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Abstract 

In this paper, we present our design for a high 
performance prefetcher, which exploits various localities 
in both local cache-miss streams (misses generated from 
the same instruction) and the global cache-miss address 
stream (the misses from different instructions). Besides 
the stride and context localities that have been exploited 
in previous work, we identify new data localities and 
incorporate novel prefetching algorithms into our design.  

In this work, we also study the (largely overlooked) 
importance of eliminating redundant prefetches. We use 
logic to remove local (by the same instruction) redundant 
prefetches and we use a Bloom filter or MSHRs to remove 
global (by all instructions) redundant prefetches. We 
evaluate three different design points for the proposed 
architecture, trading off performance for complexity and 
latency efficiency. Our experimental results based on a 
set of SPEC 2006 benchmarks show that we improve 
performance (over 1.6X for our highest performance 
design point) for various processor configurations, which 
model different cache capacity and memory access 
bandwidth. 

1. Introduction 
Data prefetching has been recognized as a promising 

way to overcome the adverse impact of the ever 
increasing gap between memory access and processor 
speeds. Previous proposed prefetchers have exploited data 
locality, mainly stride-based  [2] [4] and context-based  [3] 
locality in address streams to predict future reference 
addresses and then to prefetch them into caches before the 
data are required by the processor. However, as reported 
in a recent study  [11], the performance improvements of 
the latest data prefetchers are limited, not much beyond 
the classical stride-based stream buffers  [4]. In this paper, 
we propose a high performance data prefetcher, which 
explores both local cache-missing address stream, 
meaning cache-missing addresses generated by the same 
instruction, and global cache-missing address stream, 
meaning addresses generated by all loads and stores, for 
regular address patterns. Besides stride and context 
locality, this prefetcher incorporates new localities that 
have not been exploited in previous works.  

Furthermore, we highlight the importance of 
eliminating redundant prefetches. We propose to use logic 
to eliminate local (from the same instruction) redundant 

prefetches and a Bloom filter or MSHRs to remove global 
(by all instructions) redundant prefetches. Our 
experimental results based on a set of SPEC 2006 
benchmarks show that our design achieves significant 
performance improvement (over 1.6X for our highest 
performance design point).  

In summary, the main contributions of this paper 
include:  
• A high performance data prefetcher that exploits 

various data localities in both local and global cache 
missing address streams; 

• New data localities including global strides, most 
common local strides, and local scalar patterns; 

• Evaluating three different design points including a 
simple, complexity and latency efficient design.  

• Advocating for L1-cache data prefetchers despite the 
traditional wisdom that favors L2-cache prefetchers; 

• Recognizing the importance of redundant prefetches, 
which has been largely overlooked in previous 
works. 

• An adaptive scheme to turn off the prefetcher when it 
is no longer beneficial.  

The remainder of the paper is organized as follows. 
Due to limited space, in Section 2 we discuss only the 
most closely related works and their limitations. In 
Section 3, we present our newly identified data localities. 
Our data prefetcher architecture as well as the storage cost 
is presented in Section 4. The experimental results are 
shown in Section 5.  Finally, Section 6 concludes the 
paper. 

2. Related Work 
Due to its importance, data prefetching has been an 

active research topic in processor design. Next-line 
prefetching and its improvement, tagged prefetching  [12] 
are classical ways to leverage spatial locality in data 
streams. Stride-based prefetching schemes  [2] [4] detect 
the stride pattern (a, a+d, a+2d, …) in the address stream 
and issue prefetches based on the dynamically captured 
strides. Context prefetching or correlation prefetching  [3] 
detects the correlation between cache miss addresses (e.g., 
a, b, a, b, …) and issues prefetches based on the 
previously recorded correlated addresses. Because of the 
large address range, it usually requires a large buffer to 
capture context correlation in address streams. One 
effective improvement over address correlation is to 
capture correlation in delta (i.e., difference between 



consecutive addresses). This way, both stride and 
correlation locality can be detected effectively. Delta 
correlation was proposed for TLB prefetching  [5] and 
adapted for cache prefetching  [8] [9].  

Global history buffer (GHB)  [8] provides an efficient 
way to maintain the most recent cache misses and can be 
used to implement flexible prefetching algorithms. The 
structure of a generic GHB prefetcher is shown in Figure 
1. The GHB is organized as a circular FIFO buffer with 
each entry maintaining an address and a pointer. The 
addresses in GHB are managed as many linked lists and 
the index table provides a pointer to the head of each 
linked list. Dependent upon the key to the index table, 
various histories-of-interest can be reconstructed from the 
GHB. For example, if the key is the program counter 
(PC), the local miss address streams can be reconstructed 
from the global history. A recent study  [11] shows that 
the GHB prefetcher achieves the best performance among 
the ten prefetching mechanisms under the study. 

 
Figure 1. Global history buffer prefetching  [8] [9] 
Although GHB prefetching has many desirable 

features, it has two major weaknesses. (a) Since the GHB 
maintains the global miss history and is shared by all 
misses, it can be resource inefficient when dealing with a 
burst of misses from few static instructions. For example, 
a few frequently missed loads/stores with perfect stride 
patterns may pollute all the GHB entries although few 
entries are needed to detect the strides. (b) It requires 
sequential operations to traverse a linked list to 
reconstruct an address history of interest from the GHB. 
Although such latency penalty may not be an issue for an 
L2-cache prefetcher due to the high L2-cache miss 
latency, such sequential operations make it less attractive 
for an L1-cache prefetcher. In this work, we combine 
GHB with local delta buffers (LDBs) to provide faster 
access and better resource efficiency (see Section 4). 

3. Novel Data Localities in Address Streams 
Following the convention used in value prediction 

research  [6] [13], we use local history to refer to the 
addresses generated by dynamic instances of the same 
instruction and global history to refer to the addresses 
generated by all instructions. As discussed in Section 2, 
existing works on data prefetching have exploited stride 

and/or context locality in local and/or global address 
streams. 

In this paper, the following new data localities have 
been identified. 
• Global stride 

This locality exists when there is a constant stride 
between addresses of two different instructions. For 
example, in the following global address stream: X, 
X+d… Y, Y+d… where (X, Y …) is the local address 
history from an instruction I while (X+d, Y+d …) is the 
local address history of an instruction J. In this case, even 
if there is no exploitable pattern in the local address 
histories of I or J, the address stream of the instruction I 
can be used to prefetch data for instruction J once the 
global stride is detected. The global stride between two 
dynamic instructions’ destination values was observed in 
 [13]. Address-value delta (AVD)  [7] can also be viewed 
as a form of global stride in address streams since the load 
value is used as the address for its dependent load 
instruction.  

 GHB provides an efficient way to detect the global 
stride locality: using the PC as a key, each linked list 
comprises one local address history. The global strides 
can be computed as the difference between each entry in 
the linked list and the entry next to it, as shown in Figure 
2. 

 
Figure 2. Computing global strides using GHB 

• Most common stride 
This locality appears when a constant stride pattern is 

disrupted from time to time with some irregular 
addresses. For example, in the following delta address 
(the difference between two consecutive addresses) 
stream: d, x, d, y, d, z… although there exists a common 
stride d, it can not be detected with existing stride or 
context-based approaches. In our experiments, we 
observed such locality in several benchmarks and we 
devise a simple way to detect it in local address streams 
(see Section 4). In  [10] the authors propose to prefetch the 
minimum delta from the delta buffer, rather than the most 
common as we propose.  
• Scalar 

Again, considering the delta address stream, the scalar 
locality exists in the following case: d, 2d, 4d, 8d, 16d, 
etc. Such locality is a direct result of the code that we 
observed in the benchmark mcf. In the function 
replace_weaker_arc, the indices of some array accesses 
are generated using the code “cmp *= 2” and then the 
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array is accessed using “if(new[cmp-1].flow < 
new[cmp].flow)”.   

Although it is not difficult to detect such locality, we 
found that the scalar pattern seems to be a rare case 
except in mcf. Even in mcf, the pattern varies due to 
control flow and the delta stream becomes d, 2d, 4d+m, 
8d+m, etc. Therefore, we exclude the scalar locality in our 
current data prefetcher. 

4. Proposed Data Prefetcher 

4.1. Architecture 
Our proposed prefetcher exploits data localities in both 

local and global address streams. Unlike the GHB 
prefetcher, we use a structure named local delta buffer 
(LDB) for instructions with strong locality in their local 
histories and a GHB for global address stream for other 
instructions. The overall structure of our proposed 
prefetcher is shown in Figure 3. Next, we discuss each of 
the key components in detail. 
• Index table 

Similar to a GHB prefetcher, the index table in our 
design is a cache-like structure indexed by the PC. Each 
entry in the index table has three fields: the tag, least 
recently used (LRU) counter, and index. If the index field 
is greater than the number of entries (N) in the GHB, the 
value (index – N) is used to access one of the LDBs. 
Otherwise, the index field points to an entry in the GHB, 
which is the beginning of the linked list of the addresses 
generated by the same instruction with the corresponding 
tag. 
• Global history buffer (GHB) 

In our design, the GHB operates in the same way as in 
 [8] [9] except that not all the miss addresses are sent to the 
GHB. If an index field in the index table points to one 
LDB, the miss address will be sent to the LDB 
accordingly. Since the addresses in the GHB are linked 
using the PC, each linked list is a local address stream. 
• Prefetch function 

The prefetch function in our design implements the 
following prefetching algorithms. 

(1) Delta correlation 
To capture delta correlation, a delta buffer is included 

in the prefetch function, which keeps the delta 
information when a linked list is traversed in the GHB. 
Then, a match of two consecutive deltas is searched in the 
delta buffer using the same approach as in  [9]. If there is a 
match, 8 prefetches will be issued according to the delta 
pattern. As consecutive delta matches indicate strong 
locality, the delta buffer is copied to one of the LDBs (the 
least recently used one). The index field is then updated 
correspondingly so that subsequent addresses from the 
same instruction will be sent directly to the LDB. 

(2) Simple delta correlation    
If there is no match of two consecutive deltas found in 

the delta buffer, 4 prefetches will be issued if there is a 
match of the last delta in the delta buffer. For example, if 
the delta buffer contains (a, x, y, z, a, m, n …) with a 
being the latest delta, the prefetch requests will be (last 
address + z), (last address + z + y), (last address + z + y 
+ x), and (last address + z + y + x + a). 

(3) Global stride 
When the linked list is traversed in the GHB, the 

global strides are computed as described in Section 3. If 
there is a match found, prefetches can be issued 
accordingly. 

 (4) Most common stride and next-line prefetch 
This function applies to the delta buffer originating 

from the LDBs. If there is no delta correlation found in 
the local history, next-line prefetch and most common 
stride (see LDB discussion next) are used to generate two 
prefetches. 
• Local Delta Buffer (LDB) 

An LDB is a FIFO structure and contains a local delta 
address stream. It also has a PC field as the tag and an 
LRU counter for replacement. The last address is 
maintained to calculate the latest delta. The prefetch 
functions are the same as those used for GHB except that 
there is no need to traverse the GHB to compute the delta 
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Figure 3. The structure of the proposed data prefetcher 



buffer. The “last matched stride” field is updated when 
there is a match found during delta and simple delta 
correlation computation. It implies that the stored stride at 
least appears twice in the delta buffer. This field is 
designed to approximate the most common stride 
discussed in Section 3 and is used only when there is no 
delta correlation.   

In our proposed design, multiple LDBs are used and 
the idea is to allocate a LDB for each of the most 
frequently missed load or store instructions. This way, 
each miss address of those instructions will go to LDB 
directly without polluting the GHB. In addition, the 
latency of accessing the GHB sequentially (i.e., linked list 
traversal) is eliminated for prompt prefetch request 
generation in the common case.  

4.2. Filtering of Redundant Prefetches 
Our prefetcher prefetches data into L1 data cache (D-

cache). The reasons are two-folds. The first is that L1 
cache miss address stream provides much stronger 
locality than L2 miss addresses, which translates into 
higher prefetch accuracy. The second is that prefetching 
data into L1 D-cache can eliminate the L2 cache access 
latency. We quantify the impact of prefetching into the L1 
cache vs. prefetching into the L2 cache in Section 5.  

When used as L1-cache prefetcher, each L1 miss (also 
L1 hits if the block is prefetched) will access the 
prefetcher and potentially invoke prefetch requests. The 
requests from different misses may overlap with each 
other and result in wasted bandwidth. Redundant 
prefetches may be triggered by the same instruction, 
which repeatedly issues the full prefetch degree upon each 
prefetcher access (prefetch a,b,c,d  then prefetch b,c,d,e  
etc.). Redundant prefetches may also be triggered by a 
different instruction, which accesses the same set of cache 
lines. Thus even if individual instructions do not issue any 
redundant prefetches, the prefetches may be redundant 
with respect to those issued by other instructions.  
Therefore, a filtering mechanism is necessary especially 
when the bandwidth support is limited.  

Two different mechanisms are used in our proposed 
design. First, we use simple logic to eliminate some local 
redundant prefetches. Second, we employ a set of prefetch 
MSHRs or a bloom filter  [1] to eliminate the remaining 
redundant ones. The simple logic here targets at both 
constant stride and repeating context patterns. One 
“confidence” bit is added to each LDB. If a constant stride 
or a strong delta correlation is detected (meaning 3 
consecutive matches in delta correlation), this bit is set. If 
this bit is set, subsequent accesses to the LDB will only 
issue one unique prefetch request. For example, an LDB 
detects a constant stride and issues prefetches (a+d, a+2d, 
a+3d … a+8d) where a is the current miss address. After 
the confidence bit is set, subsequent accesses (e.g, address 
b=a+d) will result in a single prefetch b+8d (=a+9d) 
rather than (b+d, b+2d …). Each prefetch address which 

passes the logic filter, probes the MSHR or the Bloom 
filter. If there is a Bloom filter hit, it is likely that we have 
already issued this prefetch, and we discard it. On a 
Bloom filter miss, we issue the prefetch. The Bloom filter 
may generate false-positive matches, and those will result 
in an incorrectly dropped prefetch. To limit false-positive 
matches, we reset the Bloom filter periodically (every n/4 
filter accesses, where n is the number of filter entries). 
The MSHRs will not result in false positive matches, 
however they are much more expensive the implement.   

Besides the structures described above, we also use a 
set of counters to monitor the effect of our prefetcher. In a 
training phase, we turn off prefetching if the prefetching 
block address satisfies the condition: (block addr % 4 = = 
2). Then, we periodically (every 1 million cycles) 
compare the miss rate from these lines that are not 
affected by the prefetcher with the miss rate from other 
lines to see whether the prefetcher is beneficial. If not, we 
can turn off the prefetcher.   

4.3. Design Space Exploration 
In this work, we propose and evaluate three different 

design points of the architecture described in Section 4.1 
and Section 4.2. The first design point (GHB-LDB-1) is 
our highest performance design, which aggressively 
exploits all the localities as described above. This design 
also uses MSHRs to remove redundant prefetches without 
any false-positive matches (see Section 4.3).  

The second design point is similar to the first, however 
it is scaled down in terms of storage requirements (a 
smaller GHB table is used) and complexity (Bloom filter 
is used instead of MSHRs). We call this design point 
GHB-LDB-2, and the purpose is to demonstrate that even 
with a significantly smaller storage budget, we can still 
achieve very high performance.   

Our third design point is meant to be the most 
complexity and latency efficient. It uses a single-level 
prefetch table indexed by load/store PC. Each entry in the 
prefetch table is a fixed size, local delta buffer (LDB) as 
described in Section 4.1. Thus each table entry maintains 
the last several deltas (strides) for a given load/store 
instruction as well as the last miss address for computing 
the new delta. Since the LDB-only design does not 
maintain global history information, it cannot prefetch 
global strides. However, the LDB prefetcher can detect 
the delta correlation, simple delta correlation and most 
common stride patterns as discussed in Section 4.1. In this 
design, upon a prefetch table hit, the prefetch function 
will search for delta and simple delta correlation. If no 
match is found, then a next line prefetch is generated. 
This design is simple and latency efficient, because it 
does not require a link-list traversal or other complex 
logic. It also eliminates the problem with a GHB based 
design, where a burst of misses from only a couple of 
load/store instructions may pollute the entire GHB.  
Despite of its simple design, the LDB-only prefetcher is 



able to achieve impressive speedups when prefetching for 
the L1-cache, as shown in our experiments in Section 5.  

4.4. Storage Cost  
For the competition, we submitted three design points: 

GHB-LDB-1, GHB-LDB-2 and LDB-only as described 
above. The configuration and the storage cost of all three 
versions are summarized in Table 1. In both GHB-LDB 
versions, we use a 256-entry 8-way set-associative index 
table. Assuming 32-bit processors, it requires 256 * (27 
bit tag + 3 bit LRU + 8 bit index to GHB) = 9728 bits. For 
the GHB, each entry takes a 32-bit address and a log2(N) 
bit pointer, where N is the number of entries in the GHB.   

Each LDB has a 7-entry delta buffer (the eighth delta 
is calculated using the current address and the ‘last 
address’ field) and each delta is 32 bits. Therefore, each 
LDB takes (7*32 + 32 bit PC + 32 bit last address + 32 bit 
‘last matched stride’ + log2(M) bit LRU) where M is the 
number of LDBs in the design. The prefetch function has 
a 32-entry delta buffer (32*32) and three temporal 
registers (32*3) for delta matching, a total of 1120 bits.  

In the LDB-only version we use a 64-entry 8-way 
table. Each table entry is an LDB, thus the storage is the 
same as above. The only difference is that we use 24 bit 
deltas.  

The prefetch MSHRs maintain outstanding prefetches 
at the cache block level. Since the block size if 64 bytes, 
each MSHR costs (26 – index + LRU bits).   

The adaptive control of the prefetcher requires several 
counters. We collect miss rates (3 counters for L1, L2, 
and the region in L2 not affected by prefetching) every 1 
million cycles. We also use prefetch bit to get the number 
of successful prefetches in L1 cache. A total of 100 bits 
are allocated for those counters. The LDB-only prefetcher 
does not use the adaptive control in our experiments.  
Table 1. A summary of storage cost of two submitted 
versions 
Storage Cost GHB-LDB-1 GHB-LDB-2 LDB-only 
Index Table 256-entry 8-way 

9728 bits 
256-entry 8-way 
9728 bits  

64-entry 8-way  

GHB  192 entry 192 * 
(32+8) = 7680 bits 

128 entry 128 * 
(32+7) = 4992 bits 

N/A 

Prefetch 
Func. 

1120 bits  1120 bits 1120 bits 

Prefetch 
MSHR 

256-entry 8-way 
256*(21+3)=6144 
bits  

N/A N/A 

Bloom filter N/A 2048 + 8-bit reset 
counter  

4096 + 9-bit reset 
counter 

LDBs 16 LDBs 
16*(7*32+32+32
+32+5)=5200 bits 

16 LDBs 
16*(7*32+32+32
+32+4+1)=5200 
bits 

64 LDBs 
64*(7*24+32+32
+3+1)=15104 bits

Counters 100 bits 100 bits N/A 
Total 29972 bits 

(3.7kB) 
23196 bits 
(2.9kB) 

20329 bits (2kB) 

5. Experimental Results 
We model the proposed prefetcher using the 

simulation framework for the 1st Championship data 
prefetching contest (DPC-1)  [14]. We used gcc 4.1.2 on a 
32-bit X86 machine to compile a set of memory intensive 
SPEC 2006 benchmarks. For each benchmark, the trace 
was generated by skipping the first 40 billion instructions 
and recording the next 100 million instructions. The 
performance improvements (compared to no prefetching) 
are measured for three processor configurations according 
the rules of DPC-1 and the results are shown in Tables 2, 
3 and 4 for the three submitted design points. 
Table 2. The speedups from prefetcher (GHB-LDB-1) 
Speedup bzip2 lbm mcf milc omnetpp soplex xalan Gmean
Config1 1.07 2.89 2.65 1.97 1.13 1.54 0.99 1.61 
Config2 1.08 2.98 1.90 2.83 1.10 1.46 0.97 1.60 
Config3 1.02 2.98 1.88 2.83 1.11 1.48 1.37 1.67 

Table 3. The speedups from prefetcher (GHB-LDB-2) 
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.88 2.53 1.95 1.17 1.48 0.97 1.59 
Config2 1.08 2.77 1.84 2.78 1.12 1.47 0.94 1.57 
Config3 1.01 2.80 1.83 2.78 1.13 1.51 1.37 1.65 

Table 4. The speedups from prefetcher (LDB) 
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.83 2.38 1.91 1.13 1.47 0.89 1.54 
Config2 1.08 2.92 1.85 2.48 1.09 1.47 0.85 1.53 
Config3 1.04 2.91 1.84 2.48 1.10 1.55 1.30 1.63 

Besides remarkable performance improvements, some 
interesting observations have can be made from our 
experiments. First, the simple LDB approach is able to 
capture most of the performance benefit of the more 
complex GHB-LDB scheme. Thus capturing local delta 
correlations and filtering redundant prefetches account as 
the major contributors to performance improvement. On 
the other hand, we found that for the GHB-LDB design 
around 90% of all the prefetches are issued from LDBs 
instead of the GHB. Since LDBs eliminate the need to 
traverse the linked list in GHB, the latency of prefetch 
generation is effectively reduced. Second, a relatively 
small number of LDBs (16) is enough for either version to 
achieve the most performance enhancement. In our 
submissions we scale the GHB-LDB-1 to use more 
storage budget. 

As discussed in Section 4.3 in contrast to conventional 
wisdom, we advocate prefetching into the L1 data cache, 
instead of at lower levels of the cache hierarchy. Table 5 
shows the performance results of our best performing 
GHB-LDB-1 configuration when applied to the L2 data 
cache. We can see that the speedup is significantly limited 
due to the less accurate prefetches.  

Table 6 shows the impact on performance when 
redundant prefetches are not eliminated. For configuration 
1 (unlimited bandwidth) we actually achieve speedup. 
However, for configurations 2 and 3 (limited bandwidth – 
maximum 1 request every per cycle from L1 to L2 and 
maximum 1 request every 10 cycles from L2 to memory) 



the performance is severely impacted, even observing 
slowdowns.    

In Table 7 for comparison, we show the performance 
of the original GHB proposal. We implement GHB to the 
best of our knowledge. Detect only delta context strides 
(match of last two deltas) as described in the original 
paper. We also do not filter redundant prefetches. Again, 
we can see that while GHB performs reasonably well for 
configuration 1, when the bandwidth is limited it suffers a 
lot due to redundant prefetches.  
Table 5. Prefetching for the L2-Cache (GHB-LDB-1) 
Speedup bzip2 lbm mcf milc omnetpp soplex xalan Gmean
Config1 1.05 2.22 1.90 1.89 1.15 1.39 0.96 1.44 
Config2 1.06 0.96 1.11 1.68 1.02 1.27 0.94 1.13 
Config3 1.00 0.96 1.11 1.67 1.02 1.20 1.29 1.16 

Note*: The large drop in performance when prefetching into the 
L2 cache, can be also be attributed to a problem using the 
prefetch MSHRs. When we use a BloomFilter instead of 
MSHRs, the geomentric mean of the speedups is 1.40, 1.51, 1.57 
for configurations 1, 2 and 3 respectively. The benchmark lbm 
in particular has speedups of: 1.93, 2.40, 2.40 for the three 
configurations when using the bloom filter.  
Table 6. No filtering of redundant prefetches (GHB-
LDB-1) 
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.07 2.89 2.64 1.97 1.18 1.55 0.99 1.62 
Config2 1.07 0.51 0.91 2.72 1.11 1.15 0.96 1.07 
Config3 0.96 0.51 0.91 2.70 1.11 1.18 1.42 1.12 

Table 7. Original GHB approach, prefetching into the 
L1-Cache and no filtering of redundant prefetches  
Speedup bzip2 lbm mcf milc omnetpp Soplex xalan Gmean
Config1 1.06 2.89 2.40 1.96 1.10 1.30 0.83 1.50 
Config2 1.06 0.66 0.94 2.15 1.07 1.11 0.77 1.04 
Config3 1.03 0.65 0.94 2.15 1.08 1.15 1.11 1.09 

 
Lastly, we note that the compiler, which is used to 

compile the SPEC benchmarks and generate the traces, 
plays an important role. When changing to another gcc 
version (4.2.3), the performance varies significantly (both 
with and without prefetching) compared to the results 
using gcc 4.1.2. Nevertheless, our proposed prefetcher 
still achieves significant speedups (1.5~1.7X) in this case. 

6. Conclusions 
In this paper, we present our design for an L1 data 

cache prefetcher. It exploits various data localities in both 
local and global address histories and achieves 
remarkable performance improvements. In this work, we 
also emphasize the importance of removing redundant 
prefetches to reduce bandwidth demand.  
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