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Abstract. In this paper, we present a fast method for the
detection of die extrusion defects in IC packages. The opti-
cal and lighting set-up as well as the details of the algorithm
used for the isolation and detection of die extrusion defects
are presented. Our algorithm basically involves the use of
optimal filters for the detection of linear features and other
feature enhancement techniques. This paper also addresses
implementation issues including speed, effectiveness, and ro-
bustness.
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1 Introduction

In semiconductor manufacturing, machine vision plays an
important role in automatic inspection of the IC chips (Rao
1996). The main automated inspection processes in IC man-
ufacturing include mask and reticle inspection, in-process
pattern inspection, and final chip inspection for quality con-
trol (Dom and Brecher 1995). Among the many types of IC
package defects, die extrusion defects are gaining attention
as IC packages get thinner (Marrs 1996).

The die extrusion defect is a result of the incorrect
mounting of the die on the lead frame. It occurs after the
molding process and appears as a faint outline of the die
on the package surface as shown in Fig. 1a. The two faint
linear features, one horizontal and the other vertical, repre-
sent the defect. The vertical linear features are disjointed due
to the reflectance characteristics of the package surface that
increase the difficulty of detecting the die extrusion defect.

As with other IC package defect inspection problems,
the central issues are fast, robust detection and differentia-
tion from other defects. In this paper, we propose a fast and
robust algorithm to detect die extrusion defects. First an opti-
mal filter for wide linear features extracts the defect features
in the image of the IC package. The filter is designed such
that it responds positively to linear features, while effectively
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filtering noise. The minimum response of defect features is
used as a threshold to generate the binary image. A decision
as to whether the die extrusion defect exists is then made by
analyzing the resulting binary image. Noise removal filters
and practical considerations related to the industrial settings
are also discussed in this paper.

2 Obtaining a good image of the defect

Getting a good image is the first but difficult step in every in-
spection problem. Many different lighting systems, including
circular and rectangular LED arrays, on-axis diffuse illumi-
nators and square continuous diffuse illuminators with dif-
ferent kinds of illumination sources have been tried for this
inspection objective. The uniform diffuse illuminator had
the best effect among these illumination systems because
of the diffuse reflectance characteristics of the IC package.
However, the image obtained using the uniform diffuse illu-
minator suffers from background noise and does not provide
sufficient contrast for direct analysis. The die extrusion de-
fect is not easily discernible and the only sign of the defect
is the faint outline of the die. The ring LED light is a good
alternative for the more expensive square continuous dif-
fuse module, although it only provides limited uniformity.
Figure 1a and other unprocessed images in this paper are
obtained with the LED ring illuminator. The size of the lin-
ear features in the image containing the die extrusion defect
depends on the resolution of the imaging system. The thick-
ness of the linear features under consideration is no larger
than five pixels when the image of the whole IC package is
768× 572 pixels. TheNx ×Ny central portion of the image
of the IC package is the region containing the die, i.e., the
region where the die extrusion defect may exist.

Figure 1b is the contrast-stretched version of the unpro-
cessed image of the IC package surface of Fig. 1a. The back-
ground noise, which is clearly visible in Fig. 1b, is due to
the reflectance of the IC package surface and uneven light-
ing, and is large enough to hinder detection of the desired
linear features associated with the die extrusion defect. Sev-
eral filters are applied to remove the background noise. The
Gaussian smoothing filter (Jain et al. 1995) was found to be
not suitable, because it blurs the defect features significantly
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Fig. 1a. IC package with the die extrusion effect;b contrast-stretched ver-
sion of a which clearly shows the background noise

as it reduces the noise. An appropriate filter is one based
on anisotropic diffusion methods (Perona and Malik 1990;
Saint-Marc et al. 1991) that determine the smoothing effect
upon the local characteristics of the image. Such filters can
adaptively smooth the image, while preserving the disconti-
nuities at same time. The median filter can be combined with
this kind of filter to remove the discontinuities caused by im-
pulse noise. Figure 2 shows the 3D profile of the smoothed
Nx × Ny central portion (i.e., region of interest) of Fig. 1a
that is obtained using a noise filter based on the anisotropic
diffusion method and a median filter. It is evident from this
profile that the background in the filtered image becomes
more even, while the original discontinuities are preserved.
However, the contrast between the defect features and the
background in the filtered image is still too small for direct
analysis. Noise removal using the above-mentioned filters is
a computationally intensive process and it is for this reason
that the original image with noise is directly used in this in-
spection problem. More robust methods are thus necessary
and one solution is to use feature enhancement that is more
related to specific defect characteristics.

Fig. 2. 3D profile of the central portion of Fig. 1 (i.e., region of interest)
after noise removal

Fig. 3. 1D linear model with widthw

3 Extracting the defect features

Petrou proposed a model (Petrou 1993) for wide linear fea-
tures and an optimal convolution filter according to Canny’s
three basic criteria for convolution filters (Canny 1986), i.e.,
signal-to-noise ratio (SNR), locality and minimal false re-
sponse. The resulting 1D even filter is based upon the desired
linear model illustrated in Fig. 3, wherew = 2d is the thick-
ness of linear feature andC ′(d) is the gradient magnitude of
C(d) which satisfiesC(d) = 1/2C(0).

For 2D images, the linear features in an imageU are
detected using two orthogonal convolution filters based on
following equation:

V = max(U ∗ fx, U ∗ fy) , (1)

where fx is the 1D filter for linear features,fy = fT
x , V

is the resulting filtered image and “∗” denotes the convolu-
tion operator. We applied this optimal filter for wide linear
features to extract those faint features associated with die ex-
trusion defect. Table 1 shows some convolution filters that
represent several possibilities for the linear features that are
determined by parameterss and d. The value ofd is the
estimated distance from the center of the linear feature to
positionx where thepixel valueor intensityI(x) satisfies:

I(d) = 1/2 [I(0) + I(b)] , (2)

whereI(0) is the intensity at the center of linear feature and
I(b) is the background intensity, which can be estimated as
the average of several pixels that are well away from the
center.s is estimated from the slope atd, I ′(d) such that
s ≈ 2I ′(d)[I(0) − I(b)]−1.
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Table 1. The filters for linear features

Filter parameters fx

d s Size 1D even convolution filter for linear features

1 2 9 −0.161566,−0.467645,−0.3283, 0.453369, 1.0082, 0.453369,. . .

1.2 2.5 11 −0.000887151,−0.246026,−0.501423,−0.277114, 0.526635, 0.99763, 0.526635,. . .

2 2 15 −0.0878158,−0.30447,−0.485243,−0.493876,−0.233317, 0.296116, 0.808807, 0.999595, 0.808807,. . .

2 3 15 0.0173986,−0.184069,−0.412764,−0.487315,−0.268737, 0.287266, 0.632964, 0.83051, 0.632964,. . .

Fig. 4a.A horizontal line of the IC package image that contains the vertical
linear feature at position 186;b the response of the filter based on Eq. 1 to
a; c the response of the filter based on Eq. 5 toa

The convolution filters in Table 1 are designed based on
the corresponding values ford and s. The larger the value
of d, the larger the size of the filter, which results in more
computations at each pixel. Further details about the filter
computation are available in Petrou (1993).

In addition to 1D parameters of wide linear features, 2D
characteristics of linear segments such as length and direc-
tion can be incorporated into the above filters as

V = max
(
U ∗ F , U ∗ FT

)
, (3)

whereF = fx ∗ Gm×l andGm×l is the mask corresponding
to length l and directionθ

(
450 ≤ θ ≤ 1350

)
of the linear

feature. For example, a mask for a linear segment of length
5 and in a 600 direction is:


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1




5×3

.

As the features of our interest are almost vertical or hori-
zontal, the incorporated filter has the following simple form:

Fig. 5a.The vertical projection profile of the ROI after enhancement;b The
vertical projection profile of ROI (before enhancement)

Fx =




fx

...
fx




l×k

= fx ∗




1
...
1




l×1

, (4)

so that the response of the convolution filter becomes

V = max
(
U ∗ Fx , U ∗ Fy

)
, (5)

whereFy = fT
x ∗ [1 . . . 1]1×l. Comparing with Eq. 1, Eq. 5

requiresl extra operations for each pixel that result in sig-
nificant enhancement of the desired features and good sup-
pression of noise as illustrated by Fig. 4. While Fig. 4b was
obtained using the information in Fig. 4a only, Fig. 4c was
obtained using information of the neighboringl horizontal
lines. Clearly, the length parameter in theFy filter reinforces
the response at the defect position and comparatively reduces
the response at other points by averaging the responses of
the vertical neighbors. As another result of this averaging
effect, the segmented or discontinuous vertical linear fea-
ture can appear connected.Fx is similarly used to enhance
horizontal features.

4 Obtaining the binary image for identifying the defect

After enhancing the features, theNx ×Ny region of interest
of the intensity image is thresholded to obtain a binary image
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Fig. 6a. The original image;b the histogram ofa; c response of the convolution filter based on Eq. 5;d the resulting image after thresholding

for further analysis. Two factors are considered in the thresh-
old procedure. First is the selection of pixels that produce a
large feature filter response, which are defined as those in-
tensities that are among the top 100w

(
N−1

x + N−1
y

)
%. The

second factor is to exclude pixels that are less than a de-
fined minimum acceptable value, which we defined to be
2∆I(l−m), where∆I is the minimum difference of the in-
tensity between the desired linear features and background,
l is the length of the linear feature andm is the number of
pixels of disconnection. A good estimate of (l − m) is 1/4l,
which represents large gaps between the linear segments.

5 Defect identification

The final step in an inspection process is to determine the
existence and location of the defects (if any). General pat-
tern detection methods based on normal Hough transform
are robust and can be used for various types of patterns in-
cluding the linear patterns of various orientations, but they
are computationally intensive (Illingworth and Kittler 1987;
Atiquzzaman 1992). The line-fitting algorithm (Haralick and
Shapiro 1992) can compute the line parameters in an image
but involves an initial labeling process. For fragmented lin-
ear features, the line-fitting algorithm requires preprocessing
procedures to assign the same label to the fragmented linear
segments. Other shape recognition methods such as chain
code or polyline representations (Jain et al. 1995) assume
continuity, and so such methods are prone to noise and are
not robust.

Our algorithm utilizes the defect characteristics to reduce
the amount of computations and to achieve a robust result.
In the die extrusion problem, the defect features are linear in
vertical and horizontal directions. By evaluating the projec-
tions in these two directions, a decision can be made about
the presence of a linear feature in a particular direction by
analyzing the distribution about the global peakxGP . Fig-
ure 5a shows the vertical projection profile of the region of
interest (ROI). The linear feature-enhancing effect of our al-
gorithm is clearly evident when Fig. 5a is compared with
the vertical projection profile of the ROI in the unprocessed
image shown in Fig. 5b. Thus, the detection of the defect
features by direct projection profile analysis of the original
unprocessed image will be much more difficult than that of
the enhanced version. Moreover the enhancement is pretty
robust, since only the specified linear features are enhanced,
while other defects such as scratches would not affect the
projection analysis unless these other defects are also linear
in nature.

There are two criteria to identify a linear feature. First,
the varianceσ2 in regionR (defined as [xGP −0.1Nx , xGP +
0.1Nx]) aboutxGP must be less than 2w, otherwise the peak
is not distinct enough to represent a line. Second, the number
of pixels atxGP must be greater than a threshold to isolate
the peak due to the linear feature from noise. The threshold
can be set asl × x × n wherel × w is the number of pixels
that a linear segment contains andn is minimum number
of segments that a line contains. The horizontal projection
profile is similarly analyzed to determine the presence of the
horizontal lines.
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6 Discussion and concluding remarks

Our algorithm is a pixel-based algorithm and is therefore
computationally intensive. The amount of computations can
be reduced by reducing the amount of computations per pixel
and the number of pixels that need to be processed (Kahn
et al. 1990). Long integers were used in Eq. 5 instead of the
float type. The error of such an approximation is negligible
compared with the enhancement effect of the defect features
and results in much faster operation. The number of pixels
that need to be processed can be reduced by excluding the
irrelevant pixels. Pixels with very small gradient magnitudes
are considered to be noise pixels and can be excluded from
further processing. As the gradient magnitude histogram for
most images is approximated by an exponentially decreasing
function, even a very low threshold can eliminate a large
portion of the image from further processing.

Our algorithm successfully detected the die extrusion de-
fects in samples provided by Texas Instruments (Singapore).
The resolution of the captured images was 2.1 mils/pixel and
the defect detection was accomplished in about 1.2 s using
a Pentium 166 computer. Figure 6d clearly shows the en-
hanced die extrusion defect despite the low contrast (Fig. 6b)
of original image in Fig. 6a (which is a 256×256 sub-image
of Fig. 1a). The enhanced image of Fig. 6c is obtained using
the filter with settingsd = 1.2, s = 2.5 andl = 11. Although
there is still some noise, the features of interest are highly en-
hanced. Filters with other parameter settings shown in Table
1 also provide good results, since the linear characteristics
of those filters are similar. The die extrusion defect is eas-
ily and quickly located by analyzing thex and y profiles
of Fig. 6d, the binary image obtained after the thresholding
procedure.

In our algorithm, the vertical and horizontal linear char-
acteristics of the defect are utilized to reduce the computa-
tion and to isolate defect features. When the package image
is such obtained that the defect feature is not horizontal or
vertical, one possible solution is to check the orientation of
the IC package first and rotate the ROI of the package im-
age to the desired direction before application of the above
algorithm.
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