different branch predictors, 
either used alone or combined with a 4.5kB or a 9kB 
ABC predictor, is shown in Figure 11. Here, the 
execution time is normalized to the baseline processor 
with a 16kB gshare predictor. 
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Figure 10. Reductions in branch misprediction 
penalties achieved by ABC predictors. 
 

     From the figure, we can see that the ABC predictor 
achieves significant performance improvement even if 
it is used together with a highly accurate primary 
predictor. When augmenting a 128kB TAGE predictor 
with a 9kB ABC predictor, the execution time is 
reduced by 4.2% (up to 15%). For a less accurate 
predictor, such as a 16kB gshare predictor, the ABC 
predictor is also effective and reduces the execution 
time by up to 22% and 5.6% on average. Another 
observation from the figure is that an 8kB TAGE 
predictor with a 4.5kB ABC predictor outperforms a 
32kB TAGE predictor and a 16kB TAGE predictor 
with a 9kB ABC predictor outperforms a 64kB TAGE 
predictor for those benchmarks. The reason is that the 
ABC predictor achieves high prediction accuracy for a 
few long-latency branches while the larger TAGE 
predictor aims to improve prediction accuracy 
universally for both long-latency and short-latency 
branches. Focusing on long-latency branches is more 
effective in reducing the overall execution time.  

Table 3. The number of mispredictions for the selected hard-to-predict branches. 
 ammp art equake mcf parser twolf vpr amean 
16kB TAGE  58005 257476 197533 2842260 478172 577130 522262 704691 
16kB TAGE + 9kB ABC  24388 117594 191520 1159779 179864 458304 489888 374476 
Misprediction Reduction 58.0% 54.3% 3.0% 59.2% 62.4% 20.6% 6.2% 37.7% 

50%
60%
70%
80%
90%

100%

ammp art equake mcf parser tw olf vpr gmean

gshare16kB
gshare16kB+9kB ABC pred
TAGE8kB
TAGE8kB + 4.5kB ABC pred
TAGE16kB
TAGE16kB+9kB ABC pred
TAGE32kB
TAGE32kB+9kB ABC pred
TAGE64kB
TAGE64kB+9kB ABC pred
TAGE128kB
TAGE128kB+9kB ABC pred

 
Figure 11. Normalized execution time of different primary predictors with and without ABC 
predictors. 
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               (a) ROB Size                                            (b) L2 Size                                (c) Memory Latency (cycles) 
Figure 12. Performance improvements for processors with different ROB sizes, L2 sizes and 
memory latencies.  
 
 

5.4 Sensitivity Study 
 

In this experiment, we study the sensitivity of the 
proposed ABC predictor on various architecture 
parameters. We use the baseline configuration shown 
in Table 2 and vary the ROB size, the L2 cache size 
and the memory latency. The performance 
improvements of a 9kB ABC predictor calculated by 
the reduction of the geometric mean of the normalized 
execution time are shown in Figure 12. As shown in 
Figure 12a, the ABC predictor provides larger benefit 
to processors with larger instruction windows. The 
reason is that a large instruction-window processor can 
effectively exploit memory-level parallelism to 
overcome the memory wall problem. Therefore, the 
pressure is essentially shifted to branch predictors to 
fetch a large number of instructions from correct paths. 
The percentage of the total misprediction penalty to the 
execution time increases from 24% to 30% when we 
increase the ROB size from 128 to 1024. For the 
impact of the cache and memory system as shown in 
Figure 12b and Figure 12c, we can observe that the 
ABC predictor provides similar performance benefits 
(5.5% to 6.5%) with different L2 sizes and memory 
latencies. Generally, with a larger L2 size or smaller 
memory latency, the performance improvement is 
higher since the performance bottleneck is shifted from 
the latency of memory operations to the branch 
prediction accuracy. An exception is the mcf with a 
processor having a 4MB L2 cache. Compared to a 
2MB L2 cache, the L2 cache miss rate of the 4MB L2 
cache drops dramatically for mcf (from 46% to 26%). 
Such drop reduces the relative importance of the load 
dependent branches predicted by the ABC predictor 
and the performance improvement of mcf is reduced 
from 26% to 19%. 
 

5.5 Reduction in Energy Consumption 
 

 Since long-latency branch mispredictions lead to a 
large number of wrong-path instructions being 
executed, a reduction in mispredictions reduces the 
energy being wasted by wrong-path instructions. To 
analyze the energy consumption effect of the ABC 

predictor, we port WATTCH [2] and HotLeakage [19] 
into our simulator to account for both dynamic and 
static energy consumption. 

In our experiments, we use the 70nm technology 
with a clock frequency of 5.6GHz and assume the 
linear clock gating [2]. The energy consumed by the 
ABC predictor is taken into account by modeling the 
HBTT, the AIT, the PLRF, the prediction table and 
ABCQs. Since the ABC predictor is only accessed by 
selected load/branch pairs, its energy consumption is 
very small and accounts for less than 0.6% of the total 
energy consumption of the processor. The overall 
energy consumption of a processor with a 9kB ABC 
predictor normalized to the baseline processor is 
shown in Figure 13. From the figure we can see that 
the ABC predictor reduces energy consumption by up 
to 24% in mcf and 5.2% on average. For equake, the 
energy consumption is increased by 0.4% because the 
extra energy consumed by the ABC predictor is larger 
than its contribution to energy reduction. The energy 
reductions mainly come from the reduced execution 
time and the reduced number of instructions fetched 
and executed by the processor. Our results show that 
the ABC predictor reduces the number of the fetched 
instructions by 6.5% and the executed instruction by 
2.8%.  

75%
80%
85%
90%
95%

100%

ammp art equake mcf parser tw olf vpr gmeanN
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
pt

io
n

 
Figure 13. Reduction in energy consumption 
achieved by a 9kB ABC predictor. 
 
6. Limitations and Potential Optimizations 
 

The proposed approach is a specialized approach 
aiming to exploit the address-branch locality. Our 
results show that it is effective for benchmarks with 
heavy pointer chasing since branches with strong 
address-branch correlation in those benchmarks 
normally contribute to a large portion of the total 
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mispredictions. However, if the relative importance of 
those branches is low, there is limited performance 
benefit. For those benchmarks, when exploring 
address-branch correlation is not effective, we can turn 
off the ABC predictor or reuse the prediction table to 
predict other branches. Since each entry of the 
prediction table has a partial tag and two 1-bit fields, 
we may reuse the table as a tagged branch prediction 
table working with the primary branch predictor to 
improve prediction accuracy of all conditional 
branches.  

 

7. Conclusions 
 

In this paper we present a novel locality named 
address-branch correlation (ABC) that can be exploited 
to handle long-latency hard-to-predict branches. A 
detailed study of address-branch correlation reveals 
why stable address-branch correlation exists. The 
reason is that in many memory-intensive workloads, 
major data structures or key data components that 
affect branch outcomes tend to remain stable. If a hard-
to-predict branch depends on such stable data, the 
address of the data rather than the data value is 
sufficient to determine the branch outcome. Since load 
addresses are obtained much earlier than loaded 
values, a misprediction can be detected more promptly 
especially if the loads result in long-latency cache 
misses.  

We then propose a design to exploit address-branch 
correlation to reduce misprediction penalties of those 
hard-to-predict long-latency branches. The proposed 
predictor dynamically captures correlations between 
producer load addresses and consumer branch 
outcomes. Address-branch correlation based 
predictions are generated when a producer address is 
known and the prediction is used as either an 
overriding prediction if the branch has been fetched or 
a prioritized one if the branch has not been fetched. 
Our experimental results show that an ABC predictor 
achieves very high prediction accuracy (96.8%) for 
those hard-to-predict branches. With a 9kB prediction 
table, the proposed ABC predictor reduces execution 
time by 6.3% on average (up to 27%) and also reduces 
energy consumption by 5.2% on average (up to 24%) 
for a set of SPEC 2000 benchmarks. 
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