

Improving Privacy and Lifetime of PCM-based Main Memory

 Jingfei Kong Huiyang Zhou
 School of Computer Science Dept of Electrical and Computer Engineering

 University of Central Florida North Carolina State University
 jfkong@eecs.ucf.edu hzhou@ncsu.edu

Abstract

Phase change memory (PCM) is a promising

technology for computer memory systems. However, the
non-volatile nature of PCM poses serious threats to
computer privacy. The low programming endurance of
PCM devices also limits the lifetime of PCM-based main
memory (PRAM). In this paper, we first adopt counter-
mode encryption for privacy protection and show that
encryption significantly reduces the effectiveness of some
previously proposed wear-leveling techniques for PRAM.
To mitigate such adverse impact, we propose simple, yet
effective extensions to the encryption scheme. In addition,
we propose to reuse the encryption counters as age
counters and to dynamically adjust the strength of error
correction code (ECC) to extend the lifetime of PRAM. Our
experiments show that our mechanisms effectively achieve
privacy protection and lifetime extension for PRAM with
very low performance overhead.

1. Introduction

Phase change memory (PCM) is an emerging memory
technology, which features low access latency, byte-
addressability, high integration density, and low leakage
energy consumption. Recently, there have been strong
interests in using PCM as main memory (PRAM) in
computer systems [13][20][27] .

Despite of having the aforementioned strengths, PCM
raises new challenges for computer system design. One
key property of PCM is its non-volatility: the information
stored in PRAM is persistent without power supply and
may last for more than 10 years [18]. Although non-
volatility is a fundamental reason for power efficiency, it
makes PRAM much more vulnerable to malicious security
attacks than volatile DRAM. Another important issue of
PCM is its unreliability, particularly due to its limited write
endurance[18], and various wear-leveling techniques have
been proposed to extend the PRAM lifetime
[4][13][19][20][25][26][27].

In this paper, we adopt a hardware encryption scheme,
counter-mode encryption, to protect the privacy of PRAM,
given its proven security and high performance. However,

due to the diffusion characteristics of encryption
algorithms, values in encrypted data blocks are randomized.
This negates the effectiveness of some previously proposed
wear-leveling techniques, redundant bit-write removal [27]
and partial writes [13] in particular.

To mitigate the encryption impact upon wear-leveling
techniques, we propose two new schemes. First, we
propose simple yet effective extensions to the encryption
scheme to revive partial writes. Second, we propose to use
encryption counters as age counters and to dynamically
adjust error protection strengths. In this work, we use error
correction code (ECC) and design an efficient way to
manage ECC protection. Our experiments using a cycle-
accurate timing simulator show that the performance
overhead introduced by encryption and ECC is small given
the long latency of PRAM accesses.

Our main contributions include (1) to our knowledge,
this is the first work to investigate the impact of encryption
on wear-leveling techniques for PRAM; (2) we propose a
new encryption counter scheme to revive partial writes to
reduce write traffic; (3) we propose to leverage encryption
counters as age counters and design an efficient way for
ECC management to extend PRAM lifetime.

The remainder of the paper is organized as follows. In
Section 2, we present background and discuss related work.
In Section 3, we analyze the encryption impact on wear-
leveling techniques and we propose a new encryption
counter scheme to mitigate it. In Section 4, we present our
design to leverage encryption counters as age counters for
efficient ECC management. In Section 5, the overall
architecture is presented and the interaction between
encryption and ECC is discussed. Detailed experimental
results are presented in Section 6. Section 7 concludes the
paper.

2. Background and related work

In PCM, a memory cell can be transformed between a
low-resistivity state and a high-resistivity state by atomic
arrangements. Compare to FLASH memory which has the
block-erase requirement, PCM is typically byte-
addressable. Besides, PCM has better write endurance than
FLASH and is projected to be more scalable, more cost-

effective and of higher performance [20][27]. In this
section, we discuss the challenges for using PCM as main
memory (PRAM) and some can be applied to the FLASH
technology as well.

2.1 Privacy

The non-volatility nature of PRAM aggravates the

privacy concerns over the contents residing in main
memory. It was reported that secret keys for disk
encryption can still be retrieved from volatile DRAM even
minutes after a computer is powered off [10]. Attackers
may simply dump the plaintext image of PRAM to extract
critical information. Such one-time storage dump is also a
major security concern for disk storage systems and disk
encryption is often used for security protection [8]. In a
more strict security model, it is assumed that more
complex security attacks exist and attackers have the
abilities to monitor the dynamic data read from and stored
to main memory. Protection against such advanced security
attacks is addressed with secure processor architectures
[14]. The security of those secure architectures relies on
the assumption that processor cores are unbreakable. Secret
keys involved are generated or sealed inside processors.
Given the privacy issues with PRAM, we opt to use the
counter mode encryption for its proved security and high
performance [3] and assume that the secret keys are inside
processors.

Figure 1 shows the counter-mode encryption proposed
for secure processors [3]. The counter data block is
composed of a counter, two address offsets and a logical
page identifier (LPID). The counter is associated with a
cache line and is incremented by one every time when the
cache line is written back to main memory. One address
offset is the cache line offset within a page. The other is
the plaintext data block offset within the cache line when
the cache line size is larger than the size of an
encryption/plaintext data block. The LPID is assigned
uniquely for each allocated page in the main memory. The
security strength of the counter-mode encryption comes
from the fact that the value of the counter data block for
each plaintext data block is unique both spatially and
temporally. The LPID and address offsets provide spatial
uniqueness while the counter ensures temporal uniqueness.

For resource efficiency, counters of limited sizes are used.
As a result, when a counter overflows, a new unique LPID
is generated and the whole page would be re-encrypted to
ensure uniqueness of counter data blocks [3]. The
performance advantage of the counter-mode encryption is
that the block cipher (i.e., encryption) latency can be
overlapped with the latency of fetching the encrypted data
block.

2.2 Wear-leveling techniques

Various wear-leveling techniques have been proposed

to address the limited endurance of PRAM to extend its
lifetime. The granularity of the approaches can be at the
segment/page level, the cache-line level, and the individual
bit level. They can be classified into two categories. One is
using swapping/shifting/rotation to even the wear-out
among hot (more write accessed) and cold (less write
accessed) spots. For example, segment swapping [27]
happens when one segment becomes so hot that it has to be
swapped with some cold segment to even out wear-out.
Similarly, in the start-gap scheme [19], each cache line
would be rotated through the whole memory with the
support from one spare cache line. The wear-leveling
techniques for FLASH devices by manipulating the
mapping between logical blocks and physical FLASH
memory blocks also fall into this category. The other
category is to reduce write traffic to PRAM. For example,
line-level write back [20] only writes dirty cache lines
instead of a whole page to PRAM. Similarly, partial writes
[13] add dirty bits to track which words of a cache line are
dirty. When the cache line is replaced, only the dirty words
in the cache line have to be written back to PRAM.
Redundant bit-write removal [27] first reads out and
compares the existing content to the new content. Only
those bits that differ are written back actually. Since many
of the above approaches are orthogonal to each other,
various schemes are often combined to achieve better
lifetime improvement. The wear-leveling schemes based
on reducing write traffic suit better for PRAM due to its
byte-addressability than FLASH, in which the block-erase
requirement makes it difficult to exploit bit-level or cache-
line-level redundancy.

2.3 Reliability, lifetime and ECC

To store information, PCM material is heated to

change state under electrical pulses. The repeated heat
stress, however, could render PCM material unstable and
unreliable. Data retention, endurance, program and read
disturbs are some of the basic reliability aspects that have
been investigated recently [12][18]. In this paper we
assume that there exist failing mechanisms or process
variations causing some PRAM cells fail earlier than others
[9].

Figure 1. Counter-mode encryption for secure processors

 main memory

Secure Processor Boundary

plaintext data block

Block cipher

ciphertext data block

 XOR Secret Key

 counter data block

Since PCM may have failures at some point, we need
a scheme to detect and correct errors in PRAM. Error
Correcting Code (ECC) is a common mechanism for such
a purpose [11][16][24][26]. ECC achieves information
redundancy by generating redundant bits based on the data
to be protected. The more bit errors that need to be
corrected, the more ECC bits are required. Figure 2 shows
the bit error rate before (raw bit error rate) and after
(uncorrectable bit error rate) ECC protection. The figure
shows that ECC protection greatly reduces the bit error rate,
often at a few orders of magnitude. The implication on
PRAM is that the failure of PRAM would be postponed
dramatically. For example, with the data traffic to PRAM
at 4GB/second, without ECC protection, a PRAM with the
raw bit error rate at 10-8 would have one bit error after
around 3 milliseconds (=1/(4G*8*10-8) seconds) of usage.
With ECC capable of correcting 1 bit error, the
uncorrectable bit error rate becomes 2.6*10-14, which
means that the PRAM would not encounter one bit error
until after almost 20 minutes (=1/(4G*8*2.6*10-14)
seconds) of usage.

3. Privacy Protection for PRAM

3.1 The impact of encryption on PRAM wear-
leveling techniques

We argue that encryption is necessary for protecting

privacy of non-volatile PRAM. However, to our
knowledge, no prior work, especially the wear-leveling
techniques, have investigated the impact of encryption. To
analyze the impact, it is necessary to dissect certain
characteristics of modern encryption algorithms.

Between two main classes of encryption algorithms,
symmetric and asymmetric-key encryption, symmetric-key
encryption is often chosen for its high-speed. Between
stream ciphers and block ciphers in symmetric-key
encryption, block ciphers are often used in memory/storage
encryption. With the basic encryption unit being a data
block, block ciphers produce an output block of the same

length as an input block. The size of one block for
encryption is often smaller than the size of a single cache
line/block. For example, Advanced Encryption Standard
(AES) [5]supports the encryption block size of 16 bytes
while one last-level cache line/block may have 64 or more
bytes. So, a cache line contains 4 or more encryption data
blocks. To ensure security, there is one important principle
for block cipher design – diffusion [15]. Diffusion tries to
disperse the statistical characteristics of plaintexts into long
spectrum of ciphertexts. In other words, each plaintext bit
would affect many ciphertext bits. The result is that there is
no relationship between two ciphertexts even there are just
few different bits in their plaintexts.

The diffusion characteristics have severe impacts on
some previously proposed wear-leveling techniques. Since
the encryption block size is less than the size of one cache
line/block, encryption mainly affects wear-leveling
techniques below the cache line granularity. Schemes on or
above the cache line granularity such as segment swapping
[27], the start-gap [19] and the line-level write-back [20]
are not affected by encryption. For redundant bit-write
removal [27], with encryption, the new ciphertext data
values would be largely different from the old ciphertext
data values. Figure 3 shows such an example with AES
encryption. Even if the to-be-written-back plaintext data
block is the same as the old one, the two ciphertext data
blocks are largely different from each other due to the
encryption counter update. Therefore the effectiveness of
the redundant bit-write removal is greatly reduced. For the
partial-write scheme [13], the problem with encryption is
that the encryption counter for a cache line is incremented
for every write back. As a result, the whole cache line
needs to be re-encrypted and modified, thereby completely
disabling partial writes even if there is only one dirty word
in the cache line.

Figure 2. The impact of ECC correctability on bit error rates
(based on data block size of 64 bytes)

ciphertext data block

A44CD5B097033E6D15F9317BC9D664B0

00000000000000000000000000000000

0100000000000000000000000000000

Plaintext data block

AES Block Cipher
Key: 123456789ABCDEF03456789ABCDEF012

Total 65 different bits out of 128 bits

BB4D3007975CC603475D4F1FAEE50FB7

 Figure 3. Avalanche effect caused by encryption

1E‐40

1E‐36

1E‐32

1E‐28

1E‐24

1E‐20

1E‐16

1E‐12

1E‐08

1E‐04

1E+00

1E‐041E‐051E‐061E‐071E‐081E‐09

U
n
co
rr
e
ct
ab

le
 B
it
 E
rr
o
r
ra
te
 (
U
B
ER

)

Raw Bit Error Rate (RBER)

correct 0 bit errors

correct 1 bit errors

correct 2 bit errors

correct 3 bit errors

correct 4 bit errors

3.2 A new encryption counter scheme to mitigate
the encryption impact

 Based on the analysis in Section 3.1, we propose to

extend the original encryption counter scheme to revive the
partial-write wear leveling. Our extension includes
additional counters at the encryption-block granularity. In
other words, for each cache line, besides one cache-line-
level counter, we add multiple block-level counters.
Encryption for each data block is done using the
combination of the cache-line-level counter and the block-
level counter. Upon a write-back, only the block-level
counters corresponding to dirty blocks are incremented and
only the dirty blocks are re-encrypted. Other non-dirty
blocks within the same cache line can therefore be spared
from being written back to PRAM. When any block-level
counter overflows, however, all block-level counters in the
same cache line are reset to zero and the cache-line-level
counter is incremented by one. In this case, the partial
write scheme does not work as the whole cache line is re-
encrypted. Note that since the basic encryption unit is an
encryption block (typically 16 bytes), finer granularities
(e.g., word size) for partial writes are not beneficial as the
whole data block will be encrypted even if only one word
in the block is updated.

In Section 6.2, we show the quantitative impact of
encryption on the wear-leveling techniques. The
effectiveness of our new encryption counter scheme is
shown in Section 6.3. Note our new scheme revives partial
writes to reduce write traffic to PRAM and it alone may
not be sufficient to improve lifetime. Some rotation
scheme is necessary to distribute write traffic evenly in
order to take full advantage of the write traffic reduction.

4. Adaptive ECC management

A straightforward way to extend PRAM lifetime using

ECC is allocating enough ECC storage to cover the
maximum number of bit errors that are expected. However,
during the most of the PRAM lifetime, the number of bit
errors is much less than the expected maximum number.
Therefore it is wasteful in space and potentially harmful to
the performance. The reasons are (a) some memory space
are allocated for unnecessary ECC storage and (b) the logic
for correcting a high number of bit errors is slower than it
for a small number of bit errors.

In this paper, we propose to dynamically manage ECC
strength according to the reliability/wear-out status of
PRAM. To keep track of the wear-out status of PRAM, we
use the number of write-accesses to PRAM as a metric. We
assume that the raw bit error rate increases as PRAM ages
[9]. Therefore, we gradually increase the strength of ECC
protection by allocating more ECC bits when PRAM is
gradually worn out. Figure 4 shows one such example in
which the number of bit errors to be corrected by ECC is

increasing as the raw bit error rate is increasing. The target
for the uncorrectable bit error rate (UBER) in Figure 4 is
10-19, which enables a PRAM with data traffic at
4GB/second to have just one bit error after around 10 years
(=1/(4G*8*10-19)) of usage.

For efficient ECC management, two main challenges
need to be addressed. The first is where to store the ECC
bits as the size varies for different error correction
requirements and how to access them accordingly. The
second is to obtain the write-access counters as they are
necessary for monitoring the wear-out status of PRAM.

4.1 The ECC space and address mapping

To accommodate dynamic ECC management, we

propose a hardware-software integrated approach, shown
in Figure 5.

Instead of having separate memory chips for ECC, we
propose to store both data and their ECC bits in a unified
memory space (i.e., virtual memory space). The operation
system (OS) will assist the dynamic allocation of ECC and
data pages and maintain information of the ECC pages so
that the data pages will not be mapped to the same places.
The physical memory is partitioned into groups and each
group contains multiple data pages and the corresponding
ECC pages. All the data pages in the same group have the
same level of ECC protection. The assumption is that some
aforementioned rotation-based wear-leveling techniques

Figure 4. Dynamic requirement for ECC to meet UBER of
10-19 as PRAM gets worn out

Figure 5. The design of our proposed scheme for dynamic
ECC management

0

2

4

6

8

10

n
u
m
b
e
r
o
f
b
it
 e
rr
o
rs
 n
e
e
d
s

to
 b
e
 c
o
rr
e
ct
e
d

Raw Bit Error Rate (RBER)

PRAM

 memory controller

protection‐level lookup table

N‐a
ECC
pages

a data pages

Group 0

…
N‐k
ECC
pages

k data
pages

Group i

are deployed and they introduce evenly or close to evenly
distributed write traffic to PRAM. Our experiments are
based on such an assumption. When some pages in a group
are getting older and reach a threshold, more ECC space is
required. In this case, an exception would happen and OS
would intervene to reorganize the group to contain less
data pages and more ECC pages. Note that since such
exception event is rare, the introduced performance
overhead would be negligible. Depending on workload
write-traffic characteristics, the effectiveness of rotation-
based wear-leveling to distribute the write traffic, and
process variations, different groups may have different
numbers of ECC pages according to their wear-out status.
As shown in Figure 5, group 0 may have a data pages and
(N-a) ECC pages while group i may have k data pages and
(N-k) ECC pages. Eventually, the ratio of the number of
ECC pages against the number of data pages in a group
will reach the worst case, where the maximum number of
bit errors is expected. In such a case, the group may be
marked unreliable and the OS will not use it anymore.

Managing memory in groups simplifies address
mapping to access the ECC bits. As shown in Figure 5, the
memory controller has a protection-level look up table
which contains the information of how many ECC pages
exist in each group. Such information is then used to derive
the number of ECC bits for a cache-line in the group. The
space cost for the protection-level lookup table is small.
For example, if each group contains 1K pages and the page
size is 4KB, a 1K-entry table can manage a 4GB-PRAM.
The process of determining the physical address of ECC
bits of a data access is shown in Figure 6. First, the
physical address of the data (data_cache_line_addr in Figure 6
as the unit of data operation is the cache line size) is used
to decide which group contains the data (ECC_base_addr in
Figure 6). Then, the offset within the group (ECC_offset_addr)
is calculated to see where the data is located within the
group at the cache line granularity. Based on how many
ECC bits are allocated for each cache line, the address of
the ECC bits is generated. Note that due to the use of the
two’s power numbers, the multiplication and division in
Figure 6 can be implemented using simple shifts and adds.
The group size is mainly dependent on the PRAM
endurance characteristics. Since all the data in the same
group have the same ECC, we essentially assume that the
memory in a group will wear out at a similar rate. If the
endurance variation is expected to be large, we prefer a
small group size to avoid a small region to affect a large
amount of memory. Note that although an ECC page is

referenced more frequently than data pages (as each ECC
page can accommodate multiple data pages), it is unlikely
for ECC pages to become most worn out ones. The reasons
are two-folds. First, as shown in Section 6.6, after
encryption, both data and ECC code have similar bit-level
redundancy and bit-level wear-leveling techniques have the
similar effects. Second, inside an ECC page, each
individual ECC block has the same number of writes as the
corresponding data block (e.g., a cache line). So the
lifetime of an ECC page will be the same as (or very close
to) the data page which is most worn out.

Storing ECC bits in virtual memory space is
independently proposed in a recent work [23]. An ECC
page table is introduced in their scheme to locate the ECC
pages.

4.2 Leveraging encryption counters as write-access
(age) counters

There are several ways to track the number of write-

accesses to memory pages in PRAM. One is to associate a
local counter with each cache line. The maximum among
all local counters in a page would be the age of the page.
Another way is to have a single counter for one page and it
records the total number of write-accesses to the page. The
first approach incurs high space overhead (local counter
size * number of lines in a page). The second approach has
much less space overhead (just one counter) but less
accurate since write-accesses to different lines in a page
are accumulated, leading to a highly overestimated age. To
reduce space overhead without losing much accuracy, we
choose to use a two level counters scheme similar to the
one used in [22].

In the counter-mode encryption described in [3], there
already is a local counter (LC) for each line in a page. In
addition, there is a 64-bit logical page identifier (LPID)
assigned for each memory page when it is allocated. To
account for a high number of write accesses, we add
another global counter (GC) for each page. When a local
counter overflows, GC would be incremented by one and
all the local counters in the same page would be reset to
zero. In this case, as discussed in Section 2.1, a new unique
LPID is generated and the page would be re-encrypted to
ensure security [3]. Such a combined two-level global and
local counters are much more accurate than one global
counter and have much less space overhead than the local
counter scheme. Note as the overflow happens rarely, the
associated performance overhead is negligible [22].

Figure 6. The address mapping of ECC protection bits

ECC_addr = ECC_base_addr + ECC_ offset_addr * ECC_size_for_one_cache_line
 ECC_base_addr = data_cache_line_addr & group_size_mask /*group_size_mask = ~(group_size – 1) */
 ECC_offset_addr = [data_cache_line_addr & (~group_size_mask) – Data_base_addr_in_the_group] / (cache_line_size)
 ECC_size_for_one_cache_line = the number of ECC bits for the protection_level_for_the_group
 Data_base_add_in_the_group = number of ECC pages in the group * page size

5. Overall Architecture

The overall architecture for improving privacy and

lifetime is shown in Figure 7.

With the proposed architecture, a memory access
proceeds as follows. When an encrypted cache line is to be
fetched from PRAM, its memory address is used to locate
the corresponding counters and generate the seed for the
block cipher. As the counters are stored along with the
ciphertext data in the PRAM, directly accessing them will
postpone the seed generation process and expose the block
cipher latency. To overcome this performance issue and
overlap this latency with PRAM access latency, a counter
cache is included as in the previous work [3]. Here, note
that if the counter scheme proposed in Section 3.2 is used,
each local counter (LC) will be appended with a few small
block-level counters. The encrypted data are stored in a
data page in PRAM. The ECC bits are stored in an ECC
page in the same group as the data page. In our scheme,
ECC and data pages have the same organization and the
counters in either type of pages are updated when there is a
write access. The only difference is that the counters in the
ECC page are only used to track the age and not for
decryption.

There is an interesting interaction between encryption
and ECC generation. Two options exist: the ECC bits can
be computed either based on plaintext data or ciphertext
data. If ECC is computed using plaintext data, the write
access time can be reduced as the ECC computation and
encryption can be performed in parallel. On the other hand,

the read access latency is affected as the ECC check has to
wait after the ciphertext data is decrypted. In comparison,
computing ECC bits on ciphertext data reduces the read
latency and increases the write latency. Since read
operations are more performance critical than writes, we
choose to compute ECC based on ciphertext data, as shown
in Figure 7.

In an alternative memory organization, which uses
PCM as main memory and DRAM as another level of
cache [20], the counter cache can reside in the DRAM
cache. This DRAM cache can also be used to store the
uncompressed data when memory compression
technologies [1][7] are employed. Since encryption makes
data less compressible, encryption should happen after the
compression stage. In this case, the plaintext data shown in
Figure 7 is a compressed data block. The impact of
memory compression is evaluated in Section 6.4.

The storage overhead for counters, which are used for
both encryption and age estimates for ECC management, is
small. If we assume the cache line size as 128 bytes in the
last level cache, a 4KB page size, a 64-bit LPID, a 2-bit
counter per encryption block, a 13-bit LC per line and a
32-bit GC, the overhead is around 3%. The selection of
the counter sizes is to make sure that the age counters can
record the number of writes that is beyond the endurance
of PCM device (108 to 109) [19].

6. Experimental results

6.1 Methodology

Our experiments are conducted using a cycle-accurate
timing simulator developed upon the SimpleScalar toolset
[2]. The underlying processor model is MIPS R10000 and
the default configuration is listed in Table 1. The L2 cache
size is set to 1MB to increase the memory traffic. The
PRAM access latency is 1024 cycles [19]. The block
cipher engine is a 128-bit AES cipher and the encryption
latency is assumed to be 80 cycles [3]. Each cache line in
the counter cache stores the counters for one page. It is
composed of a 64-bit LPID [3], multiple local counters and
one global counter (GC). The error correction code used is
a binary cyclic code (BCH) [17]. The BCH latency
depends on the number of bit errors that can be corrected
and the maximum latency is 120 cycles for correcting 8 bit
errors [11][26]. For each message data of k bits, a BCH
codeword (containing both data and the redundant ECC
bits) with a length of n bits can be constructed to correct up
to t bit errors out of the entire codeword. The length of the
codeword n should satisfy 2(m-1)-1<n<=2m-1 and m*t<=n-
k, where m is the minimum number of redundant ECC bits
required for every bit error correction. In our experiments,
4 BCH codes are interleaved to protect the data at the
granularity of the last-level cache line size (256 bytes). For

Figure 7. A logical view on the architecture of the proposed
scheme for privacy protection and lifetime improvement.

 Physical Address

counter data block

LPID GCLC1

Counter Cache

BCH logic

Block cipher

Plaintext Data Block

Ciphertext Data Block ECC

One PRAM page
 GC LPID

LC1 Data in line 1

LCk Data in line k

Secret key

An ECC
Page

 seed

each BCH codeword, k = 512 bits (64 bytes) and m = 10.
Therefore n-512 >= 10*t must be satisfied. It indicates that
each additional bit error correction would need an
additional 10 redundant ECC bits.

Memory-intensive benchmarks from SPEC2000 and
SPEC2006 with high cache miss rates are used in the
experiments. For lifetime analysis, an in-order processor
model is used for simulation speed and the benchmarks are
simulated to run for a hundred-billion instructions or upon
completion.

6.2 Impact of encryption on wear-leveling
techniques

In this section, we show the impact of encryption on
two wear-leveling techniques: redundant bit-write removal
and partial writes.

First, we analyze the write traffic of the SPEC
benchmarks. We collect the total number of bit-write
traffic to PRAM under three scenarios. The baseline is the
one without either redundant bit-write removal or
encryption. The other two are redundant bit-write removal
with and without encryption, respectively. Assuming
uniform bit writes across PRAM, Figure 8 shows the
impact of encryption. Without encryption, there are lots of
bit-write redundancies in the benchmarks. The highest one,
mcf, has around 99.9% of its total bit writes redundant.
Even for the lowest one, equake, the redundant bit writes
are around 68%. In contrast, with encryption, every
benchmark has only around 50% of total bit writes
redundant. On average using the geometric mean (Gmean),

redundant bit-write removal can save around 90% of the
bit-write traffic to PRAM. With encryption, however, it
would only save half of bit-write traffic to PRAM.
 As discussed in Section 3.1, encryption completely
removes the benefit of partial-write. In this experiment, we
first confirm the benefits of partial writes in reducing write
traffic when encryption is not used. The traffic reductions
normalized to the baseline, in which every replacement of
a dirty cache line writes the whole cache line to PRAM, are
shown in Figure 9. It can be seen that partial writes at word
granularity (4 bytes) or encryption block granularity (16
bytes) can reduce around 45% or 35% of the write traffic
on Gmean. Note here we conduct experiments in a
conservative way as we do not simulate memory buffer
organization. With coalescing effects under memory
buffers, the results may be better [13]. With encryption,
however, partial writes fail to reduce any write traffic.

6.3 Effect of the new proposed encryption counter
scheme on partial writes

Figure 10 shows the effect of our proposed new
encryption counter scheme (Section 3.2) to revive partial
writes to reduce write-traffic to PRAM. The baseline is the
one in which the whole dirty cache line is written back to
PRAM upon replacement. In our experiment, we examined
block-level encryption counters of different sizes, 1-bit, 2-

Branch Predictor 64K-entry g-share, 4K-entry direct
mapped Branch Target Buffer (BTB)

Superscalar
Core

 CPU frequency: 4GHz
7-stage pipeline:
Fetch/Dispatch/Issue/RegisterRead/EXE
/WriteBack/Retire, Pipeline bandwidth:4
Fully-symmetric Function Units: 4
Reorder Buffer (ROB) size: 128
Issue Queue (IQ) size: 64
Load Store Queue (LSQ) size: 64

Execution
Latencies

Address Generation: 1 cycle
Memory Access: 2 cycles (hit in data cache)
Integer ALU ops: 1 cycle
Complex ops:MIPS R10000 latencies

Instruction Cache
(private)

32KB 2-way, Block/line size 64B
10-cycle miss penalty

L1 Data Cache
(private)

32KB 2-way, Block/line Size 64B
10-cycle miss penalty
8 Miss Status Handling Registers (MSHRs)

L2 Unified Cache
(shared)

1MB 16-way Block/line size: 256B
1024-cycle miss penalty

Counter Cache
(shared)

32K 16-way Block Size: 64B
1024-cycle miss penalty

Cipher Engine 128-bit AES with 80-cycle latency

ECC BCH code, correct up to 8 bit errors, with
up to 120-cycle decode-latency

PRAM 4GB, 1024-cycle latency, endurance 108

Table 1. Default processor configuration

Figure 8. Impact of encryption on redundant bit-write removal

Figure 9. Impact of encryption on partial writes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

am
m
p

ar
t

eq
u
ak
e

m
cf

sw
im vp
r

lb
m
_0
6

m
cf
_0
6

m
ilc
_0
6

sp
h
in
x3
_0
6

G
m
ea
n

n
o
rm

al
iz
e
d
 w
ri
te
 t
ra
ff
ic
 r
e
d
u
ct
io
n

redundant
bit‐write
removal

redundant
bit‐write
removal
with
encryption

0%

20%

40%

60%

80%

100%

n
o
rm

al
iz
e
d
 w
ri
te
 t
ra
ff
ic
 r
e
d
u
ct
io
n

word_granularity encryption_block_granularity with encryption

bit, 3-bit, and 4-bits. We also compared them to the ideal
case when the block-level counters can be arbitrarily large
(labeled ‘MAX-bit counter’ in Figure 10).

Several observations can be made from Figure 10.
First, our new encryption counter scheme effectively
revives partial writes to reduce write traffic. Second, as the
size of block-level encryption counters increases, more
write traffic can be reduced. The reason is that large
counters reduce the number of overflows, which in turn
spares more non-dirty blocks from being written back to
PRAM. The increased counter size, however, incurs higher
space overhead. Therefore, we choose 2-bit block-level
counters, which achieve 26.8% write traffic reduction on
average using Gmean.

6.4 Impact of memory compression on wear-
leveling techniques

In this section, we examine the impact of memory
compression. It can be used as another wear-leveling
technique to reduce write traffic. However, it also varies
the bit-level redundancy compared to uncompressed data.
In our experiments, Frequent Pattern Compression (FPC)
[1] and LZSS [21] are evaluated. FPC exploits the
observation that certain value patterns such as zero-values
are frequent in main memory while LZSS is a dictionary
encoding scheme. Data are compressed at the cache line
granularity and the compressed data are stored in-place
into the original cache line location in main memory. Note
this is an optimistic way of evaluating the compression
effect on write traffic reduction. Storing the compressed
data in compact may result in underflow/overflow when
the size of a new compressed cache line is larger or smaller
than the size of the old compressed cache line. The
underflow/overflow may result in moving some data
around, which increases write traffic.

Figure 11 shows the impact of FPC on redundant bit-
write removal (LZSS shows similar performance). Such
similarity is also reported in [7]. Note that it is not
practical to combine compression with partial writes as
compression may change the data layout in the compressed
data. There are several observations. First, there are two

benchmarks which exhibit very low compressibility (lbm
and swim) for FPC. Because of that, write traffic reduction
from using FPC reaches 3.5% using Gmean and 28.4% on
arithmetic mean. Second, compression reduces the bit-level
redundancy. Redundant bit-write removal removes 82.3%
traffic on Gmean of compressed write-back data, down
from 89.5% on uncompressed write-back data. The
significant bit-level redundancy under compression is due
to abundant non-dirty data as shown in Figure 9 and high
bit-level redundancy as shown in Figure 8. Overall,
compression combined with bit-write removal achieves
similar write-traffic reduction (87.7% on Gmean) to
redundant bit-write removal only (89.5% on Gmean).

6.5 PRAM lifetime comparison

In this experiment, we map write traffic to PRAM
lifetime estimate. We assume that write traffic to PRAM is
uniformly distributed across the memory footprints of each
benchmark. In other words, we assume that an optimal
cache-line-level swapping/rotating/shifting scheme is
already in place to extend the PRAM lifetime. With such
idealistic assumption, we estimate the upper bound of the
PRAM lifetime and the results are shown in Figure 12. The
baseline is the one without partial writes, without bit-
redundancy removal, encryption or compression.

From the figure, it shows that in the baseline model,
the PRAM has relatively short lifetime for benchmarks
ammp and art. This is because the benchmarks have high
write-traffic density on their memory footprints. On
average, the lifetime of the baseline is around 1.3 years
using the arithmetic mean (Amean). With redundant bit-
write removal, all benchmarks show large improvement on
lifetime as a result of the high bit-write redundancy as
shown in Figure 9. With this wear-leveling technique, the
lifetime of PRAM reaches to around 51.3 years, more than
39x improvement over the baseline. When encryption is
used, however, redundant bit-write removal can only
achieve 2x improvement over the baseline, reaching the
lifetime of around 2.6 years. For partial writes at word
granularity, the average lifetime of PRAM across the

Figure 10. Impact of our new encryption counter scheme
on partial writes

0%

20%

40%

60%

80%

100%
am

m
p

ar
t

eq
u
ak
e

m
cf

sw
im vp
r

lb
m
_0
6

m
cf
_0
6

m
ilc
_0
6

sp
h
in
x3
_0
6

G
m
ea
n

n
o
rm

al
iz
e
d
 w
ri
te
 t
ra
ff
ic

re
d
u
ct
io
n

1‐bit counter

2‐bit counter

3‐bit counter

4‐bit counter

MAX‐bit
counter

Figure 11. Impact of Frequent Pattern Compression on
redundant bit-write removal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

am
m
p

ar
t

eq
u
ak
e

m
cf

sw
im vp
r

lb
m
_0
6

m
cf
_0
6

m
ilc
_0
6

sp
h
in
x3
_0
6

G
m
ea
n

n
o
rm

al
iz
e
d
 w
ri
te
 t
ra
ff
ic

re
d
u
ct
io
n

Frequent Pattern
Compression
(FPC)

redundant_bit_wr
ite_removal

FPC_with_redund
ant_bit_write_re
moval

benchmarks is around 7.9 years. For partial writes with
encryption, the original encryption counter scheme
disables partial writes completely, thereby no lifetime
improvement over the baseline. For partial writes with our
proposed new encryption counter scheme (2-bit block-level
encryption counters), the achieved PRAM lifetime is
around 2.5 years on average, almost 2x improvement over
the baseline. When we combine both wear-leveling
techniques and enable encryption protection, we can
achieve almost 5.0 years of lifetime, around 4x
improvement over the baseline. Since the results in Figure
12 are already based on an idealistic assumption of
uniform write traffic distribution, we believe that even with
all the wear-leveling techniques, PRAM may fail in a
limited time, which necessitates the use of ECC.

For compression, we can see FPC alone improves
lifetime from 1.3 years to 2.1 years on average because of
write traffic reduction. But it reduces the effect of
redundant bit-write removal (lifetime is reduced from 51.3
years to 27.5 years). Such lifetime reduction despite the
similar write traffic reduction in Figure 11 is due to the fact
that a small difference in write traffic reduction may result
in a large difference in lifetime. For mcf, 99.89% and
99.69% traffic reduction results in 299 years and 106 years
of lifetime, respectively. With encryption, such bit-write
redundancy is dropped to 50%, the same as without
compression due to the diffusion effect of encryption
algorithms.

6.6 ECC space overhead and wear out

Without dynamic ECC management, the fixed ECC
space overhead for correcting up to 8 bit errors per 64
bytes is 10 bytes. In other words, 15.6% of the total PRAM
capacity would have to be reserved for ECC. With
dynamic ECC management, we leverage the fact that we
only need to correct a much less number of bit errors when
the PRAM is young (i.e., have not been written many
times). To correct 1 bit error per 64 bytes, we need 10
ECC bits. Therefore, only 2.0% of the total PRAM

capacity is necessary for ECC storage. If a group consists
of 1024 pages, only 20 ECC pages is required to protect
1004 pages. For 2 bit errors, it becomes 3.9% and so on.
This is much more efficient compared to the fixed ECC
allocation scheme, which means the space otherwise
reserved for ECC can be allocated for program use.

In the next experiment, we examine redundant bit
writes in ECC with and without encryption. Two ECC
schemes, SEC-DED [24] and BCH [26], are used in this
experiment and the results are shown in Figure 13. From
the figure, it shows that without encryption, there are a
high number of redundant bit writes, which can be
eliminated with the redundant bit-write removal technique.
However, with encryption, for both SEC-DED and BCH,
the ratio of redundant bit writes becomes 50%, indicating
the same behavior as the bit-write traffic in regular data.

6.7 Performance overhead of encryption and ECC

As discussed in Section 5, we choose to compute ECC
based on encrypted data. To examine the overall
performance impact, we model the proposed scheme in our
timing simulator. For each benchmark, we skip the first
one billion instructions and execute the next three-hundred
million instructions. The performance results, which are
normalized to the baseline without encryption or ECC, are
shown in Figure 14.

Figure 12. PRAM lifetime with various schemes (assuming uniform writes)

12 30 27299 13

12
19

101
12 24 83 4812106 13 22 46 51

0
1
2
3
4
5
6
7
8
9

10

P
R
A
M
 li
fe
ti
m
e
 (
in
 y
e
ar
s)

baseline

redundant bit‐write removal

redundant bit‐write removal with encryption

Frequent Pattern Compression (FPC)

FPC with redundant bit‐write removal

FPC with redundant bit‐write removal and
encryption
partial write (word granularity)

partial write with 2‐bit encryption counters

redundant bit‐write removal + partial write
with 2‐bit encryption counters

Figure 13. Impact of encryption on redundant bit-write
behavior of ECC

0%

20%

40%

60%

80%

100%
n
o
rm

al
iz
e
d
 r
e
d
u
n
d
an

t
b
it
‐w

ri
te

tr
af
fi
c

SEC_DED BCH with encryption

From Figure 14, it shows that adding encryption and
ECC has very small performance impact (0.3% on
average). The benchmark, mcf_06, has the worst
performance degradation (1%) due to its high memory
traffic. The reason for such small performance overhead is
that the PRAM access latency is large enough to dominate
the overall performance.

6.8 Summary

In summary, without encryption, redundant bit-write
removal and partial writes can achieve 51.3 years and 7.9
years of PRAM lifetime, respectively. With encryption,
those two combined can only achieve 2.6 years of lifetime.
Our proposed new encryption scheme can improve it to
around 5.0 years at 1.6% space cost. Redundant bit-write
removal combined with compression can achieve 27.5
years without encryption and 2.6 years with encryption.
The encryption counters can be leveraged to monitor
PRAM wear out status and the adaptive ECC management
can be deployed with an increment of 2.0% space cost and
dozen-cycle latency for each additional bit error to be
corrected.

7. Conclusion

Phase change memory is a promising technology for

computer systems. In this paper, we investigate the largely
overlooked privacy issue of PRAM due to its non-volatility.
We show that if encryption is used for privacy protection,
some of previously proposed wear-leveling schemes will
be severely affected. To mitigate the adverse impact of
encryption, we propose to extend the counter-mode
encryption to revive a wear-leveling technique: partial
writes. We also investigate memory compression and show
that it reduces memory traffic but hurts bit-level
redundancy. Then we study error correction code (ECC) as
an essential mechanism for PRAM lifetime extension. We
propose a dynamic ECC management scheme to vary ECC
protection strength according to the age of PRAM, which
is conveniently provided from the encryption counters. Our
experimental results show that the performance overhead

for achieving privacy protection and lifetime improvement
is minimal.

8. Acknowledgements

We thank the anonymous reviewers and Professor
Christof Fetzer for their insightful comments. This work is
supported by an NSF grant CNS-0905223 and an NSF
CAREER award CCF-0968667.

9. References

[1] A.R. Alameldeen, Using Compression to Improve Chip Multiprocessor
Performance, Ph.D. dissertation, CS Dept, University of Wisconsin-Madison,
2006.
[2] D. Burger et.al, The Simplescalar Tool Set Version 2.0. Technical Report,
Computer Science Department, University of Wisconsin-Madison, 1997.
[3] S. Chhabra et.al, Making Secure Processors OS- and Performance-Friendly,
ACM Transactions on Architecture and Code Optimization, 2009.
[4] S. Cho et.al, Flip-N-Write: A Simple Deterministic Technique to Improve
PRAM Write Performance, Energy and Endurance, MICRO 2009.
[5] J. Daemen et.al, The design of Rijndael: AES - the advanced encryption
standard. Springer-Verlag, 2002.
[6] C. Dirik et.al, The Performance of PC Solid-State Disks (SSDs) as a
Function of Bandwidth, Concurrency, Device Architecture, and System
Organization, ISCA 2009.
[7] M. Ekman et. al, A Robust Main Memory Compression Scheme, ISCA
2005.
[8] N. Ferguson, AES-CBC + Elephant diffuser: A disk encryption algorithm
for Windows Vista. http://www.microsoft.com/, Aug. 2006
[9] R. Gleixner, Reliability Characterization of Phase Change Memory, 10th
Annual Non-Volatile Memory Technology Symposium, 2009.
[10] J.A. Halderman et.al, Lest We Remember: Cold Boot Attacks on
Encryption Keys, USENIX Security 2008.
[11] T. Kgil et.al, Improving NAND Flash Based Disk Caches, ISCA 2008.
[12] K. Kim et.al, Reliability investigations for manufacturable high density
PRAM, 43rd Annual IEEE International Reliability Physics Symposium, 2005.
[13] B. C. Lee et.al, Architecting phase change memory as a scalable dram
alternative. ISCA 2009.
[14] D. Lie et.al, Architectural Support for Copy and Tamper Resistant
Software, ASPLOS 2000.
[15] A.J. Menezes et.al, Handbook of Applied Cryptography, CRC Press, 1996.
[16] N. Mielke et.al, Bit Error Rate in NAND Flash Memories, International
Reliability Physics Symposium, 2008.
[17] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, Second
Edition, John Wiley & Sons, 2006.
[18] A. Pirovano et.al, Reliability study of phase-change nonvolatile memories,
IEEE Transactions on Device and Materials Reliability, 2004.
[19] M. K. Qureshi et.al, Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. MICRO 2009.
[20] M. K. Qureshi et.al, Scalable high performance main memory system
using phase change memory technology. ISCA 2009.
[21] J. A. Storer et.al, Data Compression Via Textual Substitution, Journal of
the ACM, 1982.
[22] C. Yan et.al, Improving Cost, Performance, and Security of Memory
Encryption and Authentication, ISCA 2006.
[23] D.H. Yoon et. al, Virtualized and Flexible ECC for Main Memory,
ASPLOS 2010.
[24] D.H. Yoon et.al, Memory Mapped ECC: Low-Cost Error Protection for
Last Level Caches, ISCA 2009.
[25] W. Zhang et.al, Characterizing and Mitigating the Impact of Process
Variations on Phase Change based Memory Systems, MICRO 2009.
[26] W. Zhang et.al, Exploring Phase Change Memory and 3D Die-Stacking
for Power/Thermal Friendly, Fast and Durable Memory Architectures, PACT
2009
[27] P. Zhou, et.al, A durable and energy efficient main memory using phase
change memory technology. ISCA 2009.

Figure 14. Performance overhead of encryption and ECC

98.4%
98.6%
98.8%
99.0%
99.2%
99.4%
99.6%
99.8%
100.0%

N
o
rm

al
iz
e
d
 IP

C

