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Abstract 
 
Phase change memory (PCM) is a promising 

technology for computer memory systems. However, the 
non-volatile nature of PCM poses serious threats to 
computer privacy. The low programming endurance of 
PCM devices also limits the lifetime of PCM-based main 
memory (PRAM). In this paper, we first adopt counter-
mode encryption for privacy protection and show that 
encryption significantly reduces the effectiveness of some 
previously proposed wear-leveling techniques for PRAM. 
To mitigate such adverse impact, we propose simple, yet 
effective extensions to the encryption scheme. In addition, 
we propose to reuse the encryption counters as age 
counters and to dynamically adjust the strength of error 
correction code (ECC) to extend the lifetime of PRAM. Our 
experiments show that our mechanisms effectively achieve 
privacy protection and lifetime extension for PRAM with 
very low performance overhead. 

 
1. Introduction 
 

Phase change memory (PCM) is an emerging memory 
technology, which features low access latency, byte-
addressability, high integration density, and low leakage 
energy consumption. Recently, there have been strong 
interests in using PCM as main memory (PRAM) in 
computer systems [13][20][27] .  

Despite of having the aforementioned strengths, PCM 
raises new challenges for computer system design.  One 
key property of PCM is its non-volatility: the information 
stored in PRAM is persistent without power supply and 
may last for more than 10 years [18].  Although non-
volatility is a fundamental reason for power efficiency, it 
makes PRAM much more vulnerable to malicious security 
attacks than volatile DRAM. Another important issue of 
PCM is its unreliability, particularly due to its limited write 
endurance[18], and various wear-leveling techniques have 
been proposed to extend the PRAM lifetime 
[4][13][19][20][25][26][27]. 

In this paper, we adopt a hardware encryption scheme, 
counter-mode encryption, to protect the privacy of PRAM, 
given its proven security and high performance. However, 

due to the diffusion characteristics of encryption 
algorithms, values in encrypted data blocks are randomized. 
This negates the effectiveness of some previously proposed 
wear-leveling techniques, redundant bit-write removal [27] 
and partial writes [13] in particular.   

To mitigate the encryption impact upon wear-leveling 
techniques, we propose two new schemes. First, we 
propose simple yet effective extensions to the encryption 
scheme to revive partial writes. Second, we propose to use 
encryption counters as age counters and to dynamically 
adjust error protection strengths. In this work, we use error 
correction code (ECC) and design an efficient way to 
manage ECC protection. Our experiments using a cycle-
accurate timing simulator show that the performance 
overhead introduced by encryption and ECC is small given 
the long latency of PRAM accesses.  

Our main contributions include (1) to our knowledge, 
this is the first work to investigate the impact of encryption 
on wear-leveling techniques for PRAM; (2) we propose a 
new encryption counter scheme to revive partial writes to 
reduce write traffic; (3) we propose to leverage encryption 
counters as age counters and design an efficient way for 
ECC management to extend PRAM lifetime. 

The remainder of the paper is organized as follows. In 
Section 2, we present background and discuss related work. 
In Section 3, we analyze the encryption impact on wear-
leveling techniques and we propose a new encryption 
counter scheme to mitigate it. In Section 4, we present our 
design to leverage encryption counters as age counters for 
efficient ECC management. In Section 5, the overall 
architecture is presented and the interaction between 
encryption and ECC is discussed. Detailed experimental 
results are presented in Section 6. Section 7 concludes the 
paper. 

 
2. Background and related work 
 

In PCM, a memory cell can be transformed between a 
low-resistivity state and a high-resistivity state by atomic 
arrangements. Compare to FLASH memory which has the 
block-erase requirement, PCM is typically byte-
addressable. Besides, PCM has better write endurance than 
FLASH and is projected to be more scalable, more cost-



 
 

effective and of higher performance [20][27]. In this 
section, we discuss the challenges for using PCM as main 
memory (PRAM) and some can be applied to the FLASH 
technology as well. 
 
2.1 Privacy 

 
The non-volatility nature of PRAM aggravates the 

privacy concerns over the contents residing in main 
memory. It was reported that secret keys for disk 
encryption can still be retrieved from volatile DRAM even 
minutes after a computer is powered off [10]. Attackers 
may simply dump the plaintext image of PRAM to extract 
critical information. Such one-time storage dump is also a 
major security concern for disk storage systems and disk 
encryption is often used for security protection [8]. In a 
more strict security model, it is assumed that more 
complex security attacks exist and attackers have the 
abilities to monitor the dynamic data read from and stored 
to main memory. Protection against such advanced security 
attacks is addressed with secure processor architectures 
[14]. The security of those secure architectures relies on 
the assumption that processor cores are unbreakable. Secret 
keys involved are generated or sealed inside processors. 
Given the privacy issues with PRAM, we opt to use the 
counter mode encryption for its proved security and high 
performance [3] and assume that the secret keys are inside 
processors.  

Figure 1 shows the counter-mode encryption proposed 
for secure processors [3]. The counter data block is 
composed of a counter, two address offsets and a logical 
page identifier (LPID). The counter is associated with a 
cache line and is incremented by one every time when the 
cache line is written back to main memory. One address 
offset is the cache line offset within a page. The other is 
the plaintext data block offset within the cache line when 
the cache line size is larger than the size of an 
encryption/plaintext data block. The LPID is assigned 
uniquely for each allocated page in the main memory. The 
security strength of the counter-mode encryption comes 
from the fact that the value of the counter data block for 
each plaintext data block is unique both spatially and 
temporally. The LPID and address offsets provide spatial 
uniqueness while the counter ensures temporal uniqueness. 

For resource efficiency, counters of limited sizes are used. 
As a result, when a counter overflows, a new unique LPID 
is generated and the whole page would be re-encrypted to 
ensure uniqueness of counter data blocks [3]. The 
performance advantage of the counter-mode encryption is 
that the block cipher (i.e., encryption) latency can be 
overlapped with the latency of fetching the encrypted data 
block.  

 
2.2 Wear-leveling techniques 

 
Various wear-leveling techniques have been proposed 

to address the limited endurance of PRAM to extend its 
lifetime. The granularity of the approaches can be at the 
segment/page level, the cache-line level, and the individual 
bit level. They can be classified into two categories. One is 
using swapping/shifting/rotation to even the wear-out 
among hot (more write accessed) and cold (less write 
accessed) spots. For example, segment swapping [27] 
happens when one segment becomes so hot that it has to be 
swapped with some cold segment to even out wear-out. 
Similarly, in the start-gap scheme [19], each cache line 
would be rotated through the whole memory with the 
support from one spare cache line. The wear-leveling 
techniques for FLASH devices by manipulating the 
mapping between logical blocks and physical FLASH 
memory blocks also fall into this category. The other 
category is to reduce write traffic to PRAM.  For example, 
line-level write back [20] only writes dirty cache lines 
instead of a whole page to PRAM. Similarly, partial writes 
[13] add dirty bits to track which words of a cache line are 
dirty. When the cache line is replaced, only the dirty words 
in the cache line have to be written back to PRAM. 
Redundant bit-write removal [27] first reads out and 
compares the existing content to the new content. Only 
those bits that differ are written back actually. Since many 
of the above approaches are orthogonal to each other, 
various schemes are often combined to achieve better 
lifetime improvement. The wear-leveling schemes based 
on reducing write traffic suit better for PRAM due to its 
byte-addressability than FLASH, in which the block-erase 
requirement makes it difficult to exploit bit-level or cache-
line-level redundancy. 

 
2.3 Reliability, lifetime and ECC 

 
To store information, PCM material is heated to 

change state under electrical pulses. The repeated heat 
stress, however, could render PCM material unstable and 
unreliable. Data retention, endurance, program and read 
disturbs are some of the basic reliability aspects that have 
been investigated recently [12][18].  In this paper we 
assume that there exist failing mechanisms or process 
variations causing some PRAM cells fail earlier than others 
[9]. 

Figure 1. Counter-mode encryption for secure processors
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Since PCM may have failures at some point, we need 
a scheme to detect and correct errors in PRAM. Error 
Correcting Code (ECC) is a common mechanism for such 
a purpose [11][16][24][26]. ECC achieves information 
redundancy by generating redundant bits based on the data 
to be protected. The more bit errors that need to be 
corrected, the more ECC bits are required. Figure 2 shows 
the bit error rate before (raw bit error rate) and after 
(uncorrectable bit error rate) ECC protection. The figure 
shows that ECC protection greatly reduces the bit error rate, 
often at a few orders of magnitude. The implication on 
PRAM is that the failure of PRAM would be postponed 
dramatically.  For example, with the data traffic to PRAM 
at 4GB/second, without ECC protection, a PRAM with the 
raw bit error rate at 10-8 would have one bit error after 
around 3 milliseconds (=1/(4G*8*10-8) seconds) of usage. 
With ECC capable of correcting 1 bit error, the 
uncorrectable bit error rate becomes 2.6*10-14, which 
means that the PRAM would not encounter one bit error 
until after almost 20 minutes (=1/(4G*8*2.6*10-14) 
seconds) of usage. 
 

3.  Privacy Protection for PRAM 
 

3.1 The impact of encryption on PRAM wear-
leveling techniques 

 
We argue that encryption is necessary for protecting 

privacy of non-volatile PRAM. However, to our 
knowledge, no prior work, especially the wear-leveling 
techniques, have investigated the impact of encryption. To 
analyze the impact, it is necessary to dissect certain 
characteristics of modern encryption algorithms.  

Between two main classes of encryption algorithms, 
symmetric and asymmetric-key encryption, symmetric-key 
encryption is often chosen for its high-speed. Between 
stream ciphers and block ciphers in symmetric-key 
encryption, block ciphers are often used in memory/storage 
encryption. With the basic encryption unit being a data 
block, block ciphers produce an output block of the same 

length as an input block. The size of one block for 
encryption is often smaller than the size of a single cache 
line/block. For example, Advanced Encryption Standard 
(AES) [5]supports the encryption block size of 16 bytes 
while one last-level cache line/block may have 64 or more 
bytes. So, a cache line contains 4 or more encryption data 
blocks. To ensure security, there is one important principle 
for block cipher design – diffusion [15]. Diffusion tries to 
disperse the statistical characteristics of plaintexts into long 
spectrum of ciphertexts. In other words, each plaintext bit 
would affect many ciphertext bits. The result is that there is 
no relationship between two ciphertexts even there are just 
few different bits in their plaintexts.   

The diffusion characteristics have severe impacts on 
some previously proposed wear-leveling techniques. Since 
the encryption block size is less than the size of one cache 
line/block, encryption mainly affects wear-leveling 
techniques below the cache line granularity. Schemes on or 
above the cache line granularity such as segment swapping 
[27], the start-gap [19] and the line-level write-back [20] 
are not affected by encryption. For redundant bit-write 
removal [27], with encryption, the new ciphertext data 
values would be largely different from the old ciphertext 
data values.  Figure 3 shows such an example with AES 
encryption. Even if the to-be-written-back plaintext data 
block is the same as the old one, the two ciphertext data 
blocks are largely different from each other due to the 
encryption counter update. Therefore the effectiveness of 
the redundant bit-write removal is greatly reduced. For the 
partial-write scheme [13], the problem with encryption is 
that the encryption counter for a cache line is incremented 
for every write back.  As a result, the whole cache line 
needs to be re-encrypted and modified, thereby completely 
disabling partial writes even if there is only one dirty word 
in the cache line.  
 

Figure 2. The impact of ECC correctability on bit error rates 
(based on data block size of 64 bytes) 
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      Figure 3. Avalanche effect caused by encryption 
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3.2 A new encryption counter scheme to mitigate 
the encryption impact 

 
 Based on the analysis in Section 3.1, we propose to 

extend the original encryption counter scheme to revive the 
partial-write wear leveling. Our extension includes 
additional counters at the encryption-block granularity. In 
other words, for each cache line, besides one cache-line-
level counter, we add multiple block-level counters. 
Encryption for each data block is done using the 
combination of the cache-line-level counter and the block-
level counter. Upon a write-back, only the block-level 
counters corresponding to dirty blocks are incremented and 
only the dirty blocks are re-encrypted. Other non-dirty 
blocks within the same cache line can therefore be spared 
from being written back to PRAM. When any block-level 
counter overflows, however, all block-level counters in the 
same cache line are reset to zero and the cache-line-level 
counter is incremented by one. In this case, the partial 
write scheme does not work as the whole cache line is re-
encrypted. Note that since the basic encryption unit is an 
encryption block (typically 16 bytes), finer granularities 
(e.g., word size) for partial writes are not beneficial as the 
whole data block will be encrypted even if only one word 
in the block is updated. 

In Section 6.2, we show the quantitative impact of 
encryption on the wear-leveling techniques. The 
effectiveness of our new encryption counter scheme is 
shown in Section 6.3. Note our new scheme revives partial 
writes to reduce write traffic to PRAM and it alone may 
not be sufficient to improve lifetime. Some rotation 
scheme is necessary to distribute write traffic evenly in 
order to take full advantage of the write traffic reduction. 
 
4. Adaptive ECC management 

 
A straightforward way to extend PRAM lifetime using 

ECC is allocating enough ECC storage to cover the 
maximum number of bit errors that are expected.  However, 
during the most of the PRAM lifetime, the number of bit 
errors is much less than the expected maximum number. 
Therefore it is wasteful in space and potentially harmful to 
the performance. The reasons are (a) some memory space 
are allocated for unnecessary ECC storage and (b) the logic 
for correcting a high number of bit errors is slower than it 
for a small number of bit errors.   

In this paper, we propose to dynamically manage ECC 
strength according to the reliability/wear-out status of 
PRAM. To keep track of the wear-out status of PRAM, we 
use the number of write-accesses to PRAM as a metric. We 
assume that the raw bit error rate increases as PRAM ages 
[9]. Therefore, we gradually increase the strength of ECC 
protection by allocating more ECC bits when PRAM is 
gradually worn out. Figure 4 shows one such example in 
which the number of bit errors to be corrected by ECC is 

increasing as the raw bit error rate is increasing. The target 
for the uncorrectable bit error rate (UBER) in Figure 4 is 
10-19, which enables a PRAM with data traffic at 
4GB/second to have just one bit error after around 10 years 
(=1/(4G*8*10-19)) of usage.  

For efficient ECC management, two main challenges 
need to be addressed. The first is where to store the ECC 
bits as the size varies for different error correction 
requirements and how to access them accordingly. The 
second is to obtain the write-access counters as they are 
necessary for monitoring the wear-out status of PRAM. 

 
4.1 The ECC space and address mapping 

 
To accommodate dynamic ECC management, we 

propose a hardware-software integrated approach, shown 
in Figure 5.  

Instead of having separate memory chips for ECC, we 
propose to store both data and their ECC bits in a unified 
memory space (i.e., virtual memory space). The operation 
system (OS) will assist the dynamic allocation of ECC and 
data pages and maintain information of the ECC pages so 
that the data pages will not be mapped to the same places. 
The physical memory is partitioned into groups and each 
group contains multiple data pages and the corresponding 
ECC pages. All the data pages in the same group have the 
same level of ECC protection. The assumption is that some 
aforementioned rotation-based wear-leveling techniques 

Figure 4. Dynamic requirement for ECC to meet UBER of 
10-19 as PRAM gets worn out 

Figure 5. The design of our proposed scheme for dynamic 
ECC management
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are deployed and they introduce evenly or close to evenly 
distributed write traffic to PRAM. Our experiments are 
based on such an assumption. When some pages in a group 
are getting older and reach a threshold, more ECC space is 
required. In this case, an exception would happen and OS 
would intervene to reorganize the group to contain less 
data pages and more ECC pages. Note that since such 
exception event is rare, the introduced performance 
overhead would be negligible. Depending on workload 
write-traffic characteristics, the effectiveness of rotation-
based wear-leveling to distribute the write traffic, and 
process variations, different groups may have different 
numbers of ECC pages according to their wear-out status. 
As shown in Figure 5, group 0 may have a data pages and 
(N-a) ECC pages while group i may have k data pages and 
(N-k) ECC pages. Eventually, the ratio of the number of 
ECC pages against the number of data pages in a group 
will reach the worst case, where the maximum number of 
bit errors is expected. In such a case, the group may be 
marked unreliable and the OS will not use it anymore. 

Managing memory in groups simplifies address 
mapping to access the ECC bits. As shown in Figure 5, the 
memory controller has a protection-level look up table 
which contains the information of how many ECC pages 
exist in each group. Such information is then used to derive 
the number of ECC bits for a cache-line in the group. The 
space cost for the protection-level lookup table is small. 
For example, if each group contains 1K pages and the page 
size is 4KB, a 1K-entry table can manage a 4GB-PRAM. 
The process of determining the physical address of ECC 
bits of a data access is shown in Figure 6. First, the 
physical address of the data (data_cache_line_addr in Figure 6 
as the unit of data operation is the cache line size) is used 
to decide which group contains the data (ECC_base_addr in 
Figure 6). Then, the offset within the group (ECC_offset_addr) 
is calculated to see where the data is located within the 
group at the cache line granularity. Based on how many 
ECC bits are allocated for each cache line, the address of 
the ECC bits is generated. Note that due to the use of the 
two’s power numbers, the multiplication and division in 
Figure 6 can be implemented using simple shifts and adds.  
The group size is mainly dependent on the PRAM 
endurance characteristics. Since all the data in the same 
group have the same ECC, we essentially assume that the 
memory in a group will wear out at a similar rate. If the 
endurance variation is expected to be large, we prefer a 
small group size to avoid a small region to affect a large 
amount of memory. Note that although an ECC page is 

referenced more frequently than data pages (as each ECC 
page can accommodate multiple data pages), it is unlikely 
for ECC pages to become most worn out ones. The reasons 
are two-folds. First, as shown in Section 6.6, after 
encryption, both data and ECC code have similar bit-level 
redundancy and bit-level wear-leveling techniques have the 
similar effects. Second, inside an ECC page, each 
individual ECC block has the same number of writes as the 
corresponding data block (e.g., a cache line). So the 
lifetime of an ECC page will be the same as (or very close 
to) the data page which is most worn out. 

Storing ECC bits in virtual memory space is 
independently proposed in a recent work [23]. An ECC 
page table is introduced in their scheme to locate the ECC 
pages. 

 
4.2 Leveraging encryption counters as write-access 
(age) counters 

 
There are several ways to track the number of write-

accesses to memory pages in PRAM. One is to associate a 
local counter with each cache line. The maximum among 
all local counters in a page would be the age of the page. 
Another way is to have a single counter for one page and it 
records the total number of write-accesses to the page. The 
first approach incurs high space overhead (local counter 
size * number of lines in a page). The second approach has 
much less space overhead (just one counter) but less 
accurate since write-accesses to different lines in a page 
are accumulated, leading to a highly overestimated age. To 
reduce space overhead without losing much accuracy, we 
choose to use a two level counters scheme similar to the 
one used in [22].   

In the counter-mode encryption described in [3], there 
already is a local counter (LC) for each line in a page. In 
addition, there is a 64-bit logical page identifier (LPID) 
assigned for each memory page when it is allocated. To 
account for a high number of write accesses, we add 
another global counter (GC) for each page. When a local 
counter overflows, GC would be incremented by one and 
all the local counters in the same page would be reset to 
zero. In this case, as discussed in Section 2.1, a new unique 
LPID is generated and the page would be re-encrypted to 
ensure security [3]. Such a combined two-level global and 
local counters are much more accurate than one global 
counter and have much less space overhead than the local 
counter scheme. Note as the overflow happens rarely, the 
associated performance overhead is negligible [22].  

Figure 6. The address mapping of ECC protection bits 

ECC_addr = ECC_base_addr + ECC_ offset_addr * ECC_size_for_one_cache_line 
                 ECC_base_addr =  data_cache_line_addr & group_size_mask  /*group_size_mask = ~(group_size – 1) */ 
                 ECC_offset_addr =  [data_cache_line_addr & (~group_size_mask) – Data_base_addr_in_the_group] / (cache_line_size) 
                 ECC_size_for_one_cache_line = the number of ECC bits for the protection_level_for_the_group 
                Data_base_add_in_the_group = number of ECC pages in the group * page size 



 
 

5. Overall Architecture 
 
The overall architecture for improving privacy and 

lifetime is shown in Figure 7. 

With the proposed architecture, a memory access 
proceeds as follows. When an encrypted cache line is to be 
fetched from PRAM, its memory address is used to locate 
the corresponding counters and generate the seed for the 
block cipher. As the counters are stored along with the 
ciphertext data in the PRAM, directly accessing them will 
postpone the seed generation process and expose the block 
cipher latency. To overcome this performance issue and 
overlap this latency with PRAM access latency, a counter 
cache is included as in the previous work [3]. Here, note 
that if the counter scheme proposed in Section 3.2 is used, 
each local counter (LC) will be appended with a few small 
block-level counters. The encrypted data are stored in a 
data page in PRAM. The ECC bits are stored in an ECC 
page in the same group as the data page. In our scheme, 
ECC and data pages have the same organization and the 
counters in either type of pages are updated when there is a 
write access. The only difference is that the counters in the 
ECC page are only used to track the age and not for 
decryption. 

There is an interesting interaction between encryption 
and ECC generation. Two options exist: the ECC bits can 
be computed either based on plaintext data or ciphertext 
data. If ECC is computed using plaintext data, the write 
access time can be reduced as the ECC computation and 
encryption can be performed in parallel. On the other hand, 

the read access latency is affected as the ECC check has to 
wait after the ciphertext data is decrypted. In comparison, 
computing ECC bits on ciphertext data reduces the read 
latency and increases the write latency. Since read 
operations are more performance critical than writes, we 
choose to compute ECC based on ciphertext data, as shown 
in Figure 7.  

In an alternative memory organization, which uses 
PCM as main memory and DRAM as another level of 
cache [20], the counter cache can reside in the DRAM 
cache. This DRAM cache can also be used to store the 
uncompressed data when memory compression 
technologies [1][7] are employed. Since encryption makes 
data less compressible, encryption should happen after the 
compression stage. In this case, the plaintext data shown in 
Figure 7 is a compressed data block. The impact of 
memory compression is evaluated in Section 6.4. 

The storage overhead for counters, which are used for 
both encryption and age estimates for ECC management, is 
small. If we assume the cache line size as 128 bytes in the 
last level cache, a 4KB page size, a 64-bit LPID, a 2-bit 
counter per encryption block, a 13-bit LC per line and a 
32-bit GC, the overhead is around 3%.  The selection of 
the counter sizes is to make sure that the age counters can 
record the number of writes that is beyond the endurance 
of PCM device (108 to 109) [19]. 

 
6. Experimental results 

 
6.1 Methodology 
 

Our experiments are conducted using a cycle-accurate 
timing simulator developed upon the SimpleScalar toolset 
[2]. The underlying processor model is MIPS R10000 and 
the default configuration is listed in Table 1. The L2 cache 
size is set to 1MB to increase the memory traffic. The 
PRAM access latency is 1024 cycles [19]. The block 
cipher engine is a 128-bit AES cipher and the encryption 
latency is assumed to be 80 cycles [3]. Each cache line in 
the counter cache stores the counters for one page. It is 
composed of a 64-bit LPID [3], multiple local counters and 
one global counter (GC). The error correction code used is 
a binary cyclic code (BCH) [17]. The BCH latency 
depends on the number of bit errors that can be corrected 
and the maximum latency is 120 cycles for correcting 8 bit 
errors [11][26]. For each message data of k bits, a BCH 
codeword (containing both data and the redundant ECC 
bits) with a length of n bits can be constructed to correct up 
to t bit errors out of the entire codeword. The length of the 
codeword n should satisfy 2(m-1)-1<n<=2m-1 and m*t<=n-
k, where m is the minimum number of redundant ECC bits 
required for every bit error correction. In our experiments, 
4 BCH codes are interleaved to protect the data at the 
granularity of the last-level cache line size (256 bytes). For

Figure 7. A logical view on the architecture of the proposed 
scheme for privacy protection and lifetime improvement. 
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each BCH codeword, k = 512 bits (64 bytes) and m = 10. 
Therefore n-512 >= 10*t must be satisfied. It indicates that 
each additional bit error correction would need an 
additional 10 redundant ECC bits. 

Memory-intensive benchmarks from SPEC2000 and 
SPEC2006 with high cache miss rates are used in the 
experiments. For lifetime analysis, an in-order processor 
model is used for simulation speed and the benchmarks are 
simulated to run for a hundred-billion instructions or upon 
completion.  
 

6.2 Impact of encryption on wear-leveling 
techniques 
 

In this section, we show the impact of encryption on 
two wear-leveling techniques: redundant bit-write removal 
and partial writes.  

First, we analyze the write traffic of the SPEC 
benchmarks. We collect the total number of bit-write 
traffic to PRAM under three scenarios. The baseline is the 
one without either redundant bit-write removal or 
encryption. The other two are redundant bit-write removal 
with and without encryption, respectively. Assuming 
uniform bit writes across PRAM, Figure 8 shows the 
impact of encryption. Without encryption, there are lots of 
bit-write redundancies in the benchmarks. The highest one, 
mcf, has around 99.9% of its total bit writes redundant. 
Even for the lowest one, equake, the redundant bit writes 
are around 68%. In contrast, with encryption, every 
benchmark has only around 50% of total bit writes 
redundant. On average using the geometric mean (Gmean), 

redundant bit-write removal can save around 90% of the 
bit-write traffic to PRAM. With encryption, however, it 
would only save half of bit-write traffic to PRAM. 
     As discussed in Section 3.1, encryption completely 
removes the benefit of partial-write. In this experiment, we 
first confirm the benefits of partial writes in reducing write 
traffic when encryption is not used. The traffic reductions 
normalized to the baseline, in which every replacement of 
a dirty cache line writes the whole cache line to PRAM, are 
shown in Figure 9. It can be seen that partial writes at word 
granularity (4 bytes) or encryption block granularity (16 
bytes) can reduce around 45% or 35% of the write traffic 
on Gmean. Note here we conduct experiments in a 
conservative way as we do not simulate memory buffer 
organization. With coalescing effects under memory 
buffers, the results may be better [13]. With encryption, 
however, partial writes fail to reduce any write traffic. 

6.3 Effect of the new proposed encryption counter 
scheme on partial writes 
 

Figure 10 shows the effect of our proposed new 
encryption counter scheme (Section 3.2) to revive partial 
writes to reduce write-traffic to PRAM. The baseline is the 
one in which the whole dirty cache line is written back to 
PRAM upon replacement. In our experiment, we examined 
block-level encryption counters of different sizes, 1-bit, 2- 

Branch Predictor 64K-entry g-share, 4K-entry direct  
mapped Branch Target Buffer (BTB) 

 
 

Superscalar 
Core 

 CPU frequency: 4GHz 
7-stage pipeline: 
Fetch/Dispatch/Issue/RegisterRead/EXE 
/WriteBack/Retire, Pipeline bandwidth:4         
Fully-symmetric Function Units: 4
Reorder Buffer (ROB) size: 128 
Issue Queue (IQ) size: 64 
Load Store Queue (LSQ) size: 64 

 
Execution 
Latencies 

Address Generation: 1 cycle 
Memory Access: 2 cycles (hit in data cache) 
Integer ALU ops: 1 cycle 
Complex ops:MIPS R10000 latencies 

Instruction Cache 
(private) 

32KB 2-way, Block/line size 64B  
10-cycle miss penalty 

L1 Data Cache 
(private) 

32KB 2-way, Block/line Size 64B  
10-cycle miss penalty 
8 Miss Status Handling Registers (MSHRs) 

L2 Unified Cache 
(shared) 

1MB 16-way Block/line size: 256B  
1024-cycle miss penalty 

Counter Cache 
(shared) 

32K 16-way Block Size: 64B 
1024-cycle miss penalty 

Cipher Engine 128-bit AES with 80-cycle latency 

ECC BCH code, correct up to 8 bit errors, with 
up to 120-cycle decode-latency 

PRAM 4GB, 1024-cycle latency, endurance 108 

Table 1. Default processor configuration

Figure 8. Impact of encryption on redundant bit-write removal

Figure 9. Impact of encryption on partial writes 
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bit, 3-bit, and 4-bits.  We also compared them to the ideal 
case when the block-level counters can be arbitrarily large 
(labeled ‘MAX-bit counter’ in Figure 10).  

Several observations can be made from Figure 10. 
First, our new encryption counter scheme effectively 
revives partial writes to reduce write traffic. Second, as the 
size of block-level encryption counters increases, more 
write traffic can be reduced. The reason is that large 
counters reduce the number of overflows, which in turn 
spares more non-dirty blocks from being written back to 
PRAM. The increased counter size, however, incurs higher 
space overhead. Therefore, we choose 2-bit block-level 
counters, which achieve 26.8% write traffic reduction on 
average using Gmean.  
 

6.4 Impact of memory compression on wear-
leveling techniques 

In this section, we examine the impact of memory 
compression. It can be used as another wear-leveling 
technique to reduce write traffic. However, it also varies 
the bit-level redundancy compared to uncompressed data. 
In our experiments, Frequent Pattern Compression (FPC) 
[1] and LZSS [21] are evaluated. FPC exploits the 
observation that certain value patterns such as zero-values 
are frequent in main memory while LZSS is a dictionary 
encoding scheme. Data are compressed at the cache line 
granularity and the compressed data are stored in-place 
into the original cache line location in main memory. Note 
this is an optimistic way of evaluating the compression 
effect on write traffic reduction. Storing the compressed 
data in compact may result in underflow/overflow when 
the size of a new compressed cache line is larger or smaller 
than the size of the old compressed cache line. The 
underflow/overflow may result in moving some data 
around, which increases write traffic.  

Figure 11 shows the impact of FPC on redundant bit-
write removal (LZSS shows similar performance). Such 
similarity is also reported in [7].  Note that it is not 
practical to combine compression with partial writes as 
compression may change the data layout in the compressed 
data. There are several observations. First, there are two 

benchmarks which exhibit very low compressibility (lbm 
and swim) for FPC. Because of that, write traffic reduction 
from using FPC reaches 3.5% using Gmean and 28.4% on 
arithmetic mean. Second, compression reduces the bit-level 
redundancy. Redundant bit-write removal removes 82.3% 
traffic on Gmean of compressed write-back data, down 
from 89.5% on uncompressed write-back data. The 
significant bit-level redundancy under compression is due 
to abundant non-dirty data as shown in Figure 9 and high 
bit-level redundancy as shown in Figure 8. Overall, 
compression combined with bit-write removal achieves 
similar write-traffic reduction (87.7% on Gmean) to 
redundant bit-write removal only (89.5% on Gmean).  
 

6.5 PRAM lifetime comparison  
  

In this experiment, we map write traffic to PRAM 
lifetime estimate. We assume that write traffic to PRAM is 
uniformly distributed across the memory footprints of each 
benchmark. In other words, we assume that an optimal 
cache-line-level swapping/rotating/shifting scheme is 
already in place to extend the PRAM lifetime. With such 
idealistic assumption, we estimate the upper bound of the 
PRAM lifetime and the results are shown in Figure 12. The 
baseline is the one without partial writes, without bit-
redundancy removal, encryption or compression.  

From the figure, it shows that in the baseline model, 
the PRAM has relatively short lifetime for benchmarks 
ammp and art. This is because the benchmarks have high 
write-traffic density on their memory footprints. On 
average, the lifetime of the baseline is around 1.3 years 
using the arithmetic mean (Amean). With redundant bit-
write removal, all benchmarks show large improvement on 
lifetime as a result of the high bit-write redundancy as 
shown in Figure 9. With this wear-leveling technique, the 
lifetime of PRAM reaches to around 51.3 years, more than 
39x improvement over the baseline. When encryption is 
used,  however,   redundant  bit-write  removal   can   only 
achieve 2x improvement over the baseline, reaching the 
lifetime of around 2.6 years. For partial writes at word 
granularity, the average lifetime of PRAM across the 

Figure 10. Impact of our new encryption counter scheme 
on partial writes 
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Figure 11. Impact of Frequent Pattern Compression on  
redundant bit-write removal
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benchmarks is around 7.9 years. For partial writes with 
encryption, the original encryption counter scheme 
disables partial writes completely, thereby no lifetime 
improvement over the baseline. For partial writes with our 
proposed new encryption counter scheme (2-bit block-level 
encryption counters), the achieved PRAM lifetime is 
around 2.5 years on average, almost 2x improvement over 
the baseline. When we combine both wear-leveling 
techniques and enable encryption protection, we can 
achieve almost 5.0 years of lifetime, around 4x 
improvement over the baseline. Since the results in Figure 
12 are already based on an idealistic assumption of 
uniform write traffic distribution, we believe that even with 
all the wear-leveling techniques, PRAM may fail in a 
limited time, which necessitates the use of ECC.  

For compression, we can see FPC alone improves 
lifetime from 1.3 years to 2.1 years on average because of 
write traffic reduction. But it reduces the effect of 
redundant bit-write removal (lifetime is reduced from 51.3 
years to 27.5 years). Such lifetime reduction despite the 
similar write traffic reduction in Figure 11 is due to the fact 
that a small difference in write traffic reduction may result 
in a large difference in lifetime. For mcf, 99.89% and 
99.69% traffic reduction results in 299 years and 106 years 
of lifetime, respectively. With encryption, such bit-write 
redundancy is dropped to 50%, the same as without 
compression due to the diffusion effect of encryption 
algorithms. 

 

6.6 ECC space overhead and wear out  
 

Without dynamic ECC management, the fixed ECC 
space overhead for correcting up to 8 bit errors per 64 
bytes is 10 bytes. In other words, 15.6% of the total PRAM 
capacity would have to be reserved for ECC. With 
dynamic ECC management, we leverage the fact that we 
only need to correct a much less number of bit errors when 
the PRAM is young (i.e., have not been written many 
times).  To correct 1 bit error per 64 bytes, we need 10 
ECC bits. Therefore, only 2.0% of the total PRAM 

capacity is necessary for ECC storage. If a group consists 
of 1024 pages, only 20 ECC pages is required to protect 
1004 pages. For 2 bit errors, it becomes 3.9% and so on. 
This is much more efficient compared to the fixed ECC 
allocation scheme, which means the space otherwise 
reserved for ECC can be allocated for program use. 

In the next experiment, we examine redundant bit 
writes in ECC with and without encryption. Two ECC 
schemes, SEC-DED [24] and BCH [26], are used in this 
experiment and the results are shown in Figure 13. From 
the figure, it shows that without encryption, there are a 
high number of redundant bit writes, which can be 
eliminated with the redundant bit-write removal technique. 
However, with encryption, for both SEC-DED and BCH, 
the ratio of redundant bit writes becomes 50%, indicating 
the same behavior as the bit-write traffic in regular data. 

 

6.7 Performance overhead of encryption and ECC 
 

As discussed in Section 5, we choose to compute ECC 
based on encrypted data. To examine the overall 
performance impact, we model the proposed scheme in our 
timing simulator. For each benchmark, we skip the first 
one billion instructions and execute the next three-hundred 
million instructions. The performance results, which are 
normalized to the baseline without encryption or ECC, are 
shown in Figure 14.  

Figure 12. PRAM lifetime with various schemes (assuming uniform writes) 
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behavior of ECC
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From Figure 14, it shows that adding encryption and 
ECC has very small performance impact (0.3% on 
average). The benchmark, mcf_06, has the worst 
performance degradation (1%) due to its high memory 
traffic. The reason for such small performance overhead is 
that the PRAM access latency is large enough to dominate 
the overall performance.  

 
6.8 Summary 
 

In summary, without encryption, redundant bit-write 
removal and partial writes can achieve 51.3 years and 7.9 
years of PRAM lifetime, respectively. With encryption, 
those two combined can only achieve 2.6 years of lifetime. 
Our proposed new encryption scheme can improve it to 
around 5.0 years at 1.6% space cost. Redundant bit-write 
removal combined with compression can achieve 27.5 
years without encryption and 2.6 years with encryption. 
The encryption counters can be leveraged to monitor 
PRAM wear out status and the adaptive ECC management 
can be deployed with an increment of 2.0% space cost and 
dozen-cycle latency for each additional bit error to be 
corrected.  

  

7. Conclusion 
 
Phase change memory is a promising technology for 

computer systems. In this paper, we investigate the largely 
overlooked privacy issue of PRAM due to its non-volatility. 
We show that if encryption is used for privacy protection, 
some of previously proposed wear-leveling schemes will 
be severely affected. To mitigate the adverse impact of 
encryption, we propose to extend the counter-mode 
encryption to revive a wear-leveling technique: partial 
writes. We also investigate memory compression and show 
that it reduces memory traffic but hurts bit-level 
redundancy. Then we study error correction code (ECC) as 
an essential mechanism for PRAM lifetime extension. We 
propose a dynamic ECC management scheme to vary ECC 
protection strength according to the age of PRAM, which 
is conveniently provided from the encryption counters. Our 
experimental results show that the performance overhead 

for achieving privacy protection and lifetime improvement 
is minimal. 

 
8. Acknowledgements 
 

We thank the anonymous reviewers and Professor 
Christof Fetzer for their insightful comments. This work is 
supported by an NSF grant CNS-0905223 and an NSF 
CAREER award CCF-0968667. 
 
9. References 
 
[1] A.R. Alameldeen, Using Compression to Improve Chip Multiprocessor 
Performance, Ph.D. dissertation, CS Dept, University of Wisconsin-Madison, 
2006. 
[2] D. Burger et.al, The Simplescalar Tool Set Version 2.0. Technical Report, 
Computer Science Department, University of Wisconsin-Madison, 1997. 
[3] S. Chhabra et.al, Making Secure Processors OS- and Performance-Friendly, 
ACM Transactions on Architecture and Code Optimization, 2009. 
[4] S. Cho et.al, Flip-N-Write: A Simple Deterministic Technique to Improve 
PRAM Write Performance, Energy and Endurance, MICRO 2009. 
[5] J.  Daemen et.al, The design of Rijndael: AES - the advanced encryption 
standard. Springer-Verlag, 2002. 
[6] C. Dirik et.al, The Performance of PC Solid-State Disks (SSDs) as a 
Function of Bandwidth, Concurrency, Device Architecture, and System 
Organization,  ISCA 2009. 
[7] M. Ekman et. al, A Robust Main Memory Compression Scheme, ISCA 
2005. 
[8] N. Ferguson, AES-CBC + Elephant diffuser: A disk encryption algorithm 
for Windows Vista. http://www.microsoft.com/, Aug. 2006 
[9] R. Gleixner, Reliability Characterization of Phase Change Memory, 10th 
Annual Non-Volatile Memory Technology Symposium, 2009. 
[10] J.A. Halderman et.al, Lest We Remember: Cold Boot Attacks on 
Encryption Keys, USENIX Security  2008. 
[11] T. Kgil et.al, Improving NAND Flash Based Disk Caches, ISCA 2008. 
[12] K. Kim et.al, Reliability investigations for manufacturable high density 
PRAM, 43rd Annual IEEE International Reliability Physics Symposium, 2005. 
[13] B. C. Lee et.al, Architecting phase change memory as a scalable dram 
alternative.  ISCA 2009. 
[14] D. Lie et.al, Architectural Support for Copy and Tamper Resistant 
Software, ASPLOS 2000. 
[15] A.J. Menezes et.al, Handbook of Applied Cryptography, CRC Press, 1996. 
[16] N. Mielke et.al, Bit Error Rate in NAND Flash Memories, International 
Reliability Physics Symposium, 2008. 
[17] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, Second 
Edition, John Wiley & Sons, 2006. 
[18] A. Pirovano et.al, Reliability study of phase-change nonvolatile memories, 
IEEE Transactions on Device and Materials Reliability, 2004. 
[19] M. K. Qureshi et.al, Enhancing lifetime and security of pcm-based main 
memory with start-gap wear leveling. MICRO 2009. 
[20] M. K. Qureshi et.al, Scalable high performance main memory system 
using phase change memory technology. ISCA 2009. 
[21] J. A. Storer et.al, Data Compression Via Textual Substitution, Journal of 
the ACM, 1982. 
[22] C. Yan et.al, Improving Cost, Performance, and Security of Memory 
Encryption and Authentication, ISCA 2006. 
[23] D.H. Yoon et. al, Virtualized and Flexible ECC for Main Memory, 
ASPLOS 2010. 
[24] D.H. Yoon et.al, Memory Mapped ECC: Low-Cost Error Protection for 
Last Level Caches, ISCA 2009. 
[25] W. Zhang et.al, Characterizing and Mitigating the Impact of Process 
Variations on Phase Change based Memory Systems, MICRO 2009. 
[26] W. Zhang et.al, Exploring Phase Change Memory and 3D Die-Stacking 
for Power/Thermal Friendly, Fast and Durable Memory Architectures, PACT 
2009 
[27] P. Zhou, et.al, A durable and energy efficient main memory using phase 
change memory technology. ISCA 2009. 
 

Figure 14. Performance overhead of encryption and ECC
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