
Combining Local and Global History for High Performance Data Prefetching

 Martin Dimitrov Huiyang Zhou

School of Electrical Engineering and Computer Science
University of Central Florida
{dimitrov,zhou}@eecs.ucf.edu

Abstract

In this paper, we present our design for a high
performance prefetcher, which exploits various localities
in both local cache-miss streams (misses generated from
the same instruction) and the global cache-miss address
stream (the misses from different instructions). Besides
the stride and context localities that have been exploited
in previous work, we identify new data localities and
incorporate novel prefetching algorithms into our design.

In this work, we also study the (largely overlooked)
importance of eliminating redundant prefetches. We use
logic to remove local (by the same instruction) redundant
prefetches and we use a Bloom filter or MSHRs to remove
global (by all instructions) redundant prefetches. We
evaluate three different design points for the proposed
architecture, trading off performance for complexity and
latency efficiency. Our experimental results based on a
set of SPEC 2006 benchmarks show that we improve
performance (over 1.6X for our highest performance
design point) for various processor configurations, which
model different cache capacity and memory access
bandwidth.

1. Introduction
Data prefetching has been recognized as a promising

way to overcome the adverse impact of the ever
increasing gap between memory access and processor
speeds. Previous proposed prefetchers have exploited data
locality, mainly stride-based [2] [4] and context-based [3]
locality in address streams to predict future reference
addresses and then to prefetch them into caches before the
data are required by the processor. However, as reported
in a recent study [11], the performance improvements of
the latest data prefetchers are limited, not much beyond
the classical stride-based stream buffers [4]. In this paper,
we propose a high performance data prefetcher, which
explores both local cache-missing address stream,
meaning cache-missing addresses generated by the same
instruction, and global cache-missing address stream,
meaning addresses generated by all loads and stores, for
regular address patterns. Besides stride and context
locality, this prefetcher incorporates new localities that
have not been exploited in previous works.

Furthermore, we highlight the importance of
eliminating redundant prefetches. We propose to use logic
to eliminate local (from the same instruction) redundant

prefetches and a Bloom filter or MSHRs to remove global
(by all instructions) redundant prefetches. Our
experimental results based on a set of SPEC 2006
benchmarks show that our design achieves significant
performance improvement (over 1.6X for our highest
performance design point).

In summary, the main contributions of this paper
include:
• A high performance data prefetcher that exploits

various data localities in both local and global cache
missing address streams;

• New data localities including global strides, most
common local strides, and local scalar patterns;

• Evaluating three different design points including a
simple, complexity and latency efficient design.

• Advocating for L1-cache data prefetchers despite the
traditional wisdom that favors L2-cache prefetchers;

• Recognizing the importance of redundant prefetches,
which has been largely overlooked in previous
works.

• An adaptive scheme to turn off the prefetcher when it
is no longer beneficial.

The remainder of the paper is organized as follows.
Due to limited space, in Section 2 we discuss only the
most closely related works and their limitations. In
Section 3, we present our newly identified data localities.
Our data prefetcher architecture as well as the storage cost
is presented in Section 4. The experimental results are
shown in Section 5. Finally, Section 6 concludes the
paper.

2. Related Work
Due to its importance, data prefetching has been an

active research topic in processor design. Next-line
prefetching and its improvement, tagged prefetching [12]
are classical ways to leverage spatial locality in data
streams. Stride-based prefetching schemes [2] [4] detect
the stride pattern (a, a+d, a+2d, …) in the address stream
and issue prefetches based on the dynamically captured
strides. Context prefetching or correlation prefetching [3]
detects the correlation between cache miss addresses (e.g.,
a, b, a, b, …) and issues prefetches based on the
previously recorded correlated addresses. Because of the
large address range, it usually requires a large buffer to
capture context correlation in address streams. One
effective improvement over address correlation is to
capture correlation in delta (i.e., difference between

consecutive addresses). This way, both stride and
correlation locality can be detected effectively. Delta
correlation was proposed for TLB prefetching [5] and
adapted for cache prefetching [8] [9].

Global history buffer (GHB) [8] provides an efficient
way to maintain the most recent cache misses and can be
used to implement flexible prefetching algorithms. The
structure of a generic GHB prefetcher is shown in Figure
1. The GHB is organized as a circular FIFO buffer with
each entry maintaining an address and a pointer. The
addresses in GHB are managed as many linked lists and
the index table provides a pointer to the head of each
linked list. Dependent upon the key to the index table,
various histories-of-interest can be reconstructed from the
GHB. For example, if the key is the program counter
(PC), the local miss address streams can be reconstructed
from the global history. A recent study [11] shows that
the GHB prefetcher achieves the best performance among
the ten prefetching mechanisms under the study.

Figure 1. Global history buffer prefetching [8] [9]
Although GHB prefetching has many desirable

features, it has two major weaknesses. (a) Since the GHB
maintains the global miss history and is shared by all
misses, it can be resource inefficient when dealing with a
burst of misses from few static instructions. For example,
a few frequently missed loads/stores with perfect stride
patterns may pollute all the GHB entries although few
entries are needed to detect the strides. (b) It requires
sequential operations to traverse a linked list to
reconstruct an address history of interest from the GHB.
Although such latency penalty may not be an issue for an
L2-cache prefetcher due to the high L2-cache miss
latency, such sequential operations make it less attractive
for an L1-cache prefetcher. In this work, we combine
GHB with local delta buffers (LDBs) to provide faster
access and better resource efficiency (see Section 4).

3. Novel Data Localities in Address Streams
Following the convention used in value prediction

research [6] [13], we use local history to refer to the
addresses generated by dynamic instances of the same
instruction and global history to refer to the addresses
generated by all instructions. As discussed in Section 2,
existing works on data prefetching have exploited stride

and/or context locality in local and/or global address
streams.

In this paper, the following new data localities have
been identified.
• Global stride

This locality exists when there is a constant stride
between addresses of two different instructions. For
example, in the following global address stream: X,
X+d… Y, Y+d… where (X, Y …) is the local address
history from an instruction I while (X+d, Y+d …) is the
local address history of an instruction J. In this case, even
if there is no exploitable pattern in the local address
histories of I or J, the address stream of the instruction I
can be used to prefetch data for instruction J once the
global stride is detected. The global stride between two
dynamic instructions’ destination values was observed in
 [13]. Address-value delta (AVD) [7] can also be viewed
as a form of global stride in address streams since the load
value is used as the address for its dependent load
instruction.

 GHB provides an efficient way to detect the global
stride locality: using the PC as a key, each linked list
comprises one local address history. The global strides
can be computed as the difference between each entry in
the linked list and the entry next to it, as shown in Figure
2.

Figure 2. Computing global strides using GHB

• Most common stride
This locality appears when a constant stride pattern is

disrupted from time to time with some irregular
addresses. For example, in the following delta address
(the difference between two consecutive addresses)
stream: d, x, d, y, d, z… although there exists a common
stride d, it can not be detected with existing stride or
context-based approaches. In our experiments, we
observed such locality in several benchmarks and we
devise a simple way to detect it in local address streams
(see Section 4). In [10] the authors propose to prefetch the
minimum delta from the delta buffer, rather than the most
common as we propose.
• Scalar

Again, considering the delta address stream, the scalar
locality exists in the following case: d, 2d, 4d, 8d, 16d,
etc. Such locality is a direct result of the code that we
observed in the benchmark mcf. In the function
replace_weaker_arc, the indices of some array accesses
are generated using the code “cmp *= 2” and then the

Global History Buffer

- G_delta

- G_delta

Match?

X
X +d

Y
Y +d

Index table Global History Buffer

Prefetch
function

Prefetch
requests

key

array is accessed using “if(new[cmp-1].flow <
new[cmp].flow)”.

Although it is not difficult to detect such locality, we
found that the scalar pattern seems to be a rare case
except in mcf. Even in mcf, the pattern varies due to
control flow and the delta stream becomes d, 2d, 4d+m,
8d+m, etc. Therefore, we exclude the scalar locality in our
current data prefetcher.

4. Proposed Data Prefetcher

4.1. Architecture
Our proposed prefetcher exploits data localities in both

local and global address streams. Unlike the GHB
prefetcher, we use a structure named local delta buffer
(LDB) for instructions with strong locality in their local
histories and a GHB for global address stream for other
instructions. The overall structure of our proposed
prefetcher is shown in Figure 3. Next, we discuss each of
the key components in detail.
• Index table

Similar to a GHB prefetcher, the index table in our
design is a cache-like structure indexed by the PC. Each
entry in the index table has three fields: the tag, least
recently used (LRU) counter, and index. If the index field
is greater than the number of entries (N) in the GHB, the
value (index – N) is used to access one of the LDBs.
Otherwise, the index field points to an entry in the GHB,
which is the beginning of the linked list of the addresses
generated by the same instruction with the corresponding
tag.
• Global history buffer (GHB)

In our design, the GHB operates in the same way as in
 [8] [9] except that not all the miss addresses are sent to the
GHB. If an index field in the index table points to one
LDB, the miss address will be sent to the LDB
accordingly. Since the addresses in the GHB are linked
using the PC, each linked list is a local address stream.
• Prefetch function

The prefetch function in our design implements the
following prefetching algorithms.

(1) Delta correlation
To capture delta correlation, a delta buffer is included

in the prefetch function, which keeps the delta
information when a linked list is traversed in the GHB.
Then, a match of two consecutive deltas is searched in the
delta buffer using the same approach as in [9]. If there is a
match, 8 prefetches will be issued according to the delta
pattern. As consecutive delta matches indicate strong
locality, the delta buffer is copied to one of the LDBs (the
least recently used one). The index field is then updated
correspondingly so that subsequent addresses from the
same instruction will be sent directly to the LDB.

(2) Simple delta correlation
If there is no match of two consecutive deltas found in

the delta buffer, 4 prefetches will be issued if there is a
match of the last delta in the delta buffer. For example, if
the delta buffer contains (a, x, y, z, a, m, n …) with a
being the latest delta, the prefetch requests will be (last
address + z), (last address + z + y), (last address + z + y
+ x), and (last address + z + y + x + a).

(3) Global stride
When the linked list is traversed in the GHB, the

global strides are computed as described in Section 3. If
there is a match found, prefetches can be issued
accordingly.

 (4) Most common stride and next-line prefetch
This function applies to the delta buffer originating

from the LDBs. If there is no delta correlation found in
the local history, next-line prefetch and most common
stride (see LDB discussion next) are used to generate two
prefetches.
• Local Delta Buffer (LDB)

An LDB is a FIFO structure and contains a local delta
address stream. It also has a PC field as the tag and an
LRU counter for replacement. The last address is
maintained to calculate the latest delta. The prefetch
functions are the same as those used for GHB except that
there is no need to traverse the GHB to compute the delta

Index table
Global History Buffer (N entries)

Prefetch
function

Prefetch
requests

PC

Tag | Index Index < N-1

Yes

Index

PC Last addr

Last matched
stride

Local Delta Buffer (FIFO)

…

No

Filtering
redundant
requests

Index - N

Figure 3. The structure of the proposed data prefetcher

buffer. The “last matched stride” field is updated when
there is a match found during delta and simple delta
correlation computation. It implies that the stored stride at
least appears twice in the delta buffer. This field is
designed to approximate the most common stride
discussed in Section 3 and is used only when there is no
delta correlation.

In our proposed design, multiple LDBs are used and
the idea is to allocate a LDB for each of the most
frequently missed load or store instructions. This way,
each miss address of those instructions will go to LDB
directly without polluting the GHB. In addition, the
latency of accessing the GHB sequentially (i.e., linked list
traversal) is eliminated for prompt prefetch request
generation in the common case.

4.2. Filtering of Redundant Prefetches
Our prefetcher prefetches data into L1 data cache (D-

cache). The reasons are two-folds. The first is that L1
cache miss address stream provides much stronger
locality than L2 miss addresses, which translates into
higher prefetch accuracy. The second is that prefetching
data into L1 D-cache can eliminate the L2 cache access
latency. We quantify the impact of prefetching into the L1
cache vs. prefetching into the L2 cache in Section 5.

When used as L1-cache prefetcher, each L1 miss (also
L1 hits if the block is prefetched) will access the
prefetcher and potentially invoke prefetch requests. The
requests from different misses may overlap with each
other and result in wasted bandwidth. Redundant
prefetches may be triggered by the same instruction,
which repeatedly issues the full prefetch degree upon each
prefetcher access (prefetch a,b,c,d then prefetch b,c,d,e
etc.). Redundant prefetches may also be triggered by a
different instruction, which accesses the same set of cache
lines. Thus even if individual instructions do not issue any
redundant prefetches, the prefetches may be redundant
with respect to those issued by other instructions.
Therefore, a filtering mechanism is necessary especially
when the bandwidth support is limited.

Two different mechanisms are used in our proposed
design. First, we use simple logic to eliminate some local
redundant prefetches. Second, we employ a set of prefetch
MSHRs or a bloom filter [1] to eliminate the remaining
redundant ones. The simple logic here targets at both
constant stride and repeating context patterns. One
“confidence” bit is added to each LDB. If a constant stride
or a strong delta correlation is detected (meaning 3
consecutive matches in delta correlation), this bit is set. If
this bit is set, subsequent accesses to the LDB will only
issue one unique prefetch request. For example, an LDB
detects a constant stride and issues prefetches (a+d, a+2d,
a+3d … a+8d) where a is the current miss address. After
the confidence bit is set, subsequent accesses (e.g, address
b=a+d) will result in a single prefetch b+8d (=a+9d)
rather than (b+d, b+2d …). Each prefetch address which

passes the logic filter, probes the MSHR or the Bloom
filter. If there is a Bloom filter hit, it is likely that we have
already issued this prefetch, and we discard it. On a
Bloom filter miss, we issue the prefetch. The Bloom filter
may generate false-positive matches, and those will result
in an incorrectly dropped prefetch. To limit false-positive
matches, we reset the Bloom filter periodically (every n/4
filter accesses, where n is the number of filter entries).
The MSHRs will not result in false positive matches,
however they are much more expensive the implement.

Besides the structures described above, we also use a
set of counters to monitor the effect of our prefetcher. In a
training phase, we turn off prefetching if the prefetching
block address satisfies the condition: (block addr % 4 = =
2). Then, we periodically (every 1 million cycles)
compare the miss rate from these lines that are not
affected by the prefetcher with the miss rate from other
lines to see whether the prefetcher is beneficial. If not, we
can turn off the prefetcher.

4.3. Design Space Exploration
In this work, we propose and evaluate three different

design points of the architecture described in Section 4.1
and Section 4.2. The first design point (GHB-LDB-1) is
our highest performance design, which aggressively
exploits all the localities as described above. This design
also uses MSHRs to remove redundant prefetches without
any false-positive matches (see Section 4.3).

The second design point is similar to the first, however
it is scaled down in terms of storage requirements (a
smaller GHB table is used) and complexity (Bloom filter
is used instead of MSHRs). We call this design point
GHB-LDB-2, and the purpose is to demonstrate that even
with a significantly smaller storage budget, we can still
achieve very high performance.

Our third design point is meant to be the most
complexity and latency efficient. It uses a single-level
prefetch table indexed by load/store PC. Each entry in the
prefetch table is a fixed size, local delta buffer (LDB) as
described in Section 4.1. Thus each table entry maintains
the last several deltas (strides) for a given load/store
instruction as well as the last miss address for computing
the new delta. Since the LDB-only design does not
maintain global history information, it cannot prefetch
global strides. However, the LDB prefetcher can detect
the delta correlation, simple delta correlation and most
common stride patterns as discussed in Section 4.1. In this
design, upon a prefetch table hit, the prefetch function
will search for delta and simple delta correlation. If no
match is found, then a next line prefetch is generated.
This design is simple and latency efficient, because it
does not require a link-list traversal or other complex
logic. It also eliminates the problem with a GHB based
design, where a burst of misses from only a couple of
load/store instructions may pollute the entire GHB.
Despite of its simple design, the LDB-only prefetcher is

able to achieve impressive speedups when prefetching for
the L1-cache, as shown in our experiments in Section 5.

4.4. Storage Cost
For the competition, we submitted three design points:

GHB-LDB-1, GHB-LDB-2 and LDB-only as described
above. The configuration and the storage cost of all three
versions are summarized in Table 1. In both GHB-LDB
versions, we use a 256-entry 8-way set-associative index
table. Assuming 32-bit processors, it requires 256 * (27
bit tag + 3 bit LRU + 8 bit index to GHB) = 9728 bits. For
the GHB, each entry takes a 32-bit address and a log2(N)
bit pointer, where N is the number of entries in the GHB.

Each LDB has a 7-entry delta buffer (the eighth delta
is calculated using the current address and the ‘last
address’ field) and each delta is 32 bits. Therefore, each
LDB takes (7*32 + 32 bit PC + 32 bit last address + 32 bit
‘last matched stride’ + log2(M) bit LRU) where M is the
number of LDBs in the design. The prefetch function has
a 32-entry delta buffer (32*32) and three temporal
registers (32*3) for delta matching, a total of 1120 bits.

In the LDB-only version we use a 64-entry 8-way
table. Each table entry is an LDB, thus the storage is the
same as above. The only difference is that we use 24 bit
deltas.

The prefetch MSHRs maintain outstanding prefetches
at the cache block level. Since the block size if 64 bytes,
each MSHR costs (26 – index + LRU bits).

The adaptive control of the prefetcher requires several
counters. We collect miss rates (3 counters for L1, L2,
and the region in L2 not affected by prefetching) every 1
million cycles. We also use prefetch bit to get the number
of successful prefetches in L1 cache. A total of 100 bits
are allocated for those counters. The LDB-only prefetcher
does not use the adaptive control in our experiments.
Table 1. A summary of storage cost of two submitted
versions
Storage Cost GHB-LDB-1 GHB-LDB-2 LDB-only
Index Table 256-entry 8-way

9728 bits
256-entry 8-way
9728 bits

64-entry 8-way

GHB 192 entry 192 *
(32+8) = 7680 bits

128 entry 128 *
(32+7) = 4992 bits

N/A

Prefetch
Func.

1120 bits 1120 bits 1120 bits

Prefetch
MSHR

256-entry 8-way
256*(21+3)=6144
bits

N/A N/A

Bloom filter N/A 2048 + 8-bit reset
counter

4096 + 9-bit reset
counter

LDBs 16 LDBs
16*(7*32+32+32
+32+5)=5200 bits

16 LDBs
16*(7*32+32+32
+32+4+1)=5200
bits

64 LDBs
64*(7*24+32+32
+3+1)=15104 bits

Counters 100 bits 100 bits N/A
Total 29972 bits

(3.7kB)
23196 bits
(2.9kB)

20329 bits (2kB)

5. Experimental Results
We model the proposed prefetcher using the

simulation framework for the 1st Championship data
prefetching contest (DPC-1) [14]. We used gcc 4.1.2 on a
32-bit X86 machine to compile a set of memory intensive
SPEC 2006 benchmarks. For each benchmark, the trace
was generated by skipping the first 40 billion instructions
and recording the next 100 million instructions. The
performance improvements (compared to no prefetching)
are measured for three processor configurations according
the rules of DPC-1 and the results are shown in Tables 2,
3 and 4 for the three submitted design points.
Table 2. The speedups from prefetcher (GHB-LDB-1)
Speedup bzip2 lbm mcf milc omnetpp soplex xalan Gmean
Config1 1.07 2.89 2.65 1.97 1.13 1.54 0.99 1.61
Config2 1.08 2.98 1.90 2.83 1.10 1.46 0.97 1.60
Config3 1.02 2.98 1.88 2.83 1.11 1.48 1.37 1.67

Table 3. The speedups from prefetcher (GHB-LDB-2)
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.88 2.53 1.95 1.17 1.48 0.97 1.59
Config2 1.08 2.77 1.84 2.78 1.12 1.47 0.94 1.57
Config3 1.01 2.80 1.83 2.78 1.13 1.51 1.37 1.65

Table 4. The speedups from prefetcher (LDB)
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.83 2.38 1.91 1.13 1.47 0.89 1.54
Config2 1.08 2.92 1.85 2.48 1.09 1.47 0.85 1.53
Config3 1.04 2.91 1.84 2.48 1.10 1.55 1.30 1.63

Besides remarkable performance improvements, some
interesting observations have can be made from our
experiments. First, the simple LDB approach is able to
capture most of the performance benefit of the more
complex GHB-LDB scheme. Thus capturing local delta
correlations and filtering redundant prefetches account as
the major contributors to performance improvement. On
the other hand, we found that for the GHB-LDB design
around 90% of all the prefetches are issued from LDBs
instead of the GHB. Since LDBs eliminate the need to
traverse the linked list in GHB, the latency of prefetch
generation is effectively reduced. Second, a relatively
small number of LDBs (16) is enough for either version to
achieve the most performance enhancement. In our
submissions we scale the GHB-LDB-1 to use more
storage budget.

As discussed in Section 4.3 in contrast to conventional
wisdom, we advocate prefetching into the L1 data cache,
instead of at lower levels of the cache hierarchy. Table 5
shows the performance results of our best performing
GHB-LDB-1 configuration when applied to the L2 data
cache. We can see that the speedup is significantly limited
due to the less accurate prefetches.

Table 6 shows the impact on performance when
redundant prefetches are not eliminated. For configuration
1 (unlimited bandwidth) we actually achieve speedup.
However, for configurations 2 and 3 (limited bandwidth –
maximum 1 request every per cycle from L1 to L2 and
maximum 1 request every 10 cycles from L2 to memory)

the performance is severely impacted, even observing
slowdowns.

In Table 7 for comparison, we show the performance
of the original GHB proposal. We implement GHB to the
best of our knowledge. Detect only delta context strides
(match of last two deltas) as described in the original
paper. We also do not filter redundant prefetches. Again,
we can see that while GHB performs reasonably well for
configuration 1, when the bandwidth is limited it suffers a
lot due to redundant prefetches.
Table 5. Prefetching for the L2-Cache (GHB-LDB-1)
Speedup bzip2 lbm mcf milc omnetpp soplex xalan Gmean
Config1 1.05 2.22 1.90 1.89 1.15 1.39 0.96 1.44
Config2 1.06 0.96 1.11 1.68 1.02 1.27 0.94 1.13
Config3 1.00 0.96 1.11 1.67 1.02 1.20 1.29 1.16

Note*: The large drop in performance when prefetching into the
L2 cache, can be also be attributed to a problem using the
prefetch MSHRs. When we use a BloomFilter instead of
MSHRs, the geomentric mean of the speedups is 1.40, 1.51, 1.57
for configurations 1, 2 and 3 respectively. The benchmark lbm
in particular has speedups of: 1.93, 2.40, 2.40 for the three
configurations when using the bloom filter.
Table 6. No filtering of redundant prefetches (GHB-
LDB-1)
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.89 2.64 1.97 1.18 1.55 0.99 1.62
Config2 1.07 0.51 0.91 2.72 1.11 1.15 0.96 1.07
Config3 0.96 0.51 0.91 2.70 1.11 1.18 1.42 1.12

Table 7. Original GHB approach, prefetching into the
L1-Cache and no filtering of redundant prefetches
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.06 2.89 2.40 1.96 1.10 1.30 0.83 1.50
Config2 1.06 0.66 0.94 2.15 1.07 1.11 0.77 1.04
Config3 1.03 0.65 0.94 2.15 1.08 1.15 1.11 1.09

Lastly, we note that the compiler, which is used to

compile the SPEC benchmarks and generate the traces,
plays an important role. When changing to another gcc
version (4.2.3), the performance varies significantly (both
with and without prefetching) compared to the results
using gcc 4.1.2. Nevertheless, our proposed prefetcher
still achieves significant speedups (1.5~1.7X) in this case.

6. Conclusions
In this paper, we present our design for an L1 data

cache prefetcher. It exploits various data localities in both
local and global address histories and achieves
remarkable performance improvements. In this work, we
also emphasize the importance of removing redundant
prefetches to reduce bandwidth demand.

7. Acknowledgements
We thank the anonymous reviewers for helping us to

improve the paper. This research is supported by an NSF
CAREER award CCF- 0747062 and generous equipment
donations from AMD.

8. References
[1] B. Bloom, “Space/Time trade-offs in hash coding with

allowable errors,” Communications of the ACM, 1970.
[2] J. Fu and J. Patel, “Stride directed prefetching in scalar

processors”, MICRO-25, 1992.
[3] D. Joseph and R. Grunwald, “Prefetching using Markov

predictors”, ISCA 1997.
[4] N. Jouppi, “Improving direct-mapped cacge performance

by the addition of a small fully-associative cache and
prefetch buffers”, ISCA 1990.

[5] G. Kandiraju and A. Sivasubramaniam, “Going the distance
for TLB prefetching: an application-driven study”, ISCA,
2002.

[6] M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and
load value prediction”, ASPLOS 1996.

[7] O. Mutlu, K. Kim, and Y. Patt, “Address-value delta
prediction: increasing the effectiveness of runahead
execution by exploiting regular memory allocation
patterns”, MICRO-38, 2005.

[8] K. Nesbit and J. E. Smith, “Prefetching with a global
history buffer”, HPCA 2004.

[9] K. Nesbit, A. Dhodapkar, and J. E. Smith, “AC/DC: An
adaptive data cache prefetcher”, PACT 2004.

[10] S. Palacharla and R.E Kessler, “Evaluating Stream Buffers
as a secondary cache replacement”, ISCA 1994.

[11] D. Perez, et. al., “Microlib: A case for the quantitative
comparison of micro-architecture mechanisms”, MICRO-
37, 2007.

[12] A. Smith, “Cache memories”, Computing Surveys, 1982.
[13] H. Zhou, J. Flanagan, and T. Conte, “Detecting global

stride locality in value streams”, ISCA 2003.
[14] The 1st JILP Championship data prefetching contest

(http://www.jilp.org/dpc)

