
Experiencing Various Massively Parallel Architectures and Programming
Models for Data-Intensive Applications

Hongliang Gao, Martin Dimitrov, Jingfei Kong, Huiyang Zhou

School of EECS, University of Central Florida
{hgao, dimitrov, jfkong, zhou}@eecs.ucf.edu

Abstract

With the future workloads predicted to feature

petascale data sets, we developed a course on
exploring various massively parallel architectures and
programming models for data-intensive applications.
The course covers the architectures of three
processors, AMD/ATI RV670 Streaming graphics
processors, Nvidia G80 graphics processors, and Cell
Broadband Engines, and their latest programming
support. The course starts with the single-program
multiple-data (SPMD) programming model on
ATI/Nvidia graphics processors and extends to the
multiple-program multiple-data (MPMD) model using
Cell processors. In this paper, we report our
experience in developing & teaching this course and
present some interesting insights learnt from exploring
these different architectures. The results from the
students’ program experiences are promising: the
SPMD model is easy to grasp and with a sound
understanding of architectural features, significant
performance gains can be achieved through various
program optimizations. For example, one optimized
matrix multiplication algorithm has been developed,
which outperforms the carefully tuned library code
(Nvidia CUBLAS) by 49%.

1. Introduction

Data volumes for future applications in many
domains, ranging from science to business information
processing, are predicted to grow exponentially. Such
large data sets (or data streams) are often associated
with intensive computation to extract useful
information to end users. To address this data-intensive
and computation-intensive requirement, various high-
performance computing platforms have been proposed
or developed. Among them, massively parallel
processors like graphics processors (GPU) are
promising due to their programmability and high
energy efficiency. To facilitate general-purpose
computing on graphic processor units (GPGPU),
hardware features such as IEEE single and double
precision, integer arithmetic, bitwise operations, shared
memories, and scatter write capabilities have been

added to the latest GPUs. Furthermore, new
programming models like CUDA [3] and Brook+ [4]
have been developed recently to make the GPU
resources more accessible to application developers. In
both CUDA and Brooks+, GPUs are used as an
accelerator for the CPU to offload data-intensive
computations. The GPU programs simply use extended
C/C++. In contrast, the traditional GPGPU approach
involves the daunting task of mapping general-purpose
computation into the graphics domain and using
OpenGL/DirectX APIs to access the GPU hardware.

Current GPUs feature high degrees of thread-level
parallelism by supporting a large number of light-
weight threads. These threads are grouped into warps
(a term used by Nvidia) or wavefronts (a term used by
AMD/ATI), which execute instructions in the single-
instruction multiple-data (SIMD) mode. Different
warps/wavefronts follow the single-program multiple
data (SPMD) model. In other words, all threads in the
same warp/wavefront share one program counter (PC)
while each warp/wavefront has its own PC.

Compared to GPUs, Cell Broadband Engine
(CellBE) architecture is also designed for data-
intensive applications and it supports more flexible
programming models. In Cell processors, both the
synergetic processor units (SPU) and the PowerPC
processor unit (PPU) have SIMD-style data processing
hardware. Each of those processor units can execute a
different program, thereby being capable of supporting
multiple-program multiple-data (MPMD)
programming model.

The advent of these massively parallel processors,
however, presents a challenge to traditional parallel
computing curriculum. Classical parallel architecture
courses focus on low-level hardware designs for cache
coherence, memory consistency, interconnect, etc.,
many of which are either not necessary or too costly in
processors designed for data-intensive applications.
Parallel programming courses, on the other hand,
mainly deal with high-level programming algorithms
and concepts, which are not sufficient to take full
advantages of these massively parallel processors.
Each of these massively parallel processors has its
unique architectural features, which can have a
tremendous impact on performance. As a result, the

programmer needs to understand both the architectural
features and the programming models in order to
choose the right processors for their target
applications, develop the code, reason about the
performance, and perform program optimizations. In
this paper, we report our experience in developing a
course for this purpose at the University of Central
Florida and present some interesting results from the
students’ programming experiences.

The remainder of the paper is organized as follows.
Section 2 presents the course, including the topics, the
programming assignments, and the term projects.
Section 3 discusses the interesting results from
students’ programming experiences. Section 4
concludes the paper.

2. The Course: Multi-Core/Many-Core
Architecture and Programming

The course was developed through close
collaboration with leading industry, including guest
lectures and lab equipment (i.e., graphics cards)
donations from AMD/ATI. The course also benefits
significantly from the lecture material of “ECE 498
AL1: Programming Massively Parallel Processors”
developed at UIUC [1], which focuses on Nvidia G80
processors and the CUDA programming model. We
also draw on materials from the IBM Cell
programming workshop [2]. In comparison to those
courses, our course offers a broader coverage of
various architectures and their programming support so
that the students can become familiar with multiple
platforms and evaluate their strengths and weaknesses
to select the right one for their target applications.

The audience of this course is mainly graduate
students with some background on computer
architecture and/or parallel programming. This paper is
based on our experience in offering the course [7] for
the first time in spring 2008.

2.1 Course Description

In this course, we discuss three processor models
and their current programming environments and tools.
For each processor model, we follow the same trilogy:
architecture, programming models and supporting
tools, and performance optimization techniques. We
start with the graphics processors (GPU) and then
focus on the more flexible CellBE.

2.1.1. GPU architectures and programming

The GPU part of the course includes both the
Nvidia G80 architectures and the AMD/ATI R670

architectures. For either architecture, we discuss
detailed architectural features that are related to
general purpose computing and we omit those features
that are mainly used for graphics processing. Next, the
high-level programming support, CUDA [3] for G80
architectures and Brook+ [4] for AMD/ATI RV670
architectures, and the related code development/
analysis tool chains are discussed. Then, we address
performance optimization through detailed code
examples and architectural impact analysis. To better
understand the strengths and weaknesses of the two
leading GPU architectures and their support for
general purpose computing, we performed a cross-
platform comparison and the results are summarized in
Table 1.

Both Brook+ and CUDA use the GPU as an
accelerator for the CPU program to offload the data-
intensive computations and both employ the SPMD
programming model. In either GPU, each of the
threads works on its own data partition using its thread
ID (CUDA) or index (Brook+). From the
programmer’s perspective, CUDA supports more
flexible gather and scatter operations to access the data
set while Brook+ employs a relatively more restrictive
streaming model.

As shown in Table 1, both types of GPUs offer very
high single-precision (SP) floating-point (FP) number
computation power and memory bandwidth.
AMD/ATI RV670 processors also support double-
precision (DP) FP number computation at a reduced
throughput as DP FP computation is achieved by
combining multiple SP FP ALUs. Nvidia G80 GPUs
provide on-chip shared memory structures, which
enable efficient data sharing among the threads in the
same thread block. In comparison, AMD/ATI RV670
architecture does not have shared memory. Instead, it
opts for a larger register file than G80, which can be
used for either a higher number of threads or a higher
number of registers per thread. AMD/ATI RV670 also
exploits instruction-level parallelism using 5–way
VLIW instructions compared to scalar operations in
G80 processors. Understanding these different
architectural features is important to select the
appropriate computing hardware for the target
applications. For example, if an application involves
data communication (or sharing) among neighboring
threads (i.e., local communication), G80 processors
may be a good fit due to their shared memory
structure. If there is little data sharing among threads,
the large number of registers in RV670 may enable
more aggressive code optimizations such as loop
unrolling or instruction scheduling, which usually
result in an increase of register usage. Both GPU
architectures may not be a good fit for applications

 G80 (Geforce 8800) RV670 (AMD Radeon HD 3870)

Stream Processors 128 320
StreamProc Clk 1350 Mhz 775Mhz
Throughput 345.6 GFLOPS (no double precision FP

support)

128 units @ 1350Mhz *2 for muladd

496 GFLOPS (99.2 GFLOPS for double-precision
FP numbers)
320 units @ released frequency of 775Mhz * 2ops
for muladd = 496 GFLOPS peak;
Double precision
256 units used @ released frequency of 775 Mhz;
Adds 256/2*775Mhz = 99.2 GFLOPS;
MulAdd 256/4*775Mhz *2 ops for MulAdd =
99.2 GFLOPS

System bus support PCIe 2.0x16 PCIe 2.0x16
Memory BW 384 bit GDDR3 @ 900MHz, 86.4 GB/s 256 bit GDDR4@1.13GHz/pin, 72 GB/s
Memory size 768 MB 512MB
Thread Hierarchy 16 Stream multi-processors (SM), 8

streaming processors (SP) per SM, 2
SMs share 1 Texture subsystem

4 clusters, 16 x 5 cores per cluster, each cluster
time-multiplex 1 Texture subsystem

Max. # threads 768 per SM * 16 SM 64 per wavefront * 192 wave fronts
Max. # active threads in execution 32 (warp size) per SM * 16 SM. Each

warp takes 4 cycles to issue
64 (wavefront size) per cluster * 4 clusters. Each
wavefront takes 4 cycles to issue

Instruction-level parallelism Scalar operations for each thread 5-way VLIW for each thread
Register File (32-bit registers) 512 kB = 32kB per SM * 16 SM;

8K registers per SM; 1K register per SP
1MB = 256kB per cluster * 4 cluster; 64K registers
per cluster; 1K register per core

Shared Memory 256 kB = 16kB per SM * 16 SM N/A
R/W cache N/A A cache (size not disclosed)
Local/Global/Texture memory Device Mem size Device Mem Size
Constant Cache 8KB per SM, 128KB in total L1 (size not disclosed) (no L2)
Programming model SPMD SPMD
Programming Language C/C++ C
Intermediate Language PTX AMD/ATI IL
Assembly-level analysis Decuda GPU ShaderAnalyzer
Thread management Thread hierarchy Streaming model

Table 1. A comparison of architectural features and programming support for AMD/ATI RV670

featuring high global communication (i.e., data
communication can be among any threads), for which
the classical cache-coherent parallel processors could
be a better choice.

2.1.2. Cell broadband engine architecture and
programming

CellBE is a heterogeneous multi-core architecture.
Compared to GPUs, Cell processors have much less
degree of thread-level parallelism and rely on
asynchronous direct memory accesses (DMA) to hide
memory access latency. Also, unlike GPUs, each core
in Cell processors can execute a different program,
thereby being capable of supporting the MPMD
programming model. The high computation power is
achieved through SIMD/vector processing in either the
synergetic processor unit (SPU) or the PowerPC
processor unit (PPU). Given their architectural
features, the key to achieve high performance on Cell
processors mainly includes parallelization strategy
(i.e., task or data decomposition), explicit control/data
transmission using mailboxes/DMA, and vector
programming. Typical programming techniques on

those aspects are discussed using detailed code
examples from the Cell SDK examples and the Cell
programming tutorial.

2.2 Programming Assignments

For each processor model covered in the course,

there are two programming assignments: matrix
multiplication and 2-D convolution. In each
assignment, the initial step is to get familiar with the
programming environment and the syntax of the
extended programming language support and to write
the code, which produces equivalent results to the CPU
version. The next step is to optimize the code for the
target processor model. This step involves extensive
uses of performance analysis tools and careful
reasoning of architectural impact on the performance.
The report of the assignments includes execution times
for various matrix sizes and the number of lines of the
code, which is used to roughly estimate the
programming complexity.

2.3 Term Projects

Term projects are a key component of the course.

Students are first asked to select an application with
rich data-level parallelism and to choose a target
hardware platform. Then, a project proposal is
submitted to finalize the selection of applications and
the target processor models. Students also make a short
(5-10 minutes) presentation to discuss the core
algorithm and the strategy to map the application to the
target processor. The instructor and the experienced
developers from AMD/ATI offer feedback on the
proposed work. The last step of the project includes a
project presentation (~30 minutes) and a technical
report, which discuss how the code is ported to the
target processors, how the performance optimization is
performed, what the important lessons are learnt from
the process, and how much performance gains are
achieved compared to the CPU code.

3. Results

3.1 GPGPU Programming

In this section, we report some interesting results
based on the students’ programming exercises. For
each programming assignment, we collect both the
number of lines in the code (only the kernel function
for GPUs) and the achieved throughput, which is
measured as the ratio of the number of FP operations
in the CPU algorithm over the average GPU execution
time among 10 runs. The GPU execution time also
includes the data transmission latency between the
GPUs and the CPU. From all the results collected from
11 students, we present the minimum, the median, and
the maximum value for each metric. In order to further
separate the actual kernel execution time from any
other overhead resulting from data transmission,
staging/startup of deep pipeline, and CPU/GPU
communication, an additional experiment was
performed by repeating the kernel execution 100 times
per setup on the fastest solutions for both processors.
The results are shown in Table 2 and Table 3 for
matrix multiplication (a product of two 2k x 2k
matrices) and 2D convolution (a convolution of a 2k x
2k matrix with a 5x5 convolution kernel), respectively.
All the computations use SP FP numbers. DP FP
number computation is supported in Brook+ 1.0 Beta
but it requires slight code changes if the program uses
vector variables of 4 SP FP numbers, which need to be
replaced with two vector variables of 2 DP FP
numbers. The achieved throughput for DP FP numbers
is around 50% of the throughput for SP FP numbers.

Table 2. Matrix multiplication (a product of two 2k x 2k
matrices) on GPUs.
 Nvidia 8800

GTX
AMD/ATI
HD3870

Min. # of lines in the
code

18 12

Median. # of lines in the
code

37 21

Max. # of lines in the
code

140 35

Min. Throughput 13.8 GFLOPS 8.3 GFLOPS
Median. Throughput 67 GFLOPS 18.3 GFLOPS
Max. Throughput 149 GFLOPS 43 GFLOPS
Max. Iterative Kernel
Throughput

193 GFLOPS 74.7 GFLOPS

 Here, note that, although we present the results for
both Nvidia 8800 GTX processors and AMD/ATI
HD3870 processors, a conclusion should not be made
in terms of which ones deliver higher performance.
There are two main reasons. First, the results in Table
2 and Table 3 are based on initial effort of
inexperienced students. Experienced programmers can
find ways to achieve higher performance, like the GPU
math library functions provided by either Nvidia or
AMD/ATI (both can deliver over 100 GFLOPS on our
test machine). Second, not all GPU hardware resources
are exposed at Brook+/CUDA and continuing
development on the programming models will likely
bring higher performance. For example, the matrix
multiplication program included in the AMD/ATI
CAL SDK (intermediate level) has much higher
throughput (213 GFLOPS) than the Brook+ version
and there is current ongoing work to port the
optimizations from CAL to Brook+.

Table 3. Image convolution (a 2k x 2k matrix convoluted
with a 5 x 5 kernel) on GPUs
 Nvidia 8800

GTX
AMD/ATI
HD3870

Min. # of lines in the
code

12 15

Median. # of lines in the
code

43 34

Max. # of lines in the
code

115 88

Min. Throughput 0.27 GFLOPS 0.42GFLOPS
Median. Throughput 6.08 GFLOPS 1.2 GFLOPS
Max. Throughput 18 GFLOPS 2.2 GFLOPS
Max. Iterative Kernel
Throughput

112 GFLOPS 21.7 GFLOPS

Several interesting observations can be made from
the results in Table 2 and Table 3. First, the SPMD
programming model is easy for students to grasp, at
least for simple algorithms like matrix multiplication
and convolution. The students started with the un-

optimized CPU code, which has a throughput of 30
MFLOPS for matrix multiplication and 205 MFLOPS
for convolution, and achieved reasonably high
throughput using the two different types of GPUs. The
relatively low throughput for convolution using GPUs
is due to the low computational requirement, around
0.21 Giga floating-point number operations. The
majority execution time (over 80%) is spent on data
transmission between CPU and GPUs. However, even
in this case, the optimized GPU code can achieve 6x
(median) improvement using HD3870 processors or
30x (median) improvement using 8800 GTX
processors over the un-optimized CPU version. The
high performance gains (ranging 10X to 1000X) seem
to justify the effort of porting the CPU code to the
SPMD code for massively parallel processors. The
same effort spent on optimizing CPU code is unlikely
to produce improvements in a similar order of
magnitude.

Second, if we use the number of lines in the code to
estimate the coding complexity, it seems to be very
promising that even inexperienced programmers can
achieve decent performance gains without too much
complexity or coding effort.

Third, compared the median and the maximum
performance shown in Table 2 and Table 3, we can see
the best designs have 2X to 3X speedups over the
median performance. In fact, the best throughput for
matrix multiplication achieved on Nvidia 8800 GTX
processors is 49% higher than the carefully tuned
matrix multiplication algorithm in the Nvidia
CUBLAS library, which has a throughput of 100
GFLOPS on our test machine when the latency for
data transmission between CPU and GPU is included.

Fourth, in both matrix multiplication and
convolution, the tiled algorithm makes good use of the
shared memory in G80 architectures to leverage the
global memory accesses from different threads in the
same thread block. For HD3870 processors, the large
register file enables aggressive unroll & jam
optimizations, but not as effective as tiling for matrix
multiplication and convolution.

Fifth, we noticed during experimentation on the
AMD HD 3870, that when larger kernals (4kx4k
matrix multiply) or multiple kernel executions of
smaller task were used, the ratio of computational
workload relative to the time required for data
transmission between the CPU and GPU is altered and
can result in visibly significantly higher computation
rates. In other words, there are large changes (1.7x-
9.9x) between maximum iterative kernel throughput
(the last entry of Tables 2 and 3) and the maximum
throughput. Although this change is relatively smaller
on the G80 (1.3x-6.2x), it does display the same effect

suggesting that overlapping the data moves and kernel
executions can result in higher results. Again, we are
eager to see the conclusion of the ongoing CAL level
optimizations being ported to Brook+.

Sixth, the performance analysis tools play a critical
role in performance optimization, especially those
tools with the machine assembly-level information.
The reason is due to the non-linear performance effect
of code optimizations [5], which are difficult to
analyze at the source code level or the intermediate
level. The ATI/AMD’s shader analyzer provides the
actual assembly instructions to be executed on
hardware. The detailed VLIW scheduling information
and the latency calculation are very helpful to reason
about the performance. In comparison, Nvidia’s PTX
code is an intermediate representation, which will be
further optimized and register allocated before
executed in hardware. A useful resort is the deCUDA
tool [6], which disassembles the CUDA binary to
generate the unofficial Nvidia assembly code. During
the optimization for matrix multiplication using
CUDA, for example, after applying all the
optimizations described in [5], a careful inspection of
the assembly produced from deCUDA reveals that the
multiplication-add (MAD) instruction can only have 1
source operand accessing the shared memory. This
low-level instruction-set architecture (ISA) constraint
is not present at the PTX level and it has significant
impact on matrix multiplication, as illustrated in Figure
1.

Figure 1. A code segment of tiled matrix
multiplication (tile size: 16x16).

The code segment in Figure 1 is part of a tiled
matrix multiplication (tile size 16x16, 256 threads per
thread block). The arrays ‘As’ and ‘Bs’ are shared
memory variables. The loop in Figure 1 is not
translated into a sequence of MAD instructions since
the MAD instruction would require two source
operands from shared memory. Instead, each MAD
instruction is accompanied with a load (from shared
memory) instruction. Additionally, there are extra
instructions to generate proper index for the load
instructions (see Figure 4a). As a result, the instruction
count of this completely unrolled loop is much more
than 16. A good solution to this problem is to let each
thread calculate C (e.g. 16) elements instead of 1

…//load a tile of array A and B into shared memory As
 // and Bs
for(k = 0; k < 16; k++) //completely unrolled
{
 Temp += As[i][k] * Bs[k][j];
}
…

...
mov.b32 $r12, s[$ofs4+0x0000]
mov.b32 $r7, s[$ofs4+0x0040]
mad.rn.f32 $r11, s[$ofs1+0x000c], $r11, $r13
add.b32 $ofs4, $ofs3, 0x0000019c
mad.rn.f32 $r13, s[$ofs1+0x0010], $r12, $r11
mov.b32 $r12, s[$ofs4+0x0000]
mov.b32 $r11, s[$ofs4+0x0040]
mad.rn.f32 $r7, s[$ofs1+0x0014], $r7, $r13
add.b32 $ofs4, $ofs3, 0x0000021c
mad.rn.f32 $r13, s[$ofs1+0x0018], $r12, $r7
...

...
mov.u32 $r15, g[$r21] //loading b
mad.rn.f32 $r0, s[0x001c], $r15, $r0
mad.rn.f32 $r1, s[0x0020], $r15, $r1
mad.rn.f32 $r2, s[0x0024], $r15, $r2
mad.rn.f32 $r3, s[0x0028], $r15, $r3
mad.rn.f32 $r4, s[0x002c], $r15, $r4
mad.rn.f32 $r5, s[0x0030], $r15, $r5
mad.rn.f32 $r6, s[0x0034], $r15, $r6
mad.rn.f32 $r7, s[0x0038], $r15, $r7
…

 (a) Assembly code before the optimization (b) Assembly code after the optimization
Figure 4. The assembly code generated using deCUDA, before and after optimization (large tile + loop
interchange).

element and then perform loop interchange to
eliminate one shared memory access in the loop body,
as shown in Figure 2. Increasing the number of
elements in the product matrix in each thread also
substantially enlarges the tile size, 16x256 if we keep
the same number of threads (256) in each thread block.
The source code before and after loop interchange is
illustrated in Figure 3.

Figure 2. Increasing the tile size for loop
interchange.

Figure 3. Code optimization (loop interchange) to
reduce the dynamic instruction count.

As shown in Figure 3, after loop interchange, the
variable ‘B[k][j]’ is independent upon the inner loop
index ‘i’ and can be loaded into a register before the
inner loop. This way, each MAD operation in the inner
loop only has 1 shared memory access to ‘As[i][k]’.
To eliminate offset calculation instruction, we also
load a tile of the array A into As using the column-
major (i.e., make As[i][k] and As[i+1][k] adjacent)
and pad one row to As to remove bank conflicts in
updating shared memories. The complete code is
available at the course website [7]. Here, we show in
Figure 4 the assembly code segments before and after
the optimization, which are generated using deCUDA.
As seen in the figure, before the optimization, there is
one or two additional instructions (move or add) for
every MAD instruction. After the optimization, all
those extra instructions are removed. Since each core
in G80 processors uses a scalar pipeline, such high
reduction in the dynamic instruction count combined
with the benefits of large tiles results in a significant
improvement on the effective throughput over the
basic tiled algorithm in Figure 1 (from 77GFLOPS to
149 GFLOPS), when computing the product of two
2kx2k matrices. The resulting matrix multiplication
code also outperforms the carefully tuned library code
(Nvidia CUBLAS) by 49%.
 Finally, we examine whether there exists some
correlation between the code size and the achieved
throughput. From the results that we collected from 11
students, we observe the expected trend: larger code
sizes typically imply more crafted code and therefore
higher performance. However, there are many
exceptions. The programs with the best performance
have a high number of lines of code but usually not the
longest ones. Similarly, the programs with the lowest
throughput are short but may not be the shortest ones.

… //load a tile of array A and B into shared memory As
 // and Bs
for(i = 0; i < C; i++) //completely unrolled
 for(k = 0; k < 16; k++) //completely unrolled
 {
 Temp[i] += As[i][k] * Bs[k][j];
 }
…

(a) code before loop interchange

…//load a tile of array A into shared memory As
for(k = 0; k < 16; k++) //completely unrolled
{
 b = B[k][j];
 for(i = 0; i < C; i++) //completely unrolled
 {
 Temp[i] += As[i][k] * b;
 }
}
…

(b) code after loop interchange

One thread calculates one
element in the product
matrix

One thread calculates C
elements in the product
matrix

3.2 Cell Programming

The programming assignment on CellBE was done

in two parts. The first is to develop the code in the
simulation environment and the second is to test the
performance using a PS3 playstation running Fedora
Linux.

Among the students (3) who finished the
assignments in two weeks, the median throughput is
8.5GFLOPS for matrix multiplication (a product of
two 2kx2k matrices) and 0.87GFLOS for convolution
(a 2kx2k matrix convoluted with a 5x5 kernel) when 6
SPUs are used. Again, no conclusion should be drawn
in comparing CellBE with GPUs due to the limited
time and experiences on optimizing Cell programs.
From the students’ code, the median code size for
matrix multiplication is 188 lines of code for the
PowerPC Unit (PPU) and 95 lines for the Synergetic
Processor Unit (SPU). For 2D convolution, the median
code size is 227 and 99 lines of code for the PPU and
SPU, respectively, implying higher coding effort than
the SPMD model in GPUs. In comparison, the highly
optimized matrix multiplication algorithm in the Cell
SDK library has a throughput of 139 GFLOPS on the

same PS3 playstation and the code size is 608 and
1362 lines of code for the PPU and SPU, respectively.

3.3 Projects

The term projects listed in Table 4 cover a wide

range of applications, including ray tracing, computer
vision, data compression, artificial intelligence,
information security, etc.

The performance results shown in Table 4 are
encouraging. The highly impressive speedups well
justify the effort to port the CPU code to the massively
parallel processors for relatively large applications.
Again, although the CPU code is not highly optimized,
speedups of similar magnitudes are not very likely to
obtain by optimizing the CPU code. Additionally, the
code sizes reported in Table 4 also indicate that the
complexity of composing GPU codes is not
overwhelming for those applications.

4. Conclusions

In this paper, we present a course we developed on
exploring multi-core/many-core architectures and
programming models. The course covers three

Table 4. A summary of term projects

Project Target SW/HW
Platform

Code size (kernel)
(lines of code)

Performance Results

Image Super-
resolution

Nvidia CUDA 750 59x vs. Matlab code
40x vs. sequential C code

Line of Sight Nvidia CUDA 55 For a 2kx2k height image, 3.2 million checks
per second using the GPU vs. 79k checks per
second using the CPU

Instant Radiosity Nvidia CUDA 603 An 8x8x8 grid takes 0.1ms using the GPU
compared 10s using the CPU

Parallel lossless
data compression

Cell 231 6 SPUs achieves 3x faster than PPU. Not as
good as a high performance CPU.

Ray Tracing Nvidia CUDA &
AMD/ATI Brook+

2834 in CUDA
3420 in Brook+

For a Buddha scene which has 175k triangles,
it takes 0.66 sec for CPU while 0.067 sec for
GPU

Parallel Sorting Nvidia CUDA &
AMD/ATI Brook+

48 in Brook+
135 in CUDA

It takes 0.25 sec for GPUs (optimized Bitonic)
to sort 4M elements while it takes 0.75 sec for
the CPU (optimized Quicksort)

Triple DES Nvidia CUDA &
Cell

86 in CUDA
127 in Cell SPU code

It takes 89s for CPU, 35s for GPU, and 19s for
Cell to encrypt the Bible (3953KB)

Accelerating large
neural nets

Nvidia CUDA 300 47x speedup vs. CPU code when querying the
a 3-layer 48x48 net; 4x speedup when
evaluating the nets

Harr Wavelet Nvidia CUDA and
direct 3D9

57 in CUDA 8x speedup vs. CPU code; similar
performance between CUDA and direct 3D9.

Lane Detection Nvidia CUDA 323 9x speedup vs. CPU code in functions to
detect lanes

DNA Sequencing Nvidia CUDA 60 For DNA sequences with 1024 symbols, 3.6x
speedup vs. CPU code.

processor models, including AMD/ATI RV 670
graphics processors, Nvidia G80 graphics processors,
Cell processors, and their programming models. The
results from the students’ programming assignments
and term projects are promising: the SPMD
programming model is easy to grasp; the students are
able to identify data-intensive applications in their
fields, whose characteristics match well with processor
features; and by applying the optimization principles
discussed in the class, decent speedups have been
achieved with reasonably low coding complexity.

5. Acknowledgement

The authors would like to thank Mike Mantor,
Justin Hensley, and Jason Yang from AMD/ATI for
their guest lectures on ATI GPUs and Brook+, Mike
Mantor and Vineet Goel from AMD/ATI for their help
throughout the course development, and Raja Koduri,
CTO AMD, for approving ATI support for this course.
The authors would also like to thank the anonymous
reviewers for their helpful suggestions to improve the
paper and the students who took the course in spring
2008. The development of the course is supported by
NSF CAREER award CCF-0747062.

6. References

[1] ECE 498AL: Programming Massively Parallel
Processors, ECE Department, UIUC,
http://courses.ece.uiuc.edu/ece498/al1/

[2] IBM Cell Programming Workshop,
http://www.cc.gatech.edu/~bader/CellProgramming.html

[3] Nvidia Developing with CUDA,
http://www.nvidia.com/object/cuda_develop.html

[4] AMD Stream Computing,
http://ati.amd.com/technology/streamcomputing/index.html

[5] Shane Ryoo, Christopher I. Rodrigues, Sara S.
Baghsorkhi, Sam S. Stone, David B. Kirk (NVIDIA), and
Wen-mei W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA”, 13th ACM Symp. on Principles and Practice of
Parallel Programming (PPoPP), 2008.

[6] decuda: disassembler for the NVIDIA CUDA binary,
http://www.cs.rug.nl/~wladimir/decuda/

[7] ST: CDA6938 Multi-core/Many-core architecture and
programming, School of Electrical Engineering and
Computer Science, University of Central Florida
http://csl.cs.ucf.edu/courses/CDA6938/

