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Abstract 

 
With the future workloads predicted to feature 

petascale data sets, we developed a course on 
exploring various massively parallel architectures and 
programming models for data-intensive applications. 
The course covers the architectures of three 
processors, AMD/ATI RV670 Streaming graphics 
processors, Nvidia G80 graphics processors, and Cell 
Broadband Engines, and their latest programming 
support. The course starts with the single-program 
multiple-data (SPMD) programming model on 
ATI/Nvidia graphics processors and extends to the 
multiple-program multiple-data (MPMD) model using 
Cell processors. In this paper, we report our 
experience in developing & teaching this course and 
present some interesting insights learnt from exploring 
these different architectures. The results from the 
students’ program experiences are promising: the 
SPMD model is easy to grasp and with a sound 
understanding of architectural features, significant 
performance gains can be achieved through various 
program optimizations. For example, one optimized 
matrix multiplication algorithm has been developed, 
which outperforms the carefully tuned library code 
(Nvidia CUBLAS) by 49%.  
 

1. Introduction 
 

Data volumes for future applications in many 
domains, ranging from science to business information 
processing, are predicted to grow exponentially. Such 
large data sets (or data streams) are often associated 
with intensive computation to extract useful 
information to end users. To address this data-intensive 
and computation-intensive requirement, various high-
performance computing platforms have been proposed 
or developed. Among them, massively parallel 
processors like graphics processors (GPU) are 
promising due to their programmability and high 
energy efficiency. To facilitate general-purpose 
computing on graphic processor units (GPGPU), 
hardware features such as IEEE single and double 
precision, integer arithmetic, bitwise operations, shared 
memories, and scatter write capabilities have been 

added to the latest GPUs. Furthermore, new 
programming models like CUDA [3] and Brook+ [4] 
have been developed recently to make the GPU 
resources more accessible to application developers. In 
both CUDA and Brooks+, GPUs are used as an 
accelerator for the CPU to offload data-intensive 
computations. The GPU programs simply use extended 
C/C++. In contrast, the traditional GPGPU approach 
involves the daunting task of mapping general-purpose 
computation into the graphics domain and using 
OpenGL/DirectX APIs to access the GPU hardware.   

Current GPUs feature high degrees of thread-level 
parallelism by supporting a large number of light-
weight threads. These threads are grouped into warps 
(a term used by Nvidia) or wavefronts (a term used by 
AMD/ATI), which execute instructions in the single-
instruction multiple-data (SIMD) mode. Different 
warps/wavefronts follow the single-program multiple 
data (SPMD) model. In other words, all threads in the 
same warp/wavefront share one program counter (PC) 
while each warp/wavefront has its own PC.     

Compared to GPUs, Cell Broadband Engine 
(CellBE) architecture is also designed for data-
intensive applications and it supports more flexible 
programming models. In Cell processors, both the 
synergetic processor units (SPU) and the PowerPC 
processor unit (PPU) have SIMD-style data processing 
hardware. Each of those processor units can execute a 
different program, thereby being capable of supporting 
multiple-program multiple-data (MPMD) 
programming model.  

The advent of these massively parallel processors, 
however, presents a challenge to traditional parallel 
computing curriculum. Classical parallel architecture 
courses focus on low-level hardware designs for cache 
coherence, memory consistency, interconnect, etc., 
many of which are either not necessary or too costly in 
processors designed for data-intensive applications. 
Parallel programming courses, on the other hand, 
mainly deal with high-level programming algorithms 
and concepts, which are not sufficient to take full 
advantages of these massively parallel processors. 
Each of these massively parallel processors has its 
unique architectural features, which can have a 
tremendous impact on performance. As a result, the 



programmer needs to understand both the architectural 
features and the programming models in order to 
choose the right processors for their target 
applications, develop the code, reason about the 
performance, and perform program optimizations. In 
this paper, we report our experience in developing a 
course for this purpose at the University of Central 
Florida and present some interesting results from the 
students’ programming experiences.  

The remainder of the paper is organized as follows. 
Section 2 presents the course, including the topics, the 
programming assignments, and the term projects. 
Section 3 discusses the interesting results from 
students’ programming experiences. Section 4 
concludes the paper.  
 
2. The Course: Multi-Core/Many-Core 
Architecture and Programming 
 

The course was developed through close 
collaboration with leading industry, including guest 
lectures and lab equipment (i.e., graphics cards) 
donations from AMD/ATI. The course also benefits 
significantly from the lecture material of “ECE 498 
AL1: Programming Massively Parallel Processors” 
developed at UIUC [1], which focuses on Nvidia G80 
processors and the CUDA programming model. We 
also draw on materials from the IBM Cell 
programming workshop [2]. In comparison to those 
courses, our course offers a broader coverage of 
various architectures and their programming support so 
that the students can become familiar with multiple 
platforms and evaluate their strengths and weaknesses 
to select the right one for their target applications.  

The audience of this course is mainly graduate 
students with some background on computer 
architecture and/or parallel programming. This paper is 
based on our experience in offering the course [7] for 
the first time in spring 2008. 
 
2.1 Course Description 
 

In this course, we discuss three processor models 
and their current programming environments and tools. 
For each processor model, we follow the same trilogy: 
architecture, programming models and supporting 
tools, and performance optimization techniques. We 
start with the graphics processors (GPU) and then 
focus on the more flexible CellBE. 

 
2.1.1. GPU architectures and programming  

The GPU part of the course includes both the 
Nvidia G80 architectures and the AMD/ATI R670 

architectures. For either architecture, we discuss 
detailed architectural features that are related to 
general purpose computing and we omit those features 
that are mainly used for graphics processing. Next, the 
high-level programming support, CUDA [3] for G80 
architectures and Brook+ [4] for AMD/ATI RV670 
architectures, and the related code development/ 
analysis tool chains are discussed. Then, we address 
performance optimization through detailed code 
examples and architectural impact analysis. To better 
understand the strengths and weaknesses of the two 
leading GPU architectures and their support for 
general purpose computing, we performed a cross-
platform comparison and the results are summarized in 
Table 1. 

Both Brook+ and CUDA use the GPU as an 
accelerator for the CPU program to offload the data-
intensive computations and both employ the SPMD 
programming model. In either GPU, each of the 
threads works on its own data partition using its thread 
ID (CUDA) or index (Brook+). From the 
programmer’s perspective, CUDA supports more 
flexible gather and scatter operations to access the data 
set while Brook+ employs a relatively more restrictive 
streaming model. 

As shown in Table 1, both types of GPUs offer very 
high single-precision (SP) floating-point (FP) number 
computation power and memory bandwidth. 
AMD/ATI RV670 processors also support double-
precision (DP) FP number computation at a reduced 
throughput as DP FP computation is achieved by 
combining multiple SP FP ALUs. Nvidia G80 GPUs 
provide on-chip shared memory structures, which 
enable efficient data sharing among the threads in the 
same thread block. In comparison, AMD/ATI RV670 
architecture does not have shared memory. Instead, it 
opts for a larger register file than G80, which can be 
used for either a higher number of threads or a higher 
number of registers per thread. AMD/ATI RV670 also 
exploits instruction-level parallelism using 5–way 
VLIW instructions compared to scalar operations in 
G80 processors. Understanding these different 
architectural features is important to select the 
appropriate computing hardware for the target 
applications. For example, if an application involves 
data communication (or sharing) among neighboring 
threads (i.e., local communication), G80 processors 
may be a good fit due to their shared memory 
structure. If there is little data sharing among threads, 
the large number of registers in RV670 may enable 
more aggressive code optimizations such as loop 
unrolling or instruction scheduling, which usually 
result in an increase of register usage. Both GPU 
architectures may not be a good fit for applications 



  G80 (Geforce 8800) RV670 (AMD Radeon HD 3870) 

Stream Processors 128 320 
StreamProc Clk  1350 Mhz 775Mhz 
Throughput  345.6 GFLOPS (no double precision FP 

support) 
 
128 units @ 1350Mhz *2 for muladd 

496 GFLOPS (99.2 GFLOPS for double-precision 
FP numbers) 
320 units @ released frequency of  775Mhz * 2ops 
for muladd = 496 GFLOPS peak; 
Double precision 
256 units used @ released frequency of 775 Mhz; 
Adds 256/2*775Mhz = 99.2 GFLOPS; 
MulAdd 256/4*775Mhz *2 ops for MulAdd = 
99.2 GFLOPS 

System bus support PCIe 2.0x16 PCIe 2.0x16 
Memory BW 384 bit GDDR3 @ 900MHz, 86.4 GB/s  256 bit GDDR4@1.13GHz/pin, 72 GB/s 
Memory size 768 MB 512MB 
Thread Hierarchy 16 Stream multi-processors (SM), 8 

streaming processors (SP) per SM, 2 
SMs share 1 Texture subsystem 

4 clusters, 16 x 5 cores per cluster, each cluster 
time-multiplex 1 Texture subsystem 

Max. # threads 768 per SM * 16 SM 64 per wavefront * 192 wave fronts 
Max. # active threads in execution 32 (warp size) per SM * 16 SM. Each 

warp takes 4 cycles to issue 
64 (wavefront size) per cluster * 4 clusters. Each 
wavefront takes 4 cycles to issue 

Instruction-level parallelism Scalar operations for each thread 5-way VLIW for each thread 
Register File (32-bit registers) 512 kB = 32kB per SM * 16 SM; 

8K registers per SM; 1K register per SP  
1MB = 256kB per cluster * 4 cluster; 64K registers 
per cluster; 1K register per core  

Shared Memory 256 kB = 16kB per SM * 16 SM N/A 
R/W cache N/A A cache (size not disclosed) 
Local/Global/Texture memory Device Mem size Device Mem Size 
Constant Cache 8KB per SM, 128KB in total L1 (size not disclosed)  (no L2) 
Programming model SPMD SPMD 
Programming Language C/C++ C 
Intermediate Language PTX AMD/ATI IL 
Assembly-level analysis Decuda GPU ShaderAnalyzer 
Thread management Thread hierarchy Streaming model 

Table 1. A comparison of architectural features and programming support for AMD/ATI RV670 

featuring high global communication (i.e., data 
communication can be among any threads), for which 
the classical cache-coherent parallel processors could 
be a better choice. 

 
2.1.2. Cell broadband engine architecture and 
programming 

CellBE is a heterogeneous multi-core architecture. 
Compared to GPUs, Cell processors have much less 
degree of thread-level parallelism and rely on 
asynchronous direct memory accesses (DMA) to hide 
memory access latency. Also, unlike GPUs, each core 
in Cell processors can execute a different program, 
thereby being capable of supporting the MPMD 
programming model. The high computation power is 
achieved through SIMD/vector processing in either the 
synergetic processor unit (SPU) or the PowerPC 
processor unit (PPU). Given their architectural 
features, the key to achieve high performance on Cell 
processors mainly includes parallelization strategy 
(i.e., task or data decomposition), explicit control/data 
transmission using mailboxes/DMA, and vector 
programming. Typical programming techniques on 

those aspects are discussed using detailed code 
examples from the Cell SDK examples and the Cell 
programming tutorial. 
 
2.2 Programming Assignments 

 
For each processor model covered in the course, 

there are two programming assignments: matrix 
multiplication and 2-D convolution. In each 
assignment, the initial step is to get familiar with the 
programming environment and the syntax of the 
extended programming language support and to write 
the code, which produces equivalent results to the CPU 
version. The next step is to optimize the code for the 
target processor model. This step involves extensive 
uses of performance analysis tools and careful 
reasoning of architectural impact on the performance. 
The report of the assignments includes execution times 
for various matrix sizes and the number of lines of the 
code, which is used to roughly estimate the 
programming complexity. 

 



2.3 Term Projects 
 
Term projects are a key component of the course. 

Students are first asked to select an application with 
rich data-level parallelism and to choose a target 
hardware platform. Then, a project proposal is 
submitted to finalize the selection of applications and 
the target processor models. Students also make a short 
(5-10 minutes) presentation to discuss the core 
algorithm and the strategy to map the application to the 
target processor. The instructor and the experienced 
developers from AMD/ATI offer feedback on the 
proposed work. The last step of the project includes a 
project presentation (~30 minutes) and a technical 
report, which discuss how the code is ported to the 
target processors, how the performance optimization is 
performed, what the important lessons are learnt from 
the process, and how much performance gains are 
achieved compared to the CPU code.  

 
3. Results 
 
3.1 GPGPU Programming  
 

In this section, we report some interesting results 
based on the students’ programming exercises. For 
each programming assignment, we collect both the 
number of lines in the code (only the kernel function 
for GPUs) and the achieved throughput, which is 
measured as the ratio of the number of FP operations 
in the CPU algorithm over the average GPU execution 
time among 10 runs. The GPU execution time also 
includes the data transmission latency between the 
GPUs and the CPU. From all the results collected from 
11 students, we present the minimum, the median, and 
the maximum value for each metric. In order to further 
separate the actual kernel execution time from any 
other overhead resulting from data transmission, 
staging/startup of deep pipeline, and CPU/GPU 
communication, an additional experiment was 
performed by repeating the kernel execution 100 times 
per setup on the fastest solutions for both processors. 
The results are shown in Table 2 and Table 3 for 
matrix multiplication (a product of two 2k x 2k 
matrices) and 2D convolution (a convolution of a 2k x 
2k matrix with a 5x5 convolution kernel), respectively. 
All the computations use SP FP numbers. DP FP 
number computation is supported in Brook+ 1.0 Beta 
but it requires slight code changes if the program uses 
vector variables of 4 SP FP numbers, which need to be 
replaced with two vector variables of 2 DP FP 
numbers. The achieved throughput for DP FP numbers 
is around 50% of the throughput for SP FP numbers. 

Table 2. Matrix multiplication (a product of two 2k x 2k 
matrices) on GPUs. 
 Nvidia 8800 

GTX 
AMD/ATI 
HD3870 

Min. # of lines in the 
code 

18 12 

Median. # of lines in the 
code 

37 21 

Max. # of lines in the 
code 

140 35 

Min. Throughput 13.8 GFLOPS 8.3 GFLOPS 
Median. Throughput 67 GFLOPS 18.3 GFLOPS 
Max. Throughput 149 GFLOPS 43 GFLOPS 
Max. Iterative Kernel 
Throughput  

193 GFLOPS 74.7 GFLOPS 

 

     Here, note that, although we present the results for 
both Nvidia 8800 GTX processors and AMD/ATI 
HD3870 processors, a conclusion should not be made 
in terms of which ones deliver higher performance. 
There are two main reasons. First, the results in Table 
2 and Table 3 are based on initial effort of 
inexperienced students. Experienced programmers can 
find ways to achieve higher performance, like the GPU 
math library functions provided by either Nvidia or 
AMD/ATI (both can deliver over 100 GFLOPS on our 
test machine). Second, not all GPU hardware resources 
are exposed at Brook+/CUDA and continuing 
development on the programming models will likely 
bring higher performance. For example, the matrix 
multiplication program included in the AMD/ATI 
CAL SDK (intermediate level) has much higher 
throughput (213 GFLOPS) than the Brook+ version 
and there is current ongoing work to port the 
optimizations from CAL to Brook+. 

Table 3. Image convolution (a 2k x 2k matrix convoluted 
with a 5 x 5 kernel) on GPUs 
 Nvidia 8800 

GTX 
AMD/ATI 
HD3870 

Min. # of lines in the 
code 

12 15 

Median. # of lines in the 
code 

43 34 

Max. # of lines in the 
code 

115 88 

Min. Throughput 0.27 GFLOPS 0.42GFLOPS 
Median. Throughput 6.08 GFLOPS 1.2 GFLOPS 
Max. Throughput 18 GFLOPS 2.2 GFLOPS 
Max. Iterative Kernel 
Throughput 

112 GFLOPS 21.7 GFLOPS 

Several interesting observations can be made from 
the results in Table 2 and Table 3. First, the SPMD 
programming model is easy for students to grasp, at 
least for simple algorithms like matrix multiplication 
and convolution. The students started with the un-



optimized CPU code, which has a throughput of 30 
MFLOPS for matrix multiplication and 205 MFLOPS 
for convolution, and achieved reasonably high 
throughput using the two different types of GPUs. The 
relatively low throughput for convolution using GPUs 
is due to the low computational requirement, around 
0.21 Giga floating-point number operations. The 
majority execution time (over 80%) is spent on data 
transmission between CPU and GPUs. However, even 
in this case, the optimized GPU code can achieve 6x 
(median) improvement using HD3870 processors or 
30x (median) improvement using 8800 GTX 
processors over the un-optimized CPU version. The 
high performance gains (ranging 10X to 1000X) seem 
to justify the effort of porting the CPU code to the 
SPMD code for massively parallel processors. The 
same effort spent on optimizing CPU code is unlikely 
to produce improvements in a similar order of 
magnitude.  

Second, if we use the number of lines in the code to 
estimate the coding complexity, it seems to be very 
promising that even inexperienced programmers can 
achieve decent performance gains without too much 
complexity or coding effort.  

Third, compared the median and the maximum 
performance shown in Table 2 and Table 3, we can see 
the best designs have 2X to 3X speedups over the 
median performance. In fact, the best throughput for 
matrix multiplication achieved on Nvidia 8800 GTX 
processors is 49% higher than the carefully tuned 
matrix multiplication algorithm in the Nvidia 
CUBLAS library, which has a throughput of 100 
GFLOPS on our test machine when the latency for 
data transmission between CPU and GPU is included.  

Fourth, in both matrix multiplication and 
convolution, the tiled algorithm makes good use of the 
shared memory in G80 architectures to leverage the 
global memory accesses from different threads in the 
same thread block. For HD3870 processors, the large 
register file enables aggressive unroll & jam 
optimizations, but not as effective as tiling for matrix 
multiplication and convolution. 

Fifth, we noticed during experimentation on the 
AMD HD 3870, that when larger kernals (4kx4k 
matrix multiply) or multiple kernel executions of 
smaller task were used, the ratio of computational 
workload relative to the time required for data 
transmission between the CPU and GPU is altered and 
can result in visibly significantly higher computation 
rates. In other words, there are large changes (1.7x-
9.9x) between maximum iterative kernel throughput 
(the last entry of Tables 2 and 3) and the maximum 
throughput. Although this change is relatively smaller 
on the G80 (1.3x-6.2x), it does display the same effect 

suggesting that overlapping the data moves and kernel 
executions can result in higher results.  Again, we are 
eager to see the conclusion of the ongoing CAL level 
optimizations being ported to Brook+. 

Sixth, the performance analysis tools play a critical 
role in performance optimization, especially those 
tools with the machine assembly-level information. 
The reason is due to the non-linear performance effect 
of code optimizations [5], which are difficult to 
analyze at the source code level or the intermediate 
level. The ATI/AMD’s shader analyzer provides the 
actual assembly instructions to be executed on 
hardware. The detailed VLIW scheduling information 
and the latency calculation are very helpful to reason 
about the performance. In comparison, Nvidia’s PTX 
code is an intermediate representation, which will be 
further optimized and register allocated before 
executed in hardware. A useful resort is the deCUDA 
tool [6], which disassembles the CUDA binary to 
generate the unofficial Nvidia assembly code. During 
the optimization for matrix multiplication using 
CUDA, for example, after applying all the 
optimizations described in [5], a careful inspection of 
the assembly produced from deCUDA reveals that the 
multiplication-add (MAD) instruction can only have 1 
source operand accessing the shared memory. This 
low-level instruction-set architecture (ISA) constraint 
is not present at the PTX level and it has significant 
impact on matrix multiplication, as illustrated in Figure 
1.  

 
Figure 1. A code segment of tiled matrix 
multiplication (tile size: 16x16). 

The code segment in Figure 1 is part of a tiled 
matrix multiplication (tile size 16x16, 256 threads per 
thread block). The arrays ‘As’ and ‘Bs’ are shared 
memory variables. The loop in Figure 1 is not 
translated into a sequence of MAD instructions since 
the MAD instruction would require two source 
operands from shared memory. Instead, each MAD 
instruction is accompanied with a load (from shared 
memory) instruction. Additionally, there are extra 
instructions to generate proper index for the load 
instructions (see Figure 4a). As a result, the instruction 
count of this completely unrolled loop is much more 
than 16. A good solution to this problem is to let each 
thread calculate C (e.g. 16) elements instead of 1 

…//load a tile of array A and B into shared memory As     
    // and Bs 
for(k = 0; k < 16; k++)  //completely unrolled 
{ 
      Temp += As[i][k] * Bs[k][j]; 
} 
… 



... 
mov.b32 $r12, s[$ofs4+0x0000] 
mov.b32 $r7, s[$ofs4+0x0040] 
mad.rn.f32 $r11, s[$ofs1+0x000c], $r11, $r13 
add.b32 $ofs4, $ofs3, 0x0000019c 
mad.rn.f32 $r13, s[$ofs1+0x0010], $r12, $r11 
mov.b32 $r12, s[$ofs4+0x0000] 
mov.b32 $r11, s[$ofs4+0x0040] 
mad.rn.f32 $r7, s[$ofs1+0x0014], $r7, $r13 
add.b32 $ofs4, $ofs3, 0x0000021c 
mad.rn.f32 $r13, s[$ofs1+0x0018], $r12, $r7 
... 

... 
mov.u32 $r15, g[$r21]    //loading b 
mad.rn.f32 $r0, s[0x001c], $r15, $r0 
mad.rn.f32 $r1, s[0x0020], $r15, $r1 
mad.rn.f32 $r2, s[0x0024], $r15, $r2 
mad.rn.f32 $r3, s[0x0028], $r15, $r3 
mad.rn.f32 $r4, s[0x002c], $r15, $r4 
mad.rn.f32 $r5, s[0x0030], $r15, $r5 
mad.rn.f32 $r6, s[0x0034], $r15, $r6 
mad.rn.f32 $r7, s[0x0038], $r15, $r7 
… 

 (a) Assembly code before the optimization           (b) Assembly code after the optimization 
Figure 4. The assembly code generated using deCUDA, before and after optimization (large tile + loop 
interchange).  

element and then perform loop interchange to 
eliminate one shared memory access in the loop body, 
as shown in Figure 2. Increasing the number of 
elements in the product matrix in each thread also 
substantially enlarges the tile size, 16x256 if we keep 
the same number of threads (256) in each thread block. 
The source code before and after loop interchange is 
illustrated in Figure 3.  

 
Figure 2. Increasing the tile size for loop 
interchange. 

 
Figure 3. Code optimization (loop interchange) to 
reduce the dynamic instruction count. 

As shown in Figure 3, after loop interchange, the 
variable ‘B[k][j]’ is independent upon the inner loop 
index ‘i’ and can be loaded into a register before the 
inner loop. This way, each MAD operation in the inner 
loop only has 1 shared memory access to ‘As[i][k]’. 
To eliminate offset calculation instruction, we also 
load a tile of the array A into As using the column-
major (i.e., make As[i][k] and As[i+1][k] adjacent) 
and pad one row to As to remove bank conflicts in 
updating shared memories. The complete code is 
available at the course website [7]. Here, we show in 
Figure 4 the assembly code segments before and after 
the optimization, which are generated using deCUDA. 
As seen in the figure, before the optimization, there is 
one or two additional instructions (move or add) for 
every MAD instruction. After the optimization, all 
those extra instructions are removed. Since each core 
in G80 processors uses a scalar pipeline, such high 
reduction in the dynamic instruction count combined 
with the benefits of large tiles results in a significant 
improvement on the effective throughput over the 
basic tiled algorithm in Figure 1 (from 77GFLOPS to 
149 GFLOPS), when computing the product of two 
2kx2k matrices. The resulting matrix multiplication 
code also outperforms the carefully tuned library code 
(Nvidia CUBLAS) by 49%.  
    Finally, we examine whether there exists some 
correlation between the code size and the achieved 
throughput. From the results that we collected from 11 
students, we observe the expected trend: larger code 
sizes typically imply more crafted code and therefore 
higher performance. However, there are many 
exceptions. The programs with the best performance 
have a high number of lines of code but usually not the 
longest ones. Similarly, the programs with the lowest 
throughput are short but may not be the shortest ones.  
 
  
 

… //load a tile of array A and B into shared memory As     
    // and Bs 
for(i = 0; i < C; i++) //completely unrolled 
   for(k = 0; k < 16; k++)  //completely unrolled 
   { 
       Temp[i] += As[i][k] * Bs[k][j]; 
   } 
… 

(a) code before loop interchange 

…//load a tile of array A into shared memory As 
for(k = 0; k < 16; k++) //completely unrolled 
{ 
   b = B[k][j]; 
   for(i = 0; i < C; i++)  //completely unrolled 
   { 
       Temp[i] += As[i][k] * b; 
   } 
} 
… 

(b) code after loop interchange 

One thread calculates one 
element in the product 
matrix 

One thread calculates C 
elements in the product 
matrix 



3.2 Cell Programming  
 
The programming assignment on CellBE was done 

in two parts. The first is to develop the code in the 
simulation environment and the second is to test the 
performance using a PS3 playstation running Fedora 
Linux.  

Among the students (3) who finished the 
assignments in two weeks, the median throughput is 
8.5GFLOPS for matrix multiplication (a product of 
two 2kx2k matrices) and 0.87GFLOS for convolution 
(a 2kx2k matrix convoluted with a 5x5 kernel) when 6 
SPUs are used. Again, no conclusion should be drawn 
in comparing CellBE with GPUs due to the limited 
time and experiences on optimizing Cell programs. 
From the students’ code, the median code size for 
matrix multiplication is 188 lines of code for the 
PowerPC Unit (PPU) and 95 lines for the Synergetic 
Processor Unit (SPU). For 2D convolution, the median 
code size is 227 and 99 lines of code for the PPU and 
SPU, respectively, implying higher coding effort than 
the SPMD model in GPUs. In comparison, the highly 
optimized matrix multiplication algorithm in the Cell 
SDK library has a throughput of 139 GFLOPS on the 

same PS3 playstation and the code size is 608 and 
1362 lines of code for the PPU and SPU, respectively.     

 
3.3 Projects  

 
The term projects listed in Table 4 cover a wide 

range of applications, including ray tracing, computer 
vision, data compression, artificial intelligence, 
information security, etc.  

The performance results shown in Table 4 are 
encouraging. The highly impressive speedups well 
justify the effort to port the CPU code to the massively 
parallel processors for relatively large applications. 
Again, although the CPU code is not highly optimized, 
speedups of similar magnitudes are not very likely to 
obtain by optimizing the CPU code. Additionally, the 
code sizes reported in Table 4 also indicate that the 
complexity of composing GPU codes is not 
overwhelming for those applications.  

 
4. Conclusions 
 

In this paper, we present a course we developed on 
exploring multi-core/many-core architectures and 
programming models. The course covers three 

Table 4. A summary of term projects 

Project Target SW/HW 
Platform 

Code size (kernel) 
(lines of code) 

Performance Results 

Image Super-
resolution 

Nvidia CUDA 750  59x vs. Matlab code 
40x vs. sequential C code 

Line of Sight Nvidia CUDA 55 For a 2kx2k height image, 3.2 million checks 
per second using the GPU vs. 79k checks per 
second using the CPU  

Instant Radiosity Nvidia CUDA 603 An 8x8x8 grid takes 0.1ms using the GPU 
compared 10s using the CPU 

Parallel lossless 
data compression 

Cell 231 6 SPUs achieves 3x faster than PPU. Not as 
good as a high performance CPU.  

Ray Tracing Nvidia CUDA & 
AMD/ATI Brook+ 

2834 in CUDA 
3420 in Brook+  

For a Buddha scene which has 175k triangles, 
it takes 0.66 sec for CPU while 0.067 sec for 
GPU  

Parallel Sorting Nvidia CUDA & 
AMD/ATI Brook+ 

48 in Brook+ 
135 in CUDA 

It takes 0.25 sec for GPUs (optimized Bitonic) 
to sort 4M elements while it takes 0.75 sec for 
the CPU (optimized Quicksort) 

Triple DES Nvidia CUDA & 
Cell 

86 in CUDA 
127 in Cell SPU code 

It takes 89s for CPU, 35s for GPU, and 19s for 
Cell to encrypt the Bible (3953KB)   

Accelerating large 
neural nets 

Nvidia CUDA 300 47x speedup vs. CPU code when querying the 
a 3-layer 48x48 net; 4x speedup when 
evaluating the nets  

Harr Wavelet Nvidia CUDA and 
direct 3D9 

57 in CUDA 8x speedup vs. CPU code; similar 
performance between CUDA and direct 3D9. 

Lane Detection Nvidia CUDA 323 9x speedup vs. CPU code in functions to 
detect lanes 

DNA Sequencing Nvidia CUDA 60 For DNA sequences with 1024 symbols, 3.6x 
speedup vs. CPU code. 



processor models, including AMD/ATI RV 670 
graphics processors, Nvidia G80 graphics processors, 
Cell processors, and their programming models. The 
results from the students’ programming assignments 
and term projects are promising: the SPMD 
programming model is easy to grasp; the students are 
able to identify data-intensive applications in their 
fields, whose characteristics match well with processor 
features; and by applying the optimization principles 
discussed in the class, decent speedups have been 
achieved with reasonably low coding complexity.  
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