
Dual-Core Execution: Building a Highly Scalable
Single-Thread Instruction Window

Huiyang Zhou
School of Computer Science, University of Central Florida

zhou@cs.ucf.edu

Abstract

Current integration trends embrace the prosperity of
single-chip multi-core processors. Although multi-core
processors deliver significantly improved system
throughput, single-thread performance is not addressed. In
this paper, we propose a new execution paradigm that
utilizes multi-cores on a single chip collaboratively to
achieve high performance for single-thread memory-
intensive workloads while maintaining the flexibility to
support multithreaded applications.

The proposed execution paradigm, dual-core execution,
consists of two superscalar cores (a front and back
processor) coupled with a queue. The front processor
fetches and preprocesses instruction streams and retires
processed instructions into the queue for the back
processor to consume. The front processor executes
instructions as usual except for cache-missing loads, which
produce an invalid value instead of blocking the pipeline.
As a result, the front processor runs far ahead to warm up
the data caches and fix branch mispredictions for the back
processor. In-flight instructions are distributed in the front
processor, the queue, and the back processor, forming a
very large instruction window for single-thread out-of-
order execution. The proposed architecture incurs only
minor hardware changes and does not require any large
centralized structures such as large register files, issue
queues, load/store queues, or reorder buffers. Experimental
results show remarkable latency hiding capabilities of the
proposed architecture, even outperforming more complex
single-thread processors with much larger instruction
windows than the front or back processor.

1. Introduction

With current integration trends, single-chip multi-core
or chip multiprocessor (CMP) architectures are increasingly
adopted to deliver high system throughput. As current CMP
architectures only exploit explicit parallelism, however,
single-thread performance is not enhanced and idle
processor cores are resulting if a system lacks sufficient
parallel tasks. In this paper, we propose a new execution
paradigm to utilize multi-cores on a single chip
collaboratively to improve the performance for single-
thread workloads while maintaining the flexibility to
support multithreaded applications.

One of the most significant obstacles to single-thread
performance is the memory wall problem [39]: the
widening speed gap between memory and processor cores
considerably undermines the performance of current
microprocessors even with carefully designed memory
hierarchy and prefetching mechanisms. Out-of-order
execution can successfully hide long latencies if there are
enough independent instructions to process
[1],[11],[18],[20]. With the projected memory access
latency being as high as hundreds of processor clock
cycles, an instruction window needs to be very large to
keep track of a high number of in-flight instructions.
Recently, there has been active research toward such a
goal, including large issue queues [5], large register files
[3],[41], scalable load/store queues [26],[31], approaches
to eliminate the centralized reorder buffer (ROB) using
checkpoint and recovery [1],[11],[12], and non-blocking
continual flow pipelines [36]. The enlarged instruction
window, on the other hand, often results in extra pipeline
stages to accommodate the latency requirement to access
those enlarged structures, which incur higher costs for
branch mispredictions.

This paper, however, takes a fundamentally different
approach. Instead of scaling current superscalar designs,
we propose a novel way to utilize multi-cores on a single
chip collaboratively to construct a large, distributed
instruction window while eliminating the necessity for
any large centralized structures. Figure 1 presents a high-
level overview of the proposed scheme, named dual-core
execution (DCE) as it is built upon two superscalar cores
coupled with a queue.

Figure 1. A high-level overview of dual-core execution
(DCE): in-order fetch, in-order retire, and out-of-
order processing.

The first superscalar core in Figure 1, called the front
processor, fetches an instruction stream in order and
executes instructions in its normal manner except for
those load instructions resulting in a long-latency cache

superscalar
core

superscalar
core

In-order
retire

In-order
fetch

front processor

back processor

result queue

Out-of-order processing

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

miss. An invalid value is used as the fetched data to avoid
the cache-missing load blocking the pipeline, similar to the
run-ahead execution mode in [13],[25]. When instructions
retire (in order) from the front processor, they are inserted
into the result queue and will not update the memory. The
second superscalar core, called the back processor,
consumes the preprocessed instruction stream from the
result queue and provides the precise program state (i.e.,
the architectural register file, program counter, and memory
state) at its retirement stage. In DCE, the front processor
benefits the back processor in two major ways: (1) a highly
accurate and continuous instruction stream as the front
processor resolves most branch mispredictions during its
preprocessing, and (2) the warmed up data caches as the
cache misses initiated by the front processor become
prefetches for the back processor. The front processor runs
far ahead of the back processor since it is not stalled by
long-latency cache misses (i.e., a virtually ideal L2 cache)
and the back processor also runs faster with the assists from
the front processor.

In a high-level view of DCE as shown in Figure 1,
instructions are fetched and retired in-order, the same as
any standard superscalar processor. The two processors and
the result queue keep a large number of in-flight
instructions, forming a very large distributed instruction
window. Moreover, DCE provides an interesting non-
uniform way to handle branches. The branches that depend
on short latency operations are resolved promptly at the
front processor while only the branches depending on cache
misses are deferred to the back processor. Early branch
resolution is also proposed in out-of-order commit
processors using checkpointing and early release of ROB
entries [11],[12]. As DCE is built upon relatively simple
cores, such non-uniform branch handling is more efficient
compared to an upsized single-thread processor with a
deeper pipeline. In addition, as DCE does not need any
centralized rename-map-table checkpoints, the number of
outstanding branches no longer limits the instruction
window size.

In large-window processors including those formed with
checkpointing, aggressive memory disambiguation
becomes critical as each misprediction affects a large
number of in-flight instructions and potentially incurs high
misprediction penalty. DCE, in contrast, has an appealing
feature that it can compensate conservative disambiguation
schemes to achieve similar performance to DCE with more
aggressive ones (see Section 5.6).

The remainder of the paper is organized as follows.
Section 2 addresses related work and highlights the
differences between some related research and our work.
The detailed design of DCE is described in Section 3. The
simulation methodology is presented in Section 4 and the
experimental results are discussed in Section 5. Section 6
concludes the paper and discusses future work.

2. Related Work

Dual-core execution (DCE) is motivated mainly from
two categories of research work: run-ahead execution and
leader/follower architectures.

2.1. DCE and run-ahead execution

In run-ahead execution [13],[25], when an instruction
window is blocked by a long latency cache miss, the state
of the processor is checkpointed and the processor enters
the ‘run-ahead’ mode by providing an invalid result for
the blocking instruction and letting it graduate from the
instruction window. In this way, the processor can
continue to fetch, execute, and pseudo retire instructions
(i.e., retire instructions without updating the architectural
state). When the blocking instruction completes, the
processor returns to the ‘normal’ mode by restoring the
checkpointed state. The instructions executed in the ‘run-
ahead’ mode will be re-fetched and re-executed in the
‘normal’ mode and such re-execution is expected to be
much faster as the caches are warmed up by the execution
in the ‘run-ahead’ mode. Since each transition from the
‘run-ahead’ mode to the ‘normal’ mode involves pipeline
squashing and re-fetching, it incurs similar performance
cost to a branch misprediction. Although early return from
the ‘run-ahead’ to ‘normal’ mode can hide such latency, it
limits the distance of effective run-ahead execution [25].

The front processor in DCE processes instructions
similar to the ‘run-ahead’ mode but it eliminates the
checkpointing and mode transitions. Compared to run-
ahead execution [25], DCE is developed to overcome its
two important limitations and provide the flexibility for
multithreaded processing. The two limitations of run-
ahead execution are: (1) Speculative execution in the ‘run-
ahead’ mode always stops once the processor returns to
the ‘normal’ mode even such speculative execution is on
right paths and generates correct prefetch addresses. (2)
For miss-dependent misses (e.g., cache misses due to the
pointer-chasing code: p->next->next->…), each miss will
cause the processor to enter the ‘run-ahead’ mode. If few
instructions exist between such misses, the processor will
pre-execute the same set of future instructions multiple
times [23]. The first limitation affects the aggressiveness
of run-ahead execution while the second one wastes the
processor resources. DCE eliminates all these limitations
seamlessly and achieves higher performance as discussed
in Section 3 and Section 5.1.

In continual flow pipelines (CFP) [36], load misses and
their dependent instructions (called slice instructions) are
drained out of the issue queue and register file by using
invalid values as fetched data, similar to run-ahead
execution. But, unlike run-ahead execution, the slice
instructions are stored in a slice processing unit rather
than being retired from the pipeline and the subsequent
independent instructions continue their execution

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

speculatively. When the cache misses are repaired, the slice
instructions will re-enter the execution pipeline and commit
the speculative results. In this way, the work during run-
ahead execution is not discarded and there is no need to re-
fetch and re-execute those instructions. To maintain such
speculative data, however, CFP requires coarse-grain
retirement and a large centralized load/store queue (a
hierarchical store queue is proposed to reduce its latency
criticality [1],[36] and a new improvement is proposed in
[16]). Compared to CFP, DCE eliminates such large
centralized structures and builds upon much simpler
processor cores (e.g., smaller register files). The fast branch
resolution at the front processor (due to its simpler,
shallower pipeline) reduces the cost of most branch
mispredictions. Since DCE does not need any centralized
rename-map-table checkpoints, it also eliminates the
complexity for estimating branch prediction confidence and
creating checkpoints only for low-confidence branches, as
needed in CFP. Interestingly, a recent study [24] shows that
the performance benefits of reusing the results in run-ahead
execution are limited and may not justify the required
complexity. Our results confirm such observations from a
different perspective (see Section 5.3).

It has been proposed to use value prediction to further
improve the effectiveness of run-ahead execution
[7],[8],[19],[42]. Similarly, DCE can also benefit from such
optimizations and achieve higher performance.

2.2. DCE and leader/follower architectures

Running a program on two processors, one leading and
the other following, finds its roots in decoupled
architectures [34], which break a program into memory
accesses and subsequent computations. In DCE, the front
processor not only prefetches the data but also provides a
highly accurate instruction stream by fixing branch
mispredictions for the back processor. Moreover, all this is
accomplished without the difficult task of partitioning the
program.

Slipstream processors [27],[37] are leader/follower
architectures proposed to accelerate sequential programs
similar to DCE and share a similar high-level architecture:
two processors connected through a queue. However, DCE
and slipstream processors achieve their performance
improvements in quite different ways. In slipstream
processors, the A-stream runs a shorter program based on
the removal of ineffectual instructions while the R-stream
uses the A-stream results as predictions to make faster
progress. DCE, however, relies on the front processor to
accurately prefetch data into caches. Conceptually, the R-
stream in slipstream processors acts as a fast follower due
to the near oracle predictions from the A-stream while the
A-stream is a relatively slower leader since long-latency
cache-misses still block its pipeline unless they are detected
ineffectual and removed from the A-stream. Therefore, it is
not necessary for the R-stream to take advantage of

prefetching from the A-stream to make even faster
progress [29]. (In [27],[37], the A-stream and R-stream
own separate program context and the A-stream has no
prefetching effect on the R-stream). In DCE, the front
processor is a much faster leader as it operates on a
virtually ‘ideal’ L2 cache while the back processor is a
slower follower. A detailed performance comparison
between slipstream processing and DCE is presented in
Section 5.3.

Master/Slave speculative parallelization (MSSP)
[44],[45] extends slipstream processing with a compiler
generated master thread (or the A-stream) and the
parallelization of the R-stream. Speculative parallelization
[35] can also be used in DCE to improve the back
processing of DCE and is left as future research work.

“Flea-Flicker” two pass pipelining [4] is proposed to
handle the uncertain latency of load instructions in in-
order microarchitectures and it is closest to DCE in terms
of integrating run-ahead execution and leader/follower
architectures. In the Flea-Flicker design, two pipelines (A-
pipe and B-pipe) are introduced and coupled with a queue.
The A-pipe executes all instructions without stalling.
Instructions with one or more unready source operands
skip the A-pipe and are stored in the coupling queue. The
B-pipe executes instructions deferred in the A-pipe and
incorporates the A-pipe results. Compared to this work,
DCE is based on out-of-order execution, thereby having
higher latency hiding. More importantly, flea-flicker tries
to reuse the work of the A-pipe (i.e., not discarding the
work in run-ahead execution, similar to CFP [36]), while
in DCE the front processor preprocesses instructions and
the back processor re-executes those instructions. Such re-
execution relieves the front processor of correctness
constraints, enabling it to run further ahead with much less
complexity overhead (e.g., the centralized memory order
bookkeeping and the coupling result store in flea-flicker
or the large centralized store queue in CFP). The
elimination of such centralized structures is the reason
why DCE is a much more scalable and complexity-
effective design.

Pre-execution/pre-computation using multithreaded
architectures [2],[10],[22],[30],[38],[43] can be viewed as
another type of leader/follower architecture. A pre-
execution thread is constructed using either hardware or
the compiler and leads the main thread to provide timely
prefetches. In a multithreaded architecture, however, pre-
execution threads and the main thread compete for a
shared instruction window and a cache miss in any thread
will block its execution and potentially affects other
threads through resource competition. In future execution
based on chip multiprocessors [15], an otherwise idle core
pre-executes future loop iterations using value prediction
to perform prefetching for the main thread.

Coupling two (or more) relatively simple processors to
form a large instruction window for out-of-order

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

processing was originated in multiscalar processors [35]
and DCE provides a complexity-effective way to construct
such a window while eliminating elaborate inter-thread (or
inter-task) register/ memory communication.

3. Dual-Core Execution

3.1. Detailed architectural design

In this section, we describe the design of dual-core
execution based on MIPS R10000 [40] style superscalar
microarchitectures, i.e., both the front and back processor is
a MIPS R10000 processor. The basic pipeline of the MIPS
R10000 style microarchitecture is shown in Figure 2. For
memory operations, the execution stage is replaced with an
address generation (AGEN) stage and two stages of
memory access (MEM1 and MEM2).

Figure 2. A MIPS R10000 style pipeline.

The proposed design of DCE is shown in Figure 3. It
contains a few key components and next we discuss how
they operate and what hardware changes are necessary to
support the intended operations.
Front Superscalar Core

The front processor is modified so that long latency
operations do not block its instruction window. Similar to
run-ahead execution [25], an invalid (INV) bit is added to
each physical register. When an INV bit is set, it indicates
that the corresponding register value is invalid. For long
latency operations such as cache-missing loads, an invalid
value is used to substitute the data that are being fetched

from memory by setting the INV bit of the destination
register(s). Unlike run-ahead execution, which sets the
INV bit when the cache-missing load reaches the head of
the instruction window, the front processor sets the INV
bit immediately after a load is detected to be a long
latency miss so that its dependent instructions are
awakened promptly. Executing instructions with an INV
source register will propagate the INV bit except for
branches and stores. If a branch instruction uses an INV
register, its prediction will be used as the resolved branch
target and the corresponding rename table checkpoint is
reclaimed as if the prediction is correct. A store
instruction becomes a nop if its address is invalid. If the
value of a store instruction is invalid, the corresponding
entry of the load/store queue (LSQ) will be marked as
invalid (i.e., there is an INV bit for each LSQ entry) and
the INV bit can be propagated via store-load forwarding
using LSQ. Such INV forwarding is the only change to the
LSQ in the front processor. In addition to the LSQ, an
INV bit can also be forwarded using a run-ahead cache, as
will be discussed later.

Instructions retire in-order as usual in the front
processor (i.e., its architectural register map table is
updated and the physical register in the previous map is
reclaimed) except store instructions and instructions
raising exceptions. When a store instruction retires, it
either behaves like a nop (if there is no run-ahead cache)
or updates the run-ahead cache (if it exists) but it will not
write to the data caches or memory (only the back
processor writes to the data caches). The retired
instructions, at the same time, are sent to the result queue.
The exception handling at the front processor is disabled
since the precise state is maintained by the back processor.

As the front processor does not actually commit store
instructions to update the memory, the data is lost once a

AGEN MEM1 MEM2

Fetch Dispatch Issue Reg Read Execution Write Back Retire

Fetch Dispatch Issue Reg Read Execution Write Back Retire Fetch Dispatch Issue Reg Read Execution Write Back Retire

head tail

mp

Front Processor Back Processor

Result Queue

Resolving branch misprediction (local) Resolving branch misprediction (local)

From front processor’s instruction cache From back processor’s instruction cache

Run ahead
cache

L1 Data Cache (front core)

Resolving branch misprediction (global)

Figure 3. The design of DCE architecture.

Physical
register file

 I
N
V

Physical
register file

Write Read only

Read/Write

LSQ

INV
LSQ

L1 Data Cache (back core)

Write to both L1 caches

L2 Cache (shared)

Read

Read only
Read/Write

Memory Hierarchy

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

store instruction retires since the corresponding LSQ entry
is also de-allocated. As a result, subsequent load
instructions in the front processor could fetch stale data
from the data caches or memory. To solve such a problem,
a small cache can be used as proposed for run-ahead
execution [25]. Here, we use the same term ‘run-ahead
cache’ and will investigate its performance impact in our
experiments (see Section 5). The run-ahead cache is
organized similar to that described in [25]. It holds both
data and INV bits. When a store instruction with a valid
address retires, it updates the run-ahead cache and sets the
INV bit(s) (one for each byte) if the store value is invalid.
If the size of the store data (e.g., a byte) is less than the
block size of the run-ahead cache, the rest of the block is
fetched from the data cache. When a block is replaced from
the run-ahead cache, it is simply dropped and is never
written to the data caches. When a store with an INV
address retires, it acts as a nop. When a load executes, the
LSQ, run-ahead cache, and L1 data cache (D-cache) are
queried. The priority order is the LSQ, run-ahead cache,
and L1 D-cache based on the assumption that the data in
the run-ahead cache are more up-to-date than the L1 D-
cache since the D-caches are only updated by the back
processor.
Result Queue

The result queue is a first-in first-out structure, which
keeps the retired instruction stream (both binary
instructions and their PCs) from the front processor,
thereby providing a continuous and highly accurate
instruction stream to the back processor, substituting its I-
cache. In this paper, we choose to keep instructions in their
original format in the queue. Although keeping the
decoded/renamed version can bypass some of the front-end
processing of the back processor, the purpose of this paper
is to introduce DCE and to evaluate its performance in such
a design that incurs minimum hardware changes.

The instructions in the result queue are not associated
with any centralized resource, unlike in-flight instructions
in a conventional superscalar design, which reserve their
allocated resources such as physical registers, load/store
queue entry, rename table checkpoints, etc. Therefore, the
result queue provides a much more scalable, complexity-
effective way to achieve a very large instruction window.
Back Superscalar Core

A multiplexer (MUX) is added in front of the fetch unit
of the back processor and its control signal (mp) directs
whether instructions to be fetched from the result queue
(single-thread mode) or from the back processor’s
instruction cache (multithread mode). In this way, DCE has
the flexibility to serve both single-thread and multithreaded
workloads.

In the single-thread mode, since the result queue
provides the retired instruction stream from the front
processor, the branch predictor at the back processor is not
used and the branch targets computed at the front processor

simply become the corresponding predictions. Once the
instructions are fetched, the back processor processes
them in its normal way except for mispredicted branches,
as shown in Figure 3. When a branch misprediction is
detected at the end of the execution stage, all the
instructions in the back processor are squashed and the
fetch unit is halted. At the same time, the front processor
is notified to squash all its instructions and the result
queue is emptied as well. As the front processor has lost
the register states to recover from, the back processor’s
architectural state is used to synchronize the front
processor. To do so, the program counter (PC) of the back
processor is copied to the front processor, the back
processor’s architectural register values are copied over to
the front processor’s physical register file, the renaming
table of the front processor is reset, and the run-ahead
cache in the front processor is invalidated (i.e., set to be
empty). Note that there is no need to synchronize
memory states at the front processor as only the back
processor writes to D-caches and all the front processor
needs to do is to invalidate its run-ahead cache.

As instructions retire in-order and un-speculatively in
the back processor, it provides the precise state for
exception handling. Store instructions update data caches
at the retire stage and there is no change to the LSQ.
Memory Hierarchy

In Figure 3, the back processor and the front processor
use separate L1 data caches and a shared unified L2
cache. The L1 D-cache misses at one processor are used
as prefetch requests for the L1 D-cache in the other
processor. The stores in the back processor update both L1
D-caches at the retirement stage. The dirty blocks
replaced from the front processor’s L1 D-cache are simply
dropped (in the single thread mode). The separate L1 D-
caches (and the run-ahead cache) need not to be coherent
(i.e., no added complexity to maintain such coherence) as
there is no correctness requirement for the front processor.
Collaboration among the Front Processor, the Result
Queue, and the Back Processor

In DCE, a program is fetched and preprocessed
aggressively by the front processor: the long latency
operations (i.e., cache misses) are initiated but not
completed; and independent branch mispredictions are
resolved. The result queue buffers the in-order, accurate
instruction stream retired from the front processor. The
back processor fetches instructions from the result queue
and executes them in its normal way. Those long latency
cache misses initiated long ago at the front processor
become prefetches for the back processor. When the back
processor is stalled due to another long latency operation,
the front processor continues its preprocessing until the
result queue is eventually full. At this time, long latency
operations in the front processor will operate in their
normal way instead of producing an invalid value. When
the back processor detects that the front processor deviates

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

from the right path due to a branch misprediction
/misresolution, the front processor is rewound to the same
execution state as the back processor.

The policy of determining whether a long latency
operation should use an invalid value affects the
aggressiveness of the front processor. The default policy
used in our design has two criteria: an L2 cache miss plus
the result queue not being full. In the multithreaded mode,
such invalidation is disabled at the front processor and
stores update the D-caches normally when they retire. The
back processor fetches instructions from its I-cache instead
of the result queue, writes only to its own caches, and stops
interfering with the front processor via branch
misprediction handling.
Transition between Single- and Multi-thread Modes

DCE forms a very large instruction window to hide
memory access latencies. For computation-intensive
workloads, however, DCE is less efficient as not many
cache misses can be invalidated at the front processor and
the multi-thread mode should be used. Fortunately, a
simple L2 miss counter can easily determine the memory
intensiveness of a workload and set the single-/multi-thread
mode accordingly. Other techniques proposed in [23] can
also help to determine whether the single- or multi-thread
mode should be used.

The transition from the single- to multi-thread mode is
similar to branch misprediction recovery: the architectural
state at the back processor is copied to the front processor,
the invalidation is disabled at the front processor, and the
back processor starts executing a new thread by fetching
the instructions from its own I-cache. To transit from the
multi- to single-thread mode, the architectural state at the
front processor is copied to the back processor, the
invalidation is enabled at the front processor, and the back
processor starts fetching from the result queue.
Using the Result Queue as a Value Predictor

As discussed in Section 2, the front processor in DCE is
a faster leader due to its virtually ideal L2 data cache. To
speed up the back processor, the result queue can be used to
carry the execution results from the front processor and
provide them as value predictions [21] to the back
processor. At the back processor, those value predictions
are verified at the execution stage and mispredictions
initiate the same recovery process as branch mispredictions.
As will be seen in Section 5.3, such execution-based value
prediction achieves nearly oracle prediction accuracy and
introduces some performance improvements but is not an
essential part of the DCE design.

3.2. Comparison to a single processor with very
large centralized instruction windows

In DCE, all components including the front processor,
result queue, and back processor keep some in-flight
instructions. As discussed in Section 3.1, the result queue is
latency tolerant and easily extended to a large size. In this

way, DCE forms a very large instruction window using
two relatively simple superscalar cores and a simple queue
structure.

Compared to a single superscalar processor with a very
large centralized instruction window, DCE has higher
scalability, much less complexity and potentially higher
clock speed (or the same clock speed with shallower
pipelines). Also, its non-uniform branch resolution fits
naturally with branches depending on variable latency
operations: the mispredictions depending on short-latency
operations are resolved more promptly at the front
processor (due to its simpler, shallower pipeline) while
only mispredictions dependent on long-latency cache-
misses are fixed at the back processor. In addition, since
the front and back processors reclaim the rename map
table checkpoints in their usual way when branches are
resolved, there is no increased pressure on those
checkpoints, as a large centralized instruction window
would normally induce [1]. Therefore, the number of
outstanding branches is no longer a limit for the
instruction window.

On the other hand, a single superscalar processor with
a very large centralized instruction window has an
advantage in ILP processing since any instruction in the
window can be issued and executed once its source
operands become available (although storing those
speculative results is a source of the complexity, e.g.,
large LSQs). In DCE, instructions are only processed
when they are in the back processor as the execution
results in the front processor are dropped when they retire.
In other words, in the instruction window formed with
DCE, only the instructions at the ‘head’ portion can be
issued and executed, thereby limiting ILP exploitation.

4. Simulation Methodology

Our simulation environment is based upon the
SimpleScalar [6] toolset but our execution-driven timing
simulator is completely rebuilt to model the MIPS R10000
pipeline shown in Figure 2. The functional correctness of
our simulator is ensured by asserting that the source and
destination values of each retired instruction match with
those from the functional simulator and wrong-path events
are also faithfully simulated. The cache module (including
the run-ahead cache) in our simulator models both data
and tag stores. The front and back processors have the
same configurations (but a shared L2 cache), shown in
Table 1. The correctness assertions are disabled in the
front processor model but enforced in the back processor
model. The default result queue has 1024 entries (the
performance impact of the queue size is examined in
Section 5.5) and the default run-ahead cache is configured
as 4kB, 4-way associative with a block size of 8 bytes. A
latency of 16 cycles is assumed for copying the
architectural register values from the back processor to the

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

front processor (updating 4 registers per cycle for 64
architectural registers) when branch mispredictions are
resolved at the back processor (a more pessimistic case
with a 64-cycle latency is also modeled in Section 5.1).
Each processor has a stride-based stream buffer hardware
prefetcher [14],[33], which has 8 4-entry stream buffers
with a PC-based 2-way 512-entry stride prediction table.
To ensure that the performance gains are from latency
hiding rather than from conservative memory
disambiguation, oracle disambiguation is modeled,
meaning that loads will only stall when there is a prior store
with the same address (i.e., perfect memory dependence
prediction). In Section 5.6, we examine the impact of
different memory disambiguation schemes and highlight an
interesting feature of DCE to compensate conservative
disambiguation schemes. The default DCE does not use the
result queue to provide value predictions to the back
processor. The performance impact of such value
predictions is addressed in Section 5.3.

As DCE is proposed to mainly tolerate long memory-
access latencies, we focus on memory-intensive
benchmarks from the SPEC2000 benchmark suite [17] and
our selection criterion is that an ideal L2 cache introduces
at least 40% speedup. In addition, two computation-
intensive benchmarks, gap and bzip2, are also included to
illustrate interesting aspects of DCE and other competitive
approaches. The reference inputs are used and single
simulation points are chosen by running the Simpoint
toolset [32] with our Simplescalar binaries. For those
benchmarks with prohibitively long fast forward phases, we
chose to skip the first 700M instructions and simulate the
next 300M instructions.

The execution time of DCE is measured as the time
between when the front processor starts fetching the first
instruction and the back processor retires the last
instruction. In our experiments, we also modeled run-ahead
execution [13],[25] and slipstream processors [27],[37] to
compare with DCE. Run-ahead execution is implemented
according to [25] but with the processor model described in
Table 1 and a 4 kB run-ahead cache. Oracle memory
disambiguation is also modeled for both run-ahead
execution and slipstreaming processors. For fair
comparison with slipstream processors, we use the same
memory hierarchy as in DCE to reflect the recent
development of hardware-based memory duplication in
slipstream processing [28]. The stores in A-stream are
committed into the run-ahead cache rather than its L1 D-
cache, simplifying the IR-misprediction recovery
controller. Other slipstream parameters are based on those
used in [27], including a 220-entry g-share indexed IR-
predictor, a 256-instruction R-DFG, a 1024-entry delay
buffer, and a 16-cycle IR-misprediction recovery latency.
The fetch bypass is not implemented, i.e., the ineffectual
instructions will still be fetched but will bypass the
execution pipeline as presented in [37]. In this way, both

slipstream and DCE have similar execution behavior: the
front processor (or A-stream) fetches the complete
program but only executes a subset of the program, while
the back processor (or R-stream) re-executes the whole
program. Note that slipstream and DCE have different
ways to execute a subset of the program: the ineffectual
instructions will bypass the processing pipeline
completely in the slipstream paradigm while in DCE long-
latency operations and their dependents still go through
the pipeline carrying invalid values.
Table 1. Configuration of the front and back
processors.

Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-
cycle issue stage, 1-cycle register access stage, 1-
cycle retire stage. Minimum branch misprediction
penalty = 9 cycles

Instruction
Cache

Size=32 kB; Assoc.=2-way; Replacement =
LRU; Line size=16 instructions; Miss penalty=10
cycles.

Data Cache Size=32 kB; Assoc.=2-way; Replacement=LRU;
Line size = 64 bytes; Miss penalty=10 cycles.

Unified L2
Cache

Size=1024kB; Assoc.=8-way; Replacement =
LRU; Line size=128 bytes; Miss penalty=220
cycles.

Branch
Predictor

64k-entry G-share; 32k-entry BTB

Superscalar
Core

Reorder buffer: 128 entries; Dispatch/issue/retire
bandwidth: 4-way superscalar; 4 fully-symmetric
function units; Data cache ports: 4. Issue queue:
64 entries. LSQ: 64 entries. Rename map table
checkpoints: 32

Execution
Latencies

Address generation: 1 cycle; Memory access: 2
cycles (hit in data cache); Integer ALU ops = 1
cycle; Complex ops = MIPS R10000 latencies

Memory
Disambiguation

Perfect memory disambiguation

Hardware
prefetcher

Stride-based stream buffer prefetch

5. Experimental Results

5.1. Latency hiding using DCE

In this section, we evaluate the latency hiding effects of
DCE and compare it with run-ahead execution. Figure 4
shows the normalized execution time of a single baseline
processor (labeled ‘base’), DCE with and without a run-
ahead cache (labeled ‘DCE’ and ‘DCE wo rc’), DCE with
a 64-cycle latency for copying the architectural registers
from the back to front processor (labeled ‘DCE_64’), and
a single baseline processor with run-ahead execution
(labeled ‘RA’). Each cycle is categorized as a pipeline
stall with a full reorder buffer (ROB) due to cache-misses,
a stall with a full ROB due to other factors such as long
latency floating-point operations, a stall with an empty
ROB, a cycle in un-stalled execution, or an execution
cycle in the run-ahead mode (labeled ‘RA mode’). In
DCE, such cycle time distribution is collected from the
back processor.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Several important observations can be made from Figure
4. First, for computation-intensive benchmarks, both DCE
and run-ahead execution have limited performance
improvement. Run-ahead execution achieves a 4.2%
speedup for the benchmark bzip2 but incurs a 2.2%
performance loss for the benchmark gap. In DCE, the run-
ahead cache is crucial to avoid the negative effects and it
achieves speedups of 6.7% and 6.3% for those two
benchmarks respectively. Since computation-intensive
benchmarks have few L2 misses, the front processor fails to
run much ahead as it relies on invalidating cache-missing
loads to make faster progress. Moreover, without a run-
ahead cache, the front processor could load stale values
after earlier store instructions are dropped. This affects
performance when such stale values are used to determine
branch outcomes (see Section 5.2) or to compute new load
addresses. Here, we note that both DCE and run-ahead
execution are not designed for computation-intensive
workloads and a simple L2 miss counter is able to tell
whether the dual cores should be used in the single-thread
or multithread mode (or to allow run-ahead execution).

Secondly, for the workloads with higher memory
demands, DCE significantly reduces the pipeline stalls due
to cache misses, resulting in remarkable speedups, up to
232% (swim) and 41.3% on average (28.7% without the
run-ahead cache). Such pipeline-stall reduction also leads
to the reduction of both un-stalled execution time (e.g., art)
and the stall cycles due to other factors (e.g., swim). The
reason is that turning a cache miss into a hit not only
reduces the chances to stall the pipeline but also enables
more computation to be overlapped.

Thirdly, we confirm that run-ahead execution is also
effective in hiding memory latencies for memory-intensive
benchmarks. With run-ahead execution, the stalls due to
cache misses are negligible since the processor enters the
‘run-ahead’ mode and continues its un-blocked execution.
Compared to run-ahead execution, DCE achieves
significantly higher speedups on average (41.3% vs.

13.2%). The key reason is that the front processor
continues running ahead when the cache misses are
repaired while the run-ahead execution processor has to
stop the pre-execution and return to the normal mode.
Moreover, DCE eliminates the mode transition penalties
completely as discussed in Section 2.1.

Fourthly, DCE is tolerant on the increased
communication latency between the front and back
processors. When the latency for copying the architectural
register file increasing from 16 to 64 cycles, stall cycles
with an empty ROB are increased due to higher branch
misprediction penalties at the back processor (e.g., twolf
and vpr). However, as the front processor effectively
resolves branch mispredictions for most benchmarks, the
performance impact is limited and the average
performance improvement is 36.2% over the baseline
processor.

5.2. Non-uniform branch handling in DCE

In this section, we examine the impact of the non-
uniform branch resolution in DCE. Figure 5 shows the
branch misprediction rates of a single baseline processor,
the front and back processor in DCE with and without a
run-ahead cache.

With the large instruction window formed with DCE,
the programs run along speculative paths more
aggressively, resulting in more branch mispredictions than
the single baseline processor. Among those branch
mispredictions, most (92% on average with the run-ahead
cache and 88% without) are resolved promptly at the front
processor, implying that most mispredictions are
independent on cache-missing loads. The mispredictions
that indeed depend on cache misses are resolved at the
back processor, incurring additional penalties since the
architectural state needs to be copied from the back to the
front processor. Fortunately, the number of such
mispredictions is very small as shown in Figure 5, 0.65
(1.32 if without the run-ahead cache) mispredictions per

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

ba
se

D
C

E
 w

o
rc

D
C

E
D

C
E

_6
4

R
A

bzip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

ti
m

e

RA mode unstalled execution stall w ith full ROB (other) stall w ith full ROB (due to misses) empty ROB

Figure 4. Normalized execution time of a baseline processor (base), DCE, DCE without run-ahead cache (DCE wo
rc), DCE with 64-cycle register copy latency (DCE_64), and a run-ahead execution processor (RA).

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

1000 retired instructions on average, and their performance
impact is therefore limited. The run-ahead cache at the
front processor helps to resolve branch predictions more
accurately at the front processor and is the main reason why
DCE has much fewer empty-ROB stall-cycles compared to
DCE without the run-ahead cache (e.g., gap and bzip2), as
shown in Figure 4.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

bz
ip2

ga
p

gc
c

mc f

par
se

r
tw

olf vp
r

am
m

p art

equ
ake

sw
im

Avera
ge B

r
m

is
p

re
d

. p
er

1K
 r

et
ir

ed
in

sn
s

base

DCE f ront proc. (w o rc)

DCE back proc. (w o rc)

DCE f ront proc.

DCE back proc.

Figure 5. Branch mispredictions detected in a single
baseline processor, the front and back processors in
DCE with and without a run-ahead cache. (some
numbers are too small to be discernible, e.g., the
misprediction rate at DCE back proc. for ammp)

5.3. DCE vs. slipstream processing

As discussed in Section 2.2, DCE and slipstream
processors share similar leader/follower architectures
although they achieve the performance gains in quite
different ways. Figure 6 shows the execution time of DCE
and slipstream processors normalized to the execution time
of the single baseline processor. The slipstreaming results
are labeled ‘SS’ and the fractions of instruction removal are
included for each benchmark. Due to the leader/follower
characteristics, execution time is broken down based on the
utilization of the result queue (or the delay buffer in
slipstreaming processing) rather than pipeline utilization. If
the result queue is full (labeled ‘full’), it means that the
leader retires instructions at a faster rate than the follower
can consume. If the result queue is empty (labeled
‘empty’), it shows that the follower runs faster than the
leader, leaving the leader to be the bottleneck. If the result
queue is neither full nor empty (labeled ‘other’), the leader
and follower run at similar speeds. In Figure 6, we also
include the execution results of DCE with value prediction
support, in which the result queue is used to carry the
execution results from the front processor as value
predictions to the back processor. Such value prediction is
used in slipstream processors but not in the default DCE.

From Figure 6, we see that there is a significant amount
of ineffectual dynamic instructions in each benchmark,
confirming the insight from [37]. Removing them,
however, does not necessarily lead to a much faster A-
stream processing rate. As shown in Figure 6, the delay
buffer is empty for a large portion of the execution time.

The main reason is that given the ever increasing memory
access latency, pipeline stalls due to cache misses
dominate the execution time. Unless those cache-missing
loads are removed, the A-stream can not run much faster.
Taking the benchmark mcf as an example, over 32% of its
dynamic instructions (including some cache-missing
loads) are removed from the A-stream. But there are still
many cache misses blocking the A-stream as we failed to
detect them as ineffectual. One common case is that
cache-missing loads lead to a store value, which will be
referenced or overwritten after thousands of instructions.
Since detecting whether such a store is ineffectual is
beyond the capabilities of a 256-instruction R-DFG, those
loads cannot be removed.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

D
C

E
D

C
E

 v
p

S
S

 (
10

.4
%

)
D

C
E

D
C

E
 v

p
S

S
 (

7.
3%

)
D

C
E

D
C

E
 v

p
S

S
 (

22
.8

%
)

D
C

E
D

C
E

 v
p

S
S

 (
32

.1
%

)
D

C
E

D
C

E
 v

p
S

S
 (

23
.5

%
)

D
C

E
D

C
E

 v
p

S
S

 (
9.

4%
)

D
C

E
D

C
E

 v
p

S
S

 (
11

.9
%

)
D

C
E

D
C

E
 v

p
S

S
 (

8.
6%

)
D

C
E

D
C

E
 v

p
S

S
 (

26
.6

%
)

D
C

E
D

C
E

 v
p

S
S

 (
13

.4
%

)
D

C
E

D
C

E
 v

p
S

S
 (

10
.1

%
)

D
C

E
D

C
E

 v
p

S
S

bz ip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Full result queue Empty result queue Other

Figure 6. Normalized execution time of DCE, DCE
with value prediction (DCE vp), and slipstreaming
processors (SS).

In DCE, on the other hand, the front processor is a
much faster leader and the result queue stays full more
often for those benchmarks with higher L2 misses (e.g.,
mcf and art). For the benchmarks with relatively fewer L2
misses, both the L1 misses (but L2 hits) at the front
processor (e.g., gcc) and branch mispredictions detected at
the back processor (e.g., twolf) contribute to the execution
time with an empty result queue. Compared to slipstream
processors, DCE achieves much higher performance
improvement with less hardware complexity (i.e., no need
for IR-detectors or IR-predictors).

Another interesting observation from this experiment is
that the value predictions based on the execution results
from the leader processor achieve near oracle prediction
accuracy (over 99.9%) in both slipstream processors and
DCE with value prediction (‘DCE vp’). The misprediction
penalties therefore are not the performance bottleneck and
even higher recovery latencies can be tolerated. The
performance benefit of such value prediction in DCE,
however, is quite limited since the bottleneck of the back
processor is those cache-misses that were not prefetched
in-time by the front processor and their dependent
instructions. The front processor can not provide
predictions for those instructions as they were turned
invalid. A similar observation is made in [24] to explain

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

why reusing the results during run-ahead execution has
limited benefits.

5.4. DCE vs. single processors with very large
centralized instruction windows

In this experiment, we examine a single superscalar
processor with different instruction window sizes, 256 and
512, and we also scale the issue queue and LSQ sizes
accordingly (half of the ROB size). The issue width
remains at 4 and the execution time shown in Figure 7 is
normalized to the baseline 4/128 processor. From Figure 7,
it can be seen that DCE using two 4/128 processors
(labeled ‘DCE 4/128’) achieves significant speedups (up to
141% and 13% on average) over a single 4/256 processor
(labeled ‘base 4/256’). For the computation-intensive
benchmarks bzip2 and gap, limited performance
improvement is observed from both DCE and large
centralized window processors since cache misses are not
their performance bottleneck. For the benchmarks parser,
twolf, and vpr, DCE improves their performance but not as
much as a single processor with a double-sized window.
The main reason is that a superscalar with a very large
instruction window not only provides latency hiding but
also better ILP, as discussed in Section 3.2.

Another interesting observation from this experiment is
that DCE can also benefit the superscalar processors with
large windows to achieve even better results. As shown in
Figure 7, DCE using two 4/256 processors (labeled ‘DCE
4/256’) performs much better than a single 4/256 processor
(up to 148% speedup and 23% on average) and for the
benchmarks including bzip2, gap, gcc, ammp, equake, and
swim, it performs better than a single 4/512 processor
(labeled ‘base 4/512’).

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc mcf parser two lf vp r ammp art equake swim average

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

D CE 4/128

base 4/256

D CE 4/256

base 4/512

Figure 7. Performance comparison between DCE and
single processors with large instruction windows.

5.5. Run ahead, how far should it go?

In DCE, the result queue size determines how far ahead
the front processor can run when the back processor is
stalled. As discussed in Section 3.1, the result queue is
latency tolerant and can be easily scaled to keep a higher

number of instructions to allow the front processor
running further ahead. In this experiment, we examine the
performance impact of different run-ahead distances. Both
the front and back processors use a baseline 4/128
processor and the execution time shown in Figure 8 is
normalized to a single baseline 4/128 processor.

From Figure 8, it can be seen that the best run-ahead
distance of the front processor is benchmark dependent
while longer queues result in higher speedups on average
(from 32% with a 256-entry queue to 43% with a 4096-
entry queue) since they enable the front processor to pre-
execute more aggressively. For most integer benchmarks,
including bzip2, gap, mcf, parser, twolf, and vpr, a result
queue of 256 or 512 entries reaps most of the performance
improvement. The benchmarks gcc, ammp, art, equake,
and swim, on the other hand, exhibit stronger scalability
with longer run-ahead distances. One main reason why a
longer run-ahead distance does not help is cache pollution
resulting from incorrect or untimely prefetches from the
front processor. Another benchmark-dependent factor is
the number of independent cache misses in the scope of a
run-ahead distance.

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

ti
m

e

result Q:256
result Q:512
result Q:1024
result Q:2048
result Q:4096

Figure 8. Normalized execution time of DCE with
different result queue sizes.

5.6. Impact of memory disambiguation on DCE

In the previous experiments, we model oracle memory
disambiguation to isolate the impact of latency hiding. To
analyze the performance impact of different memory
disambiguation schemes on DCE, we model pessimistic
disambiguation, which delays the issue of load
instructions until all prior store addresses are available, in
this experiment. Pessimistic and oracle disambiguation
represent two extremes in the spectrum of disambiguation
schemes (i.e., no prediction and perfect prediction of
memory dependence). An aggressive memory dependence
prediction scheme, e.g., store-set based prediction [9],
combined with selective reissuing is expected to achieve
the performance close to oracle prediction since DCE does
not incur additional penalties for memory order violations.
For the violations detected at the front processor, the back
processor is not affected since it processes the retired
instruction stream from the front processor. For the
violations detected at the back processor, it selectively re-
executes the affected instructions and does not need to

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

disturb the result queue or the front processor. In the next
experiment, however, we will show that aggressive
memory dependence prediction is not essential for DCE.
Furthermore, DCE can also compensate conservative
disambiguation schemes to achieve similar performance to
DCE with more aggressive ones.

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

bzip2 gap gcc mcf parser tw olf vpr ammp art equake sw im average

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

base (oracle)
DCE (oracle)
base (pess)
DCE (pess)

Figure 9. Normalized execution time of a baseline
processor and DCE with different memory
disambiguation schemes.

Figure 9 shows the execution time of a baseline
processor and DCE with both pessimistic and oracle
memory disambiguation. The default configuration shown
in Table 1 is used for the baseline processor, the front
processor, and the back processor in DCE. Two important
observations can be made from Figure 9. First, better
memory disambiguation benefits both the baseline
processor and DCE. The benchmark, bzip2, for example,
observes a 5.6% speedup for the baseline processor and a
2.0% speedup for DCE when pessimistic disambiguation is
replaced with oracle disambiguation. Secondly, DCE
achieves much higher speedups over the baseline processor
with pessimistic disambiguation than with oracle
disambiguation, showing that DCE is capable of
compensating conservative memory disambiguation
schemes. The reason is that with pessimistic
disambiguation, the store instructions, whose addresses are
dependent on a cache-missing load, will block the issue of
later loads in the baseline processor. In DCE with the same
pessimistic disambiguation, the same stores will not block
the later loads in the front processor since the misses are
converted into ‘hits’ with invalid values and the stores
become nops with invalid addresses. In the back processor,
the misses become hits due to the prefetches initiated at the
front processor. So, the addresses of those stores are
computed faster, allowing subsequent loads to be issued
more promptly in the back processor.

6. Conclusions

In this paper, we propose a novel way to utilize multi-
cores on a single chip to form a very large instruction
window for single-thread applications. The proposed
execution paradigm, DCE, is built upon two small CMP
cores, a front and a back processor, coupled with a result

queue. The front processor acts as a fast preprocessor of
instruction streams. It fetches and executes instructions in
its normal way except for cache-missing loads, which
produce an invalid value instead of blocking the pipeline.
Since it is not stalled by cache misses, the front processor
runs far ahead to warm up data caches and fix branch
mispredictions for the back processor. The result queue
buffers retired instructions from the front processor and
feeds them into the back processor. With the assists from
the front processor, the back processor also makes faster
progress and provides the precise program state. The
proposed design incurs only minor hardware changes and
achieves remarkable latency hiding for single-thread
memory-intensive workloads and maintains the flexibility
to support multithreaded applications. With a queue of
1024 entries, DCE outperforms a single-thread core by
41% (up to 232%) on average and achieves better
performance than run-ahead execution on every
benchmark we studied (24% on average).

In DCE, re-execution is used to eliminate hardware
complexities needed for very large centralized instruction
windows. Such re-execution, however, incurs extra power
consumption. Currently, we are investigating two
promising ways to improve the power efficiency of DCE
by eliminating redundant re-execution. At the front
processor, instructions that do not lead to cache misses or
branch mispredictions can be bypassed directly to the
result queue. The back processor, on the other hand, can
reuse the front execution results more intelligently. The
key is that for a sequence of instructions forming a data
dependence chain, the back processor only needs to re-
execute the instructions producing the live-in values rather
than every instruction in the chain.

7. Acknowledgement

We would like to thank the anonymous reviewers for
their valuable comments and Mark Heinrich for his help
in improving the paper.

8. References

[1] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint
processing and recovery: towards scalable large instruction
window processors”, Proc. of the 36th Int. Symp. on
Microarch. (MICRO-36), 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. Albonesi,
“Dynamically allocating processor resources between
nearby and distant ILP”, Proc. of the 28th Int. Symp. on
Comp. Arch. (ISCA-28), 2001.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi,
“Reducing the complexity of the register file in dynamic
superscalar processors”, Proc. of the 34th Int. Symp. on
Microarch. (MICRO-34), 2001.

[4] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W.
Hwu, “Beating in-order stalls with flea-flicker two pass

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

pipelining”, Proc. of the 36th Int. Symp. on Microarch.
(MICRO-36), 2003.

[5] E. Brekelbaum, J. Rupley II, C. Wilkerson, and B. Black,
“Hierarchical scheduling windows”. MICRO-35, 2002.

[6] D. Burger and T. Austin, “The SimpleScalar tool set, v2.0”,
Computer Architecture News, vol. 25, June 1997.

[7] L. Ceze, K. Strauss, J. Tuck, J. Renau, J. Torrellas. "CAVA:
Hiding L2 Misses with Checkpoint-Assisted Value
Prediction." Comp. Arch. Letters, Volume 3, Dec. 2004.

[8] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture
optimizations for exploiting memory-level parallelism”,
Proc. of the 31st Int. Symp. on Comp. Arch. (ISCA-31), 2004.

[9] G. Chrysos and J. Emer, “Memory dependence prediction
using store sets”, Proc. of the 25th Int. Symp. on Comp. Arch.
(ISCA-25), 1998.

[10] J. D. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D.
Lavery, and J. P. Shen, “Speculative precomputation: long-
range prefetching of delinquent loads”, ISCA-28, 2001.

[11] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-order
commit processors”, Proc. of the 10th Int. Symp. on High
Performance Comp. Arch. (HPCA-10), 2004.

[12] A. Cristal, M. Valero, A. Gonzalez, and J. Llosa, “Large
virtual ROBs by processor checkpointing”, Tech. Rep. UPC-
DAC-2002-39, 2002.

[13] J. Dundas and T. Mudge, “Improving data cache
performance by pre-executing instructions under a cache
miss”, ICS-97, 1997.

[14] K. Farkas, P. Chow, N . Jouppi, and Z. Vranesic, “Memory-
system design considerations for dynamically scheduled
processors”, Proc. of the 24th Int. Symp. on Comp. Arch.
(ISCA-24), 1997.

[15] I. Ganusov and M. Burtscher, “Future execution: a hardware
prefetching technique for chip multiprocessors”, Int’l. Conf.
on Parallel Arch, and Comp. Tech. (PACT 2005), 2005.

[16] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai,
“Scalable load and store processing in latency tolerant
processors”, ISCA-32, 2005.

[17] J. Henning, “SPEC2000: measuring CPU performance in the
new millennium”, IEEE Computer, July 2000.

[18] T. Karkhanis and J. Smith, “A Day in the Life of a Cache
Miss”, 2nd Workshop on Memory Performance Issues, 2002.

[19] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez,
“Checkpointed Early Load Retirement”, Proc. of the 11th Int.
Symp. on High Perf. Comp. Arch. (HPCA-11), 2005.

[20] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E.
Rotenberg, “A large, fast instruction window for tolerating
cache misses”, Proc. of the 29th Int. Symp. on Comp. Arch.
(ISCA-29), 2002.

[21] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit
via value prediction,” Proc. of the 29th Int. Symp. on
Microarch. (MICRO-29), 1996.

[22] C. K. Luk, “Tolerating memory latency through soft-ware-
controlled pre-execution in simultaneous multithreading
processors”, Proc. of the 28th Int. Symp. on Comp. Arch.
(ISCA-28), 2001.

[23] O. Mutlu, H. Kim, and Y. Patt, “Techniques for efficient
processing in runahead execution engines”, Proc. of the 32nd

Int. Symp. on Comp. Arch. (ISCA-32), 2005.
[24] O. Mutlu, H. Kim, J. Stark, and Y. Patt, “On reusing the

results of pre-executed instructions in a runahead execution
processor”, Comp. Arch. Letters, Jan 2005.

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead
execution: an alternative to very large instruction windows
for out-of-order processors”, Proc. of the 9th Int. Symp. on
High Perf. Comp. Arch. (HPCA-9), 2003.

[26] I. Park, C. Ooi, and T. Vijaykumar, “Reducing design
complexity of the load/store queue”, MICRO-36, 2003.

[27] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. "A Study
of Slipstream Processors". MICRO-33, 2000.

[28] Z. Purser, K. Sundaramoorthy, and E. Rotenberg,
“Slipstream memory hierarchies”, Tech. Report, ECE dept.,
NCSU, 2002.

[29] E. Rotenberg, Personal Communication, 2003.
[30] A. Roth and G. Sohi, “Speculative data driven

multithreading”, HPCA-7, 2001.
[31] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and

S. Keckler, “Scalable hardware memory disambiguation for
high ILP processors”, Proc. of the 36th Int. Symp. on
Microarch. (MICRO-36), 2003.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program
behavior”, ASPLOS-X, 2002.

[33] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed
stream buffers”, MICRO-33, 2000.

[34] J. E. Smith, “Decoupled access/execute computer
architectures”, Proc. of the 9th Int. Symp. on Comp. Arch.
(ISCA-9), 1982.

[35] G. Sohi, S. E. Breach, T. N. Vijaykumar, “Multiscalar
processors”, Proc. of the 22nd Int. Symp. on
Comp.Arch.(ISCA-22), 1995.

[36] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M.
Upton, “Continual flow pipelines”, ASPLOS-11, 2004.

[37] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream processors: improving both performance and
fault tolerance”, ASPLOS-9, 2000.

[38] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M.
Kling, and J. P. Shen, “Memory latency-tolerance
approaches for Itanium processors: out-of-order execution
vs. speculative precomputation”, HPCA-8, 2002.

[39] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
implications of the obvious”, ACM SIGARCH Comp.
Arch. News, 1995.

[40] K. C. Yeager, “The MIPS R10000 superscalar
microprocessor”, IEEE Micro, 1996.

[41] J. Zalamea, J Llosa, E. Ayguade, and M. Valero, “Two-
level hierarchical register file organization for VLIW
processors”, Proc. of the 33rd Int. Symp. on Microarch.
(MICRO-33), 2000.

[42] H. Zhou and T. Conte, ““Enhancing memory level
parallelism via recovery-free value prediction”, Int. Conf.
on Supercomputing (ICS 2003), June 2003.

[43] C. Zilles and G. Sohi, “Execution-based prediction using
speculative slices”, the 28th Int. Symp. on Comp. Arch.
(ISCA-28), 2001.

[44] C. Zilles and G. Sohi, “Master/Slave Speculative
Parallelization”, Proc. of the 35th Int. Symp. on Microarch.
(MICRO-35), 2002.

[45] C. Zilles, “Master/Slave Speculative Parallelization and
Approximate Code”, PhD Thesis, Univ. of Wisconsin,
2002.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

