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Abstract 
Software defects, commonly known as bugs, present a 
serious challenge for system reliability and dependability. 
Once a program failure is observed, the debugging 
activities to locate the defects are typically nontrivial and 
time consuming. In this paper, we propose a novel 
automated approach to pin-point the root-causes of software 
failures. 

Our proposed approach consists of three steps. The first 
step is bug prediction, which leverages the existing work on 
anomaly-based bug detection as exceptional behavior 
during program execution has been shown to frequently 
point to the root cause of a software failure. The second 
step is bug isolation, which eliminates false-positive bug 
predictions by checking whether the dynamic forward slices 
of bug predictions lead to the observed program failure. The 
last step is bug validation, in which the isolated anomalies 
are validated by dynamically nullifying their effects and 
observing if the program still fails. The whole bug 
prediction, isolation and validation process is fully 
automated and can be implemented with efficient 
architectural support. Our experiments with 6 programs and 
7 bugs, including a real bug in the gcc 2.95.2 compiler, 
show that our approach is highly effective at isolating only 
the relevant anomalies. Compared to state-of-art debugging 
techniques, our proposed approach pinpoints the defect 
locations more accurately and presents the user with a much 
smaller code set to analyze. 
Categories and Subject Descriptors C.0 [Computer 
Systems Organization]: Hardware/Software interfaces; 
D.2.5 [Software Engineering]: Testing and Debugging – 
debugging aids 
General Terms  Languages, Reliability, Performance 
Keywords  Automated debugging, Architectural support 

 

1. Introduction 
Software defects1, commonly known as bugs, present a 
serious challenge for computer system reliability and 
dependability. Once a program failure such as a program 
crash, an indefinite loop, or an incorrect output value, is 
observed, the debugging process begins. Typically, the 
point of the failure (i.e., the instruction where the failure is 
manifested) is examined first. Then the programmer reasons 
backwards along the instruction flow and tries to figure out 
the cause of the failure. Such backward slicing [1, 14, 33] 
(i.e., the process of determining all the instructions that 
have affected the failing instruction) is a tedious and time 
consuming effort, which may require the programmer to 
examine a significant portion of the program. Certain bugs, 
such as memory corruption, make this effort even harder 
because their effects may manifest only after a very long 
period of program execution or at unexpected locations. 
After tracing back the chain of program statements, the 
programmer creates a hypothesis of what could be the root 
cause of the failure. He/she then verifies the hypothesis, by 
modifying the source code and observing whether the 
failure still occurs. If the failure is still there, then the 
hypothesis was wrong and the search resumes. To relieve 
developers of such repetitive exploration, there has been 
active research toward automated debugging by leveraging 
the power of modern processors to perform the task.  

A key technique used in debugging (automated or not) is 
backward slicing, which reasons backwards and tracks the 
origins of a failure. The main issue with this approach is the 
cost of constructing backward slices, especially dynamic 
ones. In a recent work, Zhang et. al.  [42] proposed an 
algorithm to significantly reduce the slicing time and the 
storage requirements so as to make it practical. However, as 
pointed out in  [10, 41], even with efficient backward 
slicing, a nontrivial portion of the program needs to be 
examined manually to locate the faulty code.  

                                                 
1 We use the terminology from the book “Why Programs Fail” [38]. The 
programmer is responsible for creating a defect in the source code. At 
runtime, the defect may create an infection in the program state. The 
infection propagates until it becomes an observable program failure. The 
terms: software defects, bugs, faulty code and failure root-cause, are used 
interchangeably. 
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Another promising technique to facilitate debugging is 
anomaly-based bug detection  [8, 9, 11]. An anomaly 
detector is either a software or hardware module initially 
trained to recognize some aspects of correct program 
behavior during passing program phases/runs (i.e., runs that 
do not crash or produce faulty results). Then, it is used 
during a faulty program phase/run to detect violations of the 
previously learned behavior. Previous works  [11, 44] show 
that such anomalies can lead the programmer to the root 
cause of hard-to-find, latent bugs. The main issue with 
those approaches is that they tend to report too many 
anomalies and it is not clear which anomalies have a cause-
effect relation to the program failure.  

In this paper, we propose a novel approach to automate 
the debugging effort and accurately pinpoint the failure root 
cause. It avoids the expensive backward slicing and 
overcomes the limitations of the existing anomaly-based 
bug detection schemes. The proposed approach contains 
three steps, as illustrated in Figure 1. 

Figure 1. Overview of the proposed automated debugging 
process (the symbol ‘?’ represents a predicted bug). 

After a program failure is observed during execution 
(Figure 1a), the automated debugging process starts. The 
failure point may be a crash, incorrect results, etc. In the 
first step, we re-execute the program to reproduce the 
failure using the existing work on faithful record and 
replay. At the same time, we enable a set of bug predictors 
to monitor program execution and signal any abnormal 
behavior (Figure 1b). In this work, we leverage two 
previously proposed bug detectors– DIDUCE   [11] and 
AccMon   [44], and propose a new loop-count based bug 
predictor. The combination of various bug predictors offers 

higher bug coverage as a more complete set of program 
invariants are monitored (see Section  6). 

In step 2, we examine each of the predicted bugs to see 
whether it leads to the failure and isolate only the relevant 
ones (Figure 1c). To do so, we construct dynamic forward 
slices from all the predicted bug points. With the anomaly-
based bug predictors, the forward slices include all the 
instructions that have used anomalous results as source 
operands, directly or indirectly. If the failing instruction is 
not in the forward slice of a predicted defect, the predicted 
defect is considered irrelevant and discarded. Compared to 
the approaches built upon backward slicing, forward slicing 
is much easier to compute and can be efficiently 
constructed in hardware by leveraging tagged architectures 
proposed for information flow or taint tracking  [5, 6, 26, 
30]. 

In step 3, we validate the isolated bugs by nullifying the 
anomalous execution results (Figure 1d). If the failure 
disappears, we know that the bug infection chain has been 
broken, and we have a high confidence that the root cause 
has been pinpointed. The number of validated defects after 
this step is very small, even for large software programs 
like the gcc compiler, showing that the proposed approach 
accurately pinpoints to the software defect.  

In summary, this paper makes the following 
contributions:  

• We propose a novel, automated approach to predict, 
isolate and validate software defects. The proposed method 
overcomes the limitations of existing anomaly-based bug 
detection schemes and avoids the high cost of backward 
slicing.  

• Instead of requiring new hardware, we propose novel 
ways to reuse existing or previously proposed hardware 
structures for debugging, thereby reducing the overhead for 
hardware implementation. We also propose an adaptive 
partition scheme to overcome hardware resource limitation 
on bug prediction tables.  

• We create a useful software tool2 using the PIN 2 
dynamic binary instrumentation system  [19], to emulate the 
proposed architecture support, which can also be used as a 
standalone software for automated debugging.  

• We perform a detailed evaluation on 6 programs with a 
total of 7 bugs, including a real bug in the gcc-2.95.2 
compiler, which highlights the limitations of existing bug 
detection techniques. The experimental results show that 
the proposed approach is highly effective at isolating only 
the relevant anomalies and pin-pointing the defect location. 
Compared to a state-of-art debugging technique based on 
failure-inducing chops   [10] our approach locates the defects 
more accurately and presents the user with a much smaller 
code set to analyze.  

The remainder of the paper is organized as follows. 
Anomaly-based bug prediction is addressed in Section  2. 
Bug isolation using dynamic forward slicing is presented in 
Section  3. Section  4 discusses the validation of the isolated 

                                                 
2 The tool is available at: http://csl.cs.ucf.edu/debugging. 
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defect predictions by altering dynamic instruction 
execution. The experimental methodology is in Section  5 
and the experimental results are contained in Section  6. We 
highlight the limitations of our work and discuss the future 
directions in Section  7. The related work is presented in 
Section  8. Finally, Section  9 concludes the paper. 

2. Predicting Software Bugs 
2.1. Method 
Previous research  [8, 9, 11] has observed that when infected 
by a software bug, a program is very likely to behave in 
some unexpected, abnormal ways. Common abnormal 
instruction-level behavior includes events such as 
producing out-of-bound addresses and values, executing 
unusual control paths, causing page faults, performing 
redundant computations and possibly many others. Given 
the correlation between program anomalies and the 
existence of software defects, several research works  [11, 
44] have used anomalies to locate the likely root causes of 
software failures. In our proposed scheme, we use such 
anomaly detection tools as bug predictors. Anomaly 
detectors or bug predictors can be viewed as a way to 
automatically infer program specifications from the passing 
runs, and then to turn those specifications into ‘soft’ 
assertions for the failing run, meaning that we will record 
the violation of those assertions instead of terminating the 
program. One attractive feature of instruction-level 
anomaly detectors is that they usually point to the first 
consequence of the defect, or the first change from normal 
to abnormal behavior (i.e., the first infection point). This is 
very helpful in determining the root cause of latent bugs, 
such as memory corruption, which may manifest as a 
failure at an execution point far from the original faulty 
code. Many bug predictors are possible and they can 
monitor various program aspects to detect anomalies. Our 
approach is not restricted to using any particular bug 
predictor. A combination of multiple bug predictors is 
preferable as a more complete set of program invariants are 
monitored. In this paper, we leverage two previously 
proposed anomaly detectors DIDUCE   [11]  and AccMon 
[44] and propose a new one based on loop-count invariance.  

DIDUCE exploits invariance in execution results, based 
on the insight that most instructions tend to produce values 
within a certain range, e.g. a variable “i”, is always between 
0 and 100. This insight also applies to memory operations, 
which usually access a certain data structure and produce a 
limited range of addresses. DIDUCE learns the invariants 
during passing program runs/phases by initially 
hypothesizing a strict invariant and then relaxing the 
invariant as new values are observed. During the failing 
run, or the bug detection phase, any violation of the learned 
invariants is reported as a possible cause of the program 
failure. As a side benefit, DIDUCE can also report “new-
code” violations, or instructions, which have no invariance 
information learned from the training runs. The invariants 
in DIDUCE are represented in a compact form using a bit-
mask, which specifies the bit positions where execution 

results are expected to vary. The variance between dynamic 
execution results is computed by a simple XOR operation.  

AccMon stands for Access Monitor  [44]. Its main idea is 
that for most memory locations only a few static 
instructions access a given memory location. This locality 
is also referred to as the load/store set of a memory location 
 [3]. AccMon exploits this locality to detect memory related 
defects. After learning the store sets during the training 
runs, AccMon will make sure that each memory update 
instruction belongs to the store set of the updated memory 
location. If it does not, an anomaly will be signaled. Since 
maintaining the store set for each memory location is 
expensive, bloom filters are used to test for membership in 
the set.  

In this work, we also propose a new bug predictor to 
monitor for abnormal number of loop iterations. In general, 
program defects may result in abnormal control flow 
behavior and branch mispredictions can used to detect 
control flow anomalies. One possible approach is to use 
mispredictions of branches with high confidence, as 
exploited in  [32] for soft-error protection. However, even 
with a confidence mechanism, the misprediction rate 
(which is in the range of one misprediction per ten-
thousand dynamic instructions) is still exceedingly high for 
software-bug detection. It is not trivial to reason about the 
effect that each of those mispredicted conditional branches 
may have on the observed failure. Therefore, in this paper, 
we propose to focus on one special type of branches, loop 
branches. We learn the normal range of loop iterations 
during passing runs, and detect too few or too many 
iterations as anomalies during the failing runs. For each 
anomaly, the instructions in the loop body will be examined 
for their relevance to the failure using the approach 
presented in Section 3. We call this bug predictor 
LoopCount. As we will show in our experimental results 
(see Section  6), such a simple loop-based bug predictor is 
effective in catching some interesting memory corruption 
defects, which DIDUCE misses.  

Next, we use a code example from bc-1.06 to illustrate 
each of the bug predictors. BC is a program from bugbench 
  [16] and is an arbitrary precision calculator language. 
Figure 2 shows the faulty code in function more_arrays(). 
This function is called when more storage needs to be 
allocated to an array. It allocates a new, larger array, copies 
the elements of the old array into the new one, and 
initializes the remaining entries of the new array to NULL.  
The defect is on line 18 and is due to the fact that a variable 
v_count is used mistakenly instead of the correct variable 
a_count. Thus, whenever v_count happens to be larger than 
a_count, the buffer arrays will be overflown and its size 
information, which is located right after the buffer, will be 
lost. This results in a segmentation fault when 
more_arrays() is called one more time, and the buffer with 
corrupted size information is freed at line 23.  

 
 



1     void more_arrays () { 
2        int indx;    int old_count; 
3        bc_var_array **old_ary; 
4 
5        /* Save the old values. */ 
6        old_count = a_count; 
7        old_ary = arrays; 
8 
9        /* Increment by a fixed amount and allocate. */ 
10      a_count += STORE_INCR; 
11      arrays = (bc_var_array **)  
               bc_malloc  (a_count*sizeof(bc_var_array 12*)); 
12     
13      /* Copy the old arrays. */ 
14      for (indx = 1; indx < old_count; indx++) 
15         arrays[indx] = old_ary[indx]; 
16 
17      /* Initialize the new elements. */ 
          /* defect: incorrect loop condition */ 
18      for (; indx < v_count; indx++){  
             /* infection: overflows its size information */ 
19         arrays[indx] = NULL;      
20 
21      /* Free the old elements. */ 
22      if (old_count != 0){  
             /* crash: when the buffer size is corrupted */ 
23        free (old_ary);     
24      } 
25   } 

Figure 2. Incorrect loop condition in bc-1.06 leads to an 
overflow in a heap buffer ‘arrays’, which corrupts its size 
information. The subsequent call to free(old_ary) causes a 
segmentation fault due to the corrupted size information. 

To detect the bug in Figure 2, we initially trained all the 
bug predictors using several BC runs such as computing 
prime numbers, square roots, etc. Then, we executed BC 
with a specially crafted input program, which was able to 
trigger the defect and overflow the buffer on line 19. The 
store instruction in assembly responsible for the overflow 
is: “movl $0x0, (%eax, %ebx,4)”. During the passing runs, 
DIDUCE has learned the range of addresses that this store 
instruction accesses. During the failing run, more storage is 
required and the function more_arrays() is called with 
requests for larger arrays. This causes the loop on line 18 to 
execute more times than usual and the store instruction on 
line 19 to access a wider range of memory addresses. 
DIDUCE detects this abnormal behavior and signals an 
anomaly. It is interesting to note that if we changed the 
variable v_count to the correct variable a_count, DIDUCE 
would still signal an anomaly, which would then be a false 
positive. This implies that DIDUCE does not exactly detect 
the defect, but rather the abnormal behavior triggered by the 
buggy input. In our particular example, DIDUCE signaled 
an anomaly on line 19 in Figure 2, which is the immediate 
infection point of the defect on line 18. Therefore, we 
consider it a successful detection of the bug. Besides this 
anomaly, DIDUCE also signaled twenty-three false-positive 
ones, one of them on line 15. The rest of the false-positive 
anomalies include eighteen “new-code” and four non new-
code anomalies in the same and other functions. AccMon 
also detects the defect in Figure 2, because the store 
operation on line 19 does not belong to the store set of the 

corrupted memory location. In our implementation, 
AccMon also signaled another 67 false-positive anomalies 
(3 in this function and 64 in other functions). LoopCount 
detected the abnormal behavior in the for-loop on line 18, 
whose loop condition is the defect. It also signaled an 
anomaly in the for-loop on line 14 (a false positive) and 
thirty-four additional false positives in other functions.  

One issue with AccMon is that virtual addresses of 
memory objects allocated on the heap or stack may vary 
among different program runs. Therefore, the invariants 
obtained during the passing runs will not be useful for the 
failing run. To solve this problem, AccMon uses a special 
call-chain naming for stack and heap objects by intercepting 
each memory allocation. In our implementation, we do not 
use the call-chain naming strategy since we assume no 
compiler/system support for intercepting memory 
allocation. Instead, we use an offset address relative to the 
current stack pointer for stack accesses. For heap accesses, 
virtual addresses are used and our experiments show that it 
results in a higher number of false alarms than reported in 
  [44] but is still effective in detecting relevant anomalies. 
The reason is that that we report new store addresses as 
anomalies as well. AccMon utilizes different heuristics and 
confidence mechanisms to reduce the number of false-
positive anomalies. For example, the compiler is used to 
identify possible array and pointer accesses, which are more 
likely to contain software defects. Memory accesses, which 
are not pointer or array references, are not monitored. This 
optimization reduces false positives but may cause AccMon 
to miss some bugs. In our implementation, we choose to 
monitor every memory update and use automated bug 
isolation to eliminate false positives (see Section  3). 

2.2. Architectural Support 
The bug predictors described in this section are suitable for 
hardware implementation. The reason is that modern 
processors already exploit various program localities to 
improve performance. Our proposed LoopCount bug 
predictor is light weight since it can simply reuse existing 
loop-branch predictors. The invariants used by DIDUCE 
and AccMon, can be captured using cache structures with 
limited sizes. In   [7, 24], hardware implementations of 
DIDUCE with limited sizes are proposed for either soft-
error detection   [24] or software bug detection [7]. In this 
work, we model DIDUCE as described in  [7] by tracking 
anomalies in store addresses. This approach reduces the 
pressure on the DIDUCE table and is effective because 
most bugs manifest through memory operations  [16]. A 
hardware implementation using cache-like structures was 
proposed for AccMon in   [44]. The most frequently 
accessed addresses and their bloom filters are maintained in 
a small cache with only 4 to 8 entries. In this paper, we 
implement the AccMon bug predictor as a table of bloom 
filters and also assume that part of this table can be cached 
in hardware.  

As highlighted in   [44], efficient architectural support for 
anomaly detectors has the benefits of minor performance 



impact, high accuracy in run-time event measurement, and 
portability. The high performance efficiency also makes it 
possible for the detectors to be used in production runs to 
generate detailed error reports. In our proposed automated 
debugging approach, the hardware implementation also 
enables efficient ways to change or invalidate dynamic 
instruction execution – the third step of our approach. For 
example, if an out-of-range store needs to be skipped during 
the validation step, once an anomaly detector captures such 
an out-of-range store address, it can inform the processor to 
invalidate the corresponding dynamic instance. This way, 
the validation can be performed without source code 
modification or binary instrumentation.  

A concern, however, lies in limited hardware resource, 
which may cause both an increased number of false-
positives as well as a loss of bug detection coverage due to 
replacements in prediction tables. To solve this problem, we 
propose to adaptively partition a program into code regions 
and use multiple runs to cover the whole program. In each 
run, only one of the regions is monitored. The policy for 
determining the code regions is as follows. If the number of 
replacements in the predictor table exceeds a threshold T, 
then we split the current program/region into two and 
monitor each of them separately. We perform this partition 
recursively, until the number of table replacements becomes 
less than T. We also use a PC-based XOR function to 
generate a uniform distribution of instructions among code 
partitions. In our experiments in Section  6, we use a 2K-
entry prediction table and our splitting threshold T is 20. 
The results show that the performance of this approach is 
very close to that of a 64K-entries table and all root causes 
are successfully detected. 

3. Isolating Relevant Bug Predictions 
3.1. Method 
As discussed in Section  2, anomaly-based bug predictors 
are capable of identifying abnormal behavior, which may 
be a reason for the program failure. However, two problems 
remain. First, it is not clear which anomaly(s) points to the 
actual defect and which ones are false positive. In the 
example in Figure 2, among the 24, 68 and 38 anomalies 
detected by DIDUCE, AccMon and LoopCount, 
respectively, the programmer is expected to go through 
each of them to evaluate its validity. Depending on the size 
of the software program and the quality of the training 
inputs used to train the bug predictors, the number of false 
positives can become very large. Second, there is always a 
tradeoff between bug coverage and the number of false-
positive anomalies. On one hand, producing too many 
anomalies places a burden on the programmer. On the other 
hand, if the predictor is made very conservative and signals 
only few anomalies using some heuristics or confidence 
mechanism, some defects may go undetected. Our solution 
to this problem is to allow each bug predictor to signal 
anomalies aggressively, thereby increasing the coverage at 
the cost of false positives. Then, an automated process is 
devised to isolate relevant anomalies, i.e., those that 

actually lead to the program failure, instead of placing the 
burden upon the programmer. To achieve this, we construct 
dynamic forward slices of each anomaly and retain only 
those anomalies whose forward slices contain the point of 
failure. The relevant anomalies can also be extracted from 
the dynamic backward slice originating from the point of 
failure. While both approaches are possible, computing 
dynamic forward slices is much less expensive than 
computing dynamic backward slices. 

3.2. Architectural Support 
In this paper, we propose to construct the dynamic forward 
slices in hardware by leveraging tagged architectures 
proposed for information flow tracking or taint tracking  [5, 
6, 30]. In our implementation, each memory word and each 
register contains a single extra bit, which we call a token. 
When bug predictors detect an anomaly, they will set the bit 
(the token) associated with the destination memory location 
or register of the violating instruction. Subsequent 
instructions propagate this token based on data 
dependencies. When the program eventually fails, we 
examine the point of failure for the token. If the failure 
point is a single instruction, e.g. causing a segmentation 
fault, then we examine the source operands of the 
instruction for the token. If the failure point is a function 
call, such as a call to output erroneous results, or a call hung 
in infinite recursion, then we examine the function call 
parameters for the token. If the token is present, this means 
that there is a relevant anomaly among those signaled by 
the bug predictors.    

We illustrate this point with the example from Figure 2. 
The for-loops on lines 14 and 18 iterate more times than 
usual. The bug predictors signal anomalies and mark with 
tokens the two store instructions corresponding to: 
“arrays[indx]=old_ary [indx]” on line 15 (false-positive) 
and “arrays[indx]= NULL” on line 19 (buffer overflow). 
Due to the overflow, the memory location, which holds the 
size information of arrays, is overwritten by “arrays[indx] = 
NULL”. Therefore, it will be marked with the token. When 
the statement chunk_free inside the function free(old_ary) 
on line 24 crashes the program, it will carry the token 
because the corrupted size information is used as its 
parameter.   

    Since we have only one token and potentially many 
anomalies, we do not know which specific anomalies are 
responsible for propagating the token to the point of failure. 
In this example, only the one corresponding to the 
statement “arrays[indx] = NULL” on line 20 is responsible 
for marking the corrupted memory location. To isolate the 
relevant anomalies, we leverage the delta debugging 
algorithm proposed by Zeller   [38, 40]. The delta debugging 
algorithm is a divide-and-conquer approach, which is used 
to automatically simplify and isolate failure inducing input 
  [40], failure inducing differences in program state  [4], as 
well as failure inducing cause-effect chains   [37]. 
Conceptually, our anomaly isolation algorithm works as 
follows. First we divide the anomalies in half, and allow 



only one half to propagate the token. If the selected 
anomalies do not propagate the token to the failure point, 
then we discard them and continue the process with the 
other half. If both halves propagate the token to the failure 
point, this means that there is at least one relevant anomaly 
in each half. In this case, we increase the granularity (divide 
into quarters and eighths, etc) and continue the process. The 
algorithm terminates, when we cannot divide the anomalies 
any further and we have discovered all the relevant 
anomalies. We illustrate the process in Figure 3 for our 
running example of bc-1.06. We start with the 24 
anomalies, detected by DIDUCE. In each run, the 
anomalies marked in bold in Figure 3 are selected to 
propagate the token, while the anomalies in grey are 
ignored. After 15 delta debugging iterations, the anomalies 
are reduced to only three. The defect “arrays[indx] = 
NULL” on line 19 is among those three. The other two 
isolated anomalies are responsible for setting up the 
parameters to the function call chunk_free, which crashes 
the program, and thus they are on the defect infection chain. 
In general, the worst case complexity (i.e., the number of 
delta debugging runs) is n2 + 3n   [40], where n is the 
number of anomalies. The process for AccMon is identical. 
For LoopCount we mark all instructions in the loop body 
with a single token. 

4. Validating Bug Predictions 
After isolating relevant anomalies, we are typically left with 
only few remaining bug predictions. Each of these 
remaining ones forms a hypothesis that it is the root cause 
of the failure. As addressed in Section  1, the final step of a 
debugging process is to validate the hypothesis by 
modifying the suspicious code and observing if the failure 
disappears. We propose to automate this part of the 
debugging effort as well. We validate each hypothesis 
individually, by applying a fix and observing whether the 

failure still occurs. The fix is simply nullifying (or turning 
into a no-op) the dynamic instance of the violating 
instruction to prevent it from updating memory or its 
destination register. In the case of ‘new code’ anomalies, 
we do not know which dynamic instance of the instruction 
is causing the problem, and thus we nullify every dynamic 
instance. Consider again our example from bc-1.06. If we 
do not allow the dynamic instruction: “arrays[indx] = 
NULL”, which overflows the buffer, to be executed (i.e. if 
we turn the instruction into a no-op), the size information 
will not be corrupted and the segmentation fault disappears. 
In general, after nullifying a dynamic instruction, four 
possible outcomes can be expected:  

• Application execution succeeds. We consider 
execution to be successful, if the failure symptom (crash, 
infinite loop, corrupted results) disappears and the output 
produced by the program is correct. In this case, we say that 
we have validated a hypothesis, and we have the highest 
confidence that the selected anomaly points to the defect, or 
is at least part of the defect infection chain. In bc-1.06, after 
nullifying the root cause instruction, the program does not 
crash and prints the correct output to the screen. Such 
dynamic nullification can also serve as a temporary bug fix, 
if necessary. 

• Application execution does not crash. The program 
does not crash (or hang in infinite loop), but it produces 
incorrect or missing output. Such outcome is possible when 
the nullified instruction is vital to the computation of 
correct results. We can also expect this outcome, when 
dynamic nullification causes the program to take a different 
control path or exit prematurely.  

• Application execution fails. In this case, even after 
nullifying the violating instruction, the application fails 
with the same symptoms as before and with the same call-
chain stack. This does not necessarily imply that the bug is 
false positive. The reason is that the failure may be a result 
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         Figure 3. Using delta-debugging to automatically isolate relevant anomalies. The symbol   means that the token  
         is  present at the failure point. Anomalies marked in bold are allowed to start tokens while those in grey are not.  



of multiple infections of a single or several defects and 
fixing one of them is not sufficient to eliminate the 
problem. Therefore, if after isolation, more than one 
relevant anomaly remains and nullifying them one-by-one 
results in the same failure symptoms, we propose to nullify 
a combination of several dynamic anomalous instructions 
together. This approach becomes expensive if the number 
of anomalies is large because of the exponential number of 
possible combinations. In such a case, we could try to prune 
the search space by nullifying violating dynamic 
instructions based on their dependency relationship. For 
example, all anomalies in the same dependence chain can 
be nullified at once. Such dependency exploration is left as 
future work. 

• Application execution outcome is unknown. In some 
cases, nullifying a dynamic instance of a violating 
instruction causes the application to terminate with a 
different error from the original failure symptom. In this 
case, we cannot be sure whether the anomaly directly leads 
to the defect, and we mark it as unknown. In bc-1.06, after 
nullifying the other two isolated anomalies, the function 
call parameters to chunk_free become incorrect and bc-1.06 
crashes with a different error. Therefore, we label those two 
anomalies as unknown.  

Our experimental results show that nullifying the results 
of violating instructions is a simple, but effective approach 
to validate the relevance of anomalies. However, this part 
of our approach is not guaranteed to succeed because of 
incorrect outputs or unknown execution outcomes. Thus, 
we use validation to rank the isolated bugs from most to 
least relevant: execution succeeds, execution does not 
crash, execution is unknown, and finally execution fails. In 
the running example of bc-1.06, the root cause is ranked 
highest since “execution succeeds” when it is nullified. 

5. Experimental Methodology 
5.1. Dynamic Binary Instrumentation 
As a proof of concept and a working debugging tool, we 
implemented our approach using the Pin 2 dynamic binary 
instrumentation system  [19]. In this software 
implementation, instrumentation functions are inserted 
before each dynamic instruction (including instructions in 
shared libraries). The instrumentation functions perform 
anomaly detection, token propagation, and selective 
nullification of dynamic instructions, as described in 
Sections  2,  3, and  4, respectively. The experiments were 
conducted on a Red Hat Linux 8.0 system with an Intel 
Xeon 3.0 GHz processor. Because of the IA-32 instruction 
set architecture, we wrote custom token propagation rules 
for certain instructions. For example, in IA-32 it is a 
common practice to produce 0, by XORing a register with 
itself, such as ‘XOR %eax, %eax’. In this case, we reset the 
token of the destination register %eax. IA-32 also contains 
a variety of conditional move instructions, MOVcc. If a 
certain condition is satisfied the move operation is 
performed, otherwise the instruction turns into a no-op. For 
these instructions, we evaluate the condition and propagate 

the token only if the instruction will actually be executed. 
Other instructions, such as PUSH and POP, place or 
retrieve a value from the stack and at the same time 
increment or decrement the stack pointer. For those 
instructions, we do not propagate a token to the stack 
pointer (SP) register. Also, when nullifying the execution 
results of a dynamic PUSH or POP instruction, we restore 
the destination memory or register value, but we allow the 
update to the SP to occur. If we naively removed the whole 
instruction, the SP would be corrupted and the application 
would almost certainly crash in an unexpected way.  

5.2. Evaluated Applications 
Dynamic binary instrumentation allows us to test our 
approach on unmodified application binaries. We tested our 
proposed mechanism on six applications and seven bugs as 
shown in Table 1. Six of the applications are from the 
BugBench suite   [16]. Some of them contain more defects 
than those shown in Table 1, however we were not able to 
produce a program failure by exploiting those defects. For 
example, some memory corruption defects corrupt unused 
memory regions and do not alter program execution. 
Although some of these defects were captured by our bug 
predictors, since no failure can be observed our isolation 
and validation techniques cannot be applied. The last 
application that we tested is the gcc-2.95.2 compiler. The 
purpose of the gcc test is to evaluate the applicability of our 
approach to large programs. Gcc has an order of magnitude 
more lines of code than any of the BugBench programs. 
The real bug in gcc is analyzed in   [37]. 

6. Bug Detection Results 
Summarize your work and discuss future work. Table 2 
summarizes the results of our experiments. It reports the 
number of bug predictions at each stage of our approach: 
prediction, isolation, and validation (execution succeeds). 
At each stage, we show the number of bug predictions 
originating from each type of bug predictors, ‘D’ for 
DIDUCE, ‘A’ for AccMon, and ‘L’ for LoopCount. The 
column “Defect Rank” shows where the actual defect ranks 
among the isolated anomalies, based on the validation step 
detailed in Section 4 and combining three predictors. In 
other words, “Defect Rank” represents the maximum 
number of anomalies to be analyzed by the user to locate 
the actual defect. Taking gzip as an example, we have 1 
validated (with correct outputs) anomaly from each 
predictor. Among them, 2 are unique and one of them is the 
actual defect. So, the rank of the actual defect is reported as 
2. In polymorph, the actual defect is among the 3 unique 
isolated anomalies. Although the validation step fails to 
produce the correct output, the user needs to examine at 
most 3 anomalies to locate the defect. Results marked as 
“n/a” mean that the bug corrupted Pin’s memory as well 
causing it to crash.  

In our experiments, we compile all the applications with 
the “-static” option and monitor each instruction, including 
library code. Without monitoring library code, all bugs 



except the strcpy bugs in gzip and ncompress can be caught. 
Monitoring library code, however, slightly increases the 
initial number of bug predictions, which are quickly filtered 
by isolation and validation. The results in Table 2 are 
obtained using large 64K-entry prediction tables. The 
impact of hardware implementation and limited table sizes 
is discussed in Section  6.2. 

We can make several important observations from the 
results in Table 2. First, even if a large number of 
anomalies are signaled initially, they are quickly isolated to 
only a few. After the validation step, the remaining 
predictions accurately point to the actual defect. Except 
polymorph and ncompress (stack underflow), the rest of the 
programs produced correct outputs in the validation step. In 
the case of the stack underflow bug in ncompress, a single 
prediction is isolated. However, after nullifying this 
instruction during validation, the program fails with a 
different stack trace. Therefore, the outcome of the 
validation stage for this bug prediction is labeled as 
unknown. As described in Section  4, we use the validation 
stage to rank the isolated anomalies. Since there is a single 
isolated anomaly, its rank remains as 1 and the faulty code 
is still successfully pinpointed. In polymorph memory is 
corrupted from two different locations and the two 
instructions need to be nullified together in order for the 
crash to disappear. In gzip, DIDUCE validates a different 
anomaly from AccMon and LoopCount. AccMon and 
LoopCount both detect the bug root-cause. When nullifying 
the root-cause, we prevent the buffer overflow, and the 
application succeeds. In comparison, DIDUCE detects a 
violation in a function call to free, which ultimately crashes 
the program. When nullifying the anomaly signaled by 
DIDUCE, we allow the buffer overflow to occur, but we 
still prevent the application from crashing.  

Second, combining multiple bug predictors improves 
bug-detection coverage. For example, DIDUCE is not able 

to detect some bugs in gzip and ncompress, while AccMon 
and LoopCount catch those bugs. On the other hand, 
DIDUCE is the only one that catches the defect in gcc.           
Third, large applications such as gcc cause the bug 
predictors to report many anomalies, which highlights that 
the traditional approaches based solely on anomaly 
detection are less practical for large applications. As shown 
in Table 2, even though DIDUCE signaled the violation, 
without our approach DIDUCE will not be able to pinpoint 
the root cause since it is buried in too many (hundreds of) 
false positives. Next, we present a detailed case study on 
gcc, as it reveals some interesting aspects of our proposed 
approach. 

6.1. Case Study: The gcc 2.95.2 Compiler 
The gcc 2.95.2 compiler has a defect, which causes the 
compiler to crash when compiling the program ‘fail.c’ with 
optimizations. The program ‘fail.c’ is shown in Figure 4.  

The root-cause of the failure is a function call to 
apply_distributive_law in combine.c: lines 4013-4018, 
listed in Figure 5. The call to apply_distributive_law 
transforms expressions of the form (MULT (PLUS A B) C) 
to the form (PLUS (MULT A C1) (MULT B C2)), see 
Figure 6 (a) and (b). The problem is that C1 and C2 share a 
common grandchild (the macro XEXP(x, 1)) and thus they 
create a cycle in the abstract syntax tree, Figure 6 (c). 
Subsequent versions of gcc have fixed this defect by calling 
the apply_distributive_law function with a copy of C2 to 
prevent the common grandchild: copy_rtx (XEXP (x, 1)). 
Because of the cycle in the abstract syntax tree, the gcc 
compiler plunges into an infinite recursion loop in the 
function if_then_else_cond in combine.c: lines 6757-6788. 
The infinite recursion loop consumes so much stack space 
that eventually causes the operating system to terminate 
gcc. Using the call stack trace, we identified the function 
if_then_else_cond as the one in the infinite recursion loop. 

Table 1. Evaluated applications including the defect location and description. 
Application Lines of Code Defect Location Defect Description 
bc-1.06 17,042 storage.c: 176 Incorrect bounds checking causes heap buffer overflow 
gzip-1.2.4 8,163 gzip.c: 1009 Buffer overflow due to misuse of library call strcpy  
ncompress-4.2.4 
2 defects 

1,922 compress42.c: 886 
and 1740 

Buffer overflow due to misuse of library call strcpy 
Incorrect bounds checking causes stack buffer underflow 

polymorph-0.4.0 716 polymorph.c: 200 Incorrect bounds checking causes stack buffer overflow 
man-1.5h1 4675 man.c:998 Incorrect loop exit condition causes stack buffer overflow 
gcc-2.95.2 338,000 combine.c: 4013 Incorrect call to apply_distributive_law causes a loop in the RTL tree 

Table 2. Bug detection results (The bug predictions are from three predictors: D- DIDUCE, A-AccMon and L-Loop).   
 Applications are compiled with “-static” option and library code is monitored for anomalies.  

Initial Bug Predictions Isolated Bug Predictions Validated (Application Succeeds) Application 
D A L D A L D A L 

Defect 
Rank 

bc-1.06 24 68 36 3 2 4 1 1 1 1 
gzip-1.2.4 21 40 19 1 1 1 1 1 1 2 
ncompress-4.2.4 (strcpy defect) 6 7 6 2 2 1 0 1 1 1 
ncompress-4.2.4 (stack underflow) 2 4 n/a 1 1 0 0 0 0 1 
polymorph-0.4.0 21 10 20 3 1 0 0 0 0 3 
man-1.5h1 15 114 46 2 2 0 1 1 0 1 
gcc-2.95.2 768 1062 666 84 130 47 2 4 3 9 



This function constitutes the failure point of the program, 
and thus during automated debugging we examine the 
function call parameters for the token.  

1   double mult(double z[], int n){ 
2       int i, j; 
3 
4        i = 0; 
5        for(j =0; j<n; j++){ 
6            i = i + j + 1; 
7            z[i] = z[i] * (z[0] + 1.0); 
8        } 
9        return z[n]; 
10   } 

Figure 4. The fail.c program causes gcc 2.95.2 to crash.  
4009    case MULT:  
4010    /* If we have (mult (plus A B) C), apply the 
                 distributive law and then the inverse  
                 distributive law to see if things simplify. */ 
4011      if (GET_CODE (XEXP (x, 0)) == PLUS) 
4012      { 
4013           x = apply_distributive_law 
4014               (gen_binary (PLUS, mode, 
4015                     gen_binary (MULT, mode, 
4016                           XEXP (XEXP (x, 0), 0), XEXP (x, 1)), 
4017                     gen_binary (MULT, mode, 
4018                          XEXP (XEXP (x, 0), 1), XEXP (x, 1))));  
            /*defect: causes a cycle in the abstract syntax tree */ 
4019 
4020           if (GET_CODE (x) != MULT) 
4021               return x; 
4022      } 
4023      break; 

Figure 5. GCC defect: the call to apply_distributive_law 
creates a cycle in the RTL tree.  

Zeller   [37] showed that removing ‘+ 1.0’ on line 6 from 
‘fail.c’, makes the failure disappear. We used this passing 
input, as well as several other random C programs to train 
the bug predictors. After the training phase, we ran gcc on 
fail.c. DIDUCE produced 768 anomalies and 743 of them 
were ‘new-code’ anomalies. Since the failure point carried 
the token, we continued with the next step of our approach: 
automatic isolation of relevant bug predictions. After 571 
delta-debugging runs, the number of anomalies was reduced 
to 84. Each of those 84 anomalies propagates the token to 
the failure point and constitutes a hypothesis for the root 
cause of the program failure. In the third step, we 
automatically validated each of these hypotheses. After the 
validation step, the 84 anomalies were classified as follows: 
application succeeds 2, application does not crash 9, 
unknown 28, and application fails 45. Nullifying the results 
of the 2 successfully validated instructions breaks the cycle 

in the abstract syntax tree and gcc does not enter into 
infinite recursion. Moreover, gcc produces a correct and 
working executable program. One of the validated 
anomalies corresponds to the root cause on line 17 in Figure 
5. The other one is also involved in the construction of this 
portion of the abstract tree, which is the reason why it also 
breaks the cycle. Thus, we reduce the number of DIDUCE 
violations from 768 to only 2. To understand why gcc 
produces correct outputs in those two cases, consider Figure 
6 again. The buggy version of gcc transforms the RTL tree 
as shown in Figure 6 (a) and (c). However, due to 
dynamically nullifying a certain instruction, the 
construction of the RTL tree remains incomplete, Figure 6 
(d). Gcc iterates over the RTL tree multiple times and 
performs simplifications recursively, maintaining an undo 
buffer for each transformation. After a simplification, the 
resulting expression is evaluated to determine if it is still 
valid and if the simplification is profitable. If the simplified 
expression is found not to be valid or not profitable, then it 
is restored to its original state from the undo buffer. During 
our validation experiment, the incomplete transformation of 
the RTL tree is undone, and gcc produces correct code. In 
comparison, during an unmodified gcc execution, gcc 
plunges into an infinite loop while evaluating the RTL 
transformation and thus it is never able to undo the 
transformation. The same isolation and validation process 
was also automatically carried out for AccMon and 
LoopCount bug predictions. The number of AccMon 
anomalies was reduced from 1062 to 4 (17 does not crash 
and 4 produce correct outputs). The 666 LoopCount 
anomalies were reduced to 3. Thus, the number of relevant 
predictions was reduced from (768+1062+666, 2430 unique 
ones) to only (2+4+3, 9 unique ones). This example 
demonstrates that our approach is scalable to large software 
programs, and is able to pinpoint the defect among only 9 
lines of code.  

6.2. Impact of Hardware Implementation 
Our proof-of-concept implementation using binary 
instrumentation incurs large performance overhead, 
typically two or three orders of magnitude. This is due to 
heavy instrumentation for each dynamic instruction 
(including library code). Combining multiple bug 
predictors, further contributes to this problem. To eliminate 
such overhead, we promote architectural support, which fits 
nicely for our proposed approach. Here, note that since our 
approach uses delta debugging to isolate relevant 
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    Figure 6. GCC RTL tree transformations before and after function call to “apply_distributive_law”.  



anomalies, multiple debugging runs are required. This 
overhead is not our major concern since the purpose of 
automated debugging is to use computers to relieve 
software developers of this tedious job. Instead, we focus 
on the performance overhead of each debugging run as it 
may be critical in reproducing timing-related bugs.  

Our proposed architectural support reuses the existing or 
previously proposed hardware structures in novel ways for 
debugging. Therefore, rather than presenting a detailed 
evaluation of hardware implementation issues such as area, 
latency or power, we analyze the impact of limited 
hardware resources on bug detection capability and show 
how our adaptive partition proposal in Section 2.2 solves 
the problem. In this experiment, we use 2k-entry prediction 
tables. If we do not apply our adaptive partition scheme, the 
debugging capability is impaired significantly due to 
frequent replacements, which may result in a high number 
of false positives or may even miss the actual root cause. 
For example, in gcc, the 2k-entry DIDUCE bug detector 
reports a total of 16,671 anomalies. Among those 
anomalies, many are detected as ‘new code’ violations 
incorrectly since the information of the executed dynamic 
instances are replaced. Such ‘new code’ violations further 
complicate the subsequent isolation or validation steps 
since all their dynamic instances need to be examined. To 
eliminate this adverse resource limitation impact, our 
proposed partition scheme tracks the number of 
replacements and adaptively partitions the code into a 
different number of regions, which are then monitored 
separately. This way, we can effectively reduce the resource 
requirement of the bug detectors. The bug detection results 
using our proposed adaptive partition scheme are reported 
in Table 3. Compared to Table 2, we can see that the 
number of initial bug predictions still varies. The reason is 
that with adaptive partitioning, the code is divided into only 
two or four regions for the BugBench applications, which 
under-performs a large 64K-entry table. On the other hand, 
in gcc, the code was partitioned into sixty-four regions, 
which has fewer replacements and false-positives than a 
64K table. However, the differences in initial bug 
predictions are quickly smoothed away after the isolation 
and validation steps, where the false-positives are discarded 
and the actual defects are ranked. 

6.3. Comparison to Other Approaches 
In this section, we compare our proposed approach to a 
state-of-art debugging technique based on failure-inducing 
chops   [10]. In this technique, the minimum failure-inducing 
inputs are isolated using delta-debugging  [40]. Then, a 
dynamic forward slice originating from the minimum 
failure-inducing input is created. The forward slice is 
intersected with the dynamic backward slice originating 
from the program failure point, to obtain a chop. The 
instructions in the resulting chop are relevant to both the 
failure-inducing input as well as the failure point, and thus 
are likely to contain the program defect. We implemented 
the chop, by using only the dynamic data slices and 
ignoring control dependencies. For bc-1.06 the defect was 
control dependent on the input, and so we manually 
expanded the slices to include the selected control 
dependences. A crash in Pin prevented us to obtain the chop 
for man-1.5h1. Because we only consider data 
dependencies, our resulting chop sizes are conservative, 
since the chops that we compute are a subset of the original 
chops. From the results presented in Table 4, we can see 
that our proposed approach pin-points the defect more 
accurately and presents the user a much smaller set of code 
to analyze. The reason is that our approach constructs 
dynamic slices originating from program anomalies rather 
than the program input. On the other hand, the failure-
inducing chop approach is more general at the cost of 
requiring backward slicing and may find defects that escape 
our bug predictors. However, the large size of the failure-
inducing chops, e.g., 1335 instructions in gcc, makes it very 
difficult for the user to analyze.  
Table 4. Number of instructions in failure-inducing chops 
vs. the faulty code pinpointed by the proposed approach.  

Application Failure-Inducing 
Chops 

Proposed 
Approach 

bc-1.06 167 1 
gzip-1.2.4 6 2 
ncompress-4.2.4  
(strcpy defect) 

4 1 

ncompress-4.2.4  
(stack underflow) 

11 1  

polymorph-0.4.0 8 3 
man-1.5h1 n/a 1 
gcc-2.95.2 1335 9 

Table 3. Bug detection results with adaptive partitioning of the bug predictor tables. Applications are compiled with “-
static” option and library code is monitored for anomalies.  

Initial Bug Predictions Isolated Bug Predictions Validated (Application Succeeds) Application 
D A L D A L D A L 

Defect 
Rank 

bc-1.06 48 79 40 6 3 4 1 1 1 1 
gzip-1.2.4 66 62 30 2 1 1 1 1 1 2 
ncompress-4.2.4 (strcpy defect) 7 6 6 0 1 1 0 1 1 1 
ncompress-4.2.4 (stack underflow) 7 1 n/a 1 1 0 0 0 0 1 
polymorph-0.4.0 24 10 20 4 1 0 0 0 0 4 
man-1.5h1 31 115 36 3 2 0 1 1 0 1 
gcc-2.95.2 210 380 424 17 38 32 1 4 1 6 



7. Limitations and Future Directions 
In this section, we highlight the limitations of our proposed 
automated debugging approach. First, the effectiveness of 
our scheme relies on the ability of bug predictors to signal 
relevant anomalies. If the defect is not signaled as an 
anomaly by the bug predictors, it will go undetected. As 
part of our future work, we are investigating the effects on 
program behavior caused by different types of software 
defects. One of them is invariance in redundant operations. 
It has been shown in previous work that redundant 
operations, such as impossible Boolean conditions, critical 
sections without shared state, variables written but never 
read, are likely indicators of software defects   [34]. During 
our study with dynamic program execution, we observed a 
new locality that some instructions are very likely to 
produce redundant assignments, while others almost never 
result in redundant operations. Similar to other bug 
predictors, we can train a prediction table or a bloom filter 
to learn this locality. Then, any instruction performing an 
unexpected redundant operation will signal an anomaly. 
Our preliminary studies indicate that this approach can 
detect some bugs, including some logical ones from   [2], 
which the other bug predictors fail to detect.  

Second, in our current token tracking approach for bug 
isolation, only data dependencies are used to propagate the 
token. However, it is possible that an anomaly only leads to 
a branch condition and alters the control flow of a program. 
Since tokens are not propagated based on control 
dependencies, the token information may be lost in such 
cases. To address this problem, we can use confident 
branch mispredictions to filter this type of anomalies. In 
other words, a detected anomaly will be considered relevant 
only if it leads to a confident branch misprediction. Among 
the buggy code we examined, however, we have not found 
such a bug to evaluate this solution. 

Third, the automatic verification approach can be further 
improved to serve as automatic program patches. As we 
could see from our gcc case study, about a third of the 
validation experiments resulted in an unknown state. Such 
unknown state is undesirable for systems that require 
failure-oblivious computing or self-healing. More 
intelligent approaches such as jumping to existing error 
handling code   [28] may result in a safer program state. 

Fourth, this paper shows that our proposed scheme is 
effective at debugging deterministic bugs. Further 
investigation on how to predict, isolate and validate 
concurrency bugs is part of our future work.  

8. Related Work 
There exists a rich body of research work to automate or 
facilitate software debugging. Due to space limitations, we 
briefly describe those works that are most closely related to 
ours and have not been previously described.   

Anomaly Detection Dynamic program invariants were 
introduced in   [8, 9] to facilitate program evolution and 
detect software defects. DIDUCE   [11] and AccMon [44], as 

described in Section  3, exploit a compact representation of 
value-based or store-set invariants. Program anomalies have 
been shown useful to detect inconsistent use of locks   [27] 
or atomicity violations   [17, 18] in multithreaded programs. 
In  [24], dynamic invariants have also been used in detecting 
and filtering soft errors.  

Code coverage or spectra between passing and failing 
runs   [12, 25] has been used for software debugging based 
on the observation that code executed only during the 
failing run(s) is more likely to contain software defects. The 
DIDUCE predictor that we use also has the capability to 
signal such ‘new-code’ anomalies, which combined with 
isolation and validation, were extremely helpful in pin-
pointing the defect in gcc.  

Dynamic Program Slicing Program slicing   [31, 33] 
facilitates debugging, by presenting to the programmer all 
the statements which could possibly influence a variable of 
interest, and excluding the statements which are irrelevant. 
Dynamic program slicing   [1, 14]  includes all the 
statements which influence a variable of interest during a 
specific program run. Dynamic slicing typically results in a 
much smaller number of relevant statements than static 
slicing, but may still require the programmer to examine a 
significant portion of the program to locate the defect. To 
address this problem, a confidence mechanism is proposed 
in   [41] to prune dynamic backward slices. The insight is 
that a statement that leads to the failure point may also 
produce correct values before the failure. The confidence of 
a statement is then computed from the profile of how likely 
it produces the incorrect values. Our approach is most 
closely related to failure-inducing chops   [10], which we 
discuss in Section  6.3.  

Delta Debugging Delta debugging is an automated 
process to isolate differences (deltas) between a passing and 
a failing run. The delta-debugging algorithm was first 
introduced by Zeller and applied to automatically isolate the 
failure inducing changes between an old and a new version 
of a program   [38]. Subsequently, delta debugging is used to 
isolate and simplify failure-inducing input   [40], to isolate 
failure inducing differences in program state   [37], and to 
obtain cause-effect chains   [4] that lead to the program 
failure. In our work, we apply the delta-debugging 
algorithm to isolate relevant bug predictions. Recent 
advances to speed up delta debugging   [20] can also be used 
to improve our bug isolation process. 

Nullifying Instructions Concurrently to our work, D. 
Jeffrey et al. [14] proposed to suppress/nullify memory 
writes to detect memory corruption bugs. In comparison, 
our approach is more general since we nullify instructions 
to validate various bugs and not only memory corruption. 
Also, nullifying is one step of our proposed approach.  

Architectural Support Recently, a growing interest in 
architectural support for software debugging has been 
observed. iWatcher   [43] exploits architecture support to 
implement flexible watch points to monitor program 
execution. Given the difficulty of reproducing failures, 
especially synchronization problems in multithreaded 



applications, hardware assisted checkpoint-replay schemes 
[13, 13, 21, 22, 23, 29, 35, 36] have been proposed for 
deterministic replay of faulty runs. Although our work 
focuses on different aspects of software debugging, it 
benefits from these schemes as reproducing program 
failures is essential for any automated debugging process.  

9. Conclusions 
In this paper, we present a novel, automated approach to 
pinpoint the root causes of software failures. Our approach 
consists of three main components. First, we use a set of 
bug predictors to detect anomalies during program 
execution. Second, among the detected anomalies, we 
automatically isolate only the relevant ones. To achieve 
this, we construct the forward slices of anomalies to 
determine if they lead to the failure point. Each of the 
isolated anomalies then forms a hypothesis for the root 
cause of the failure. Third, we validate each hypothesis by 
nullifying the anomalous execution results. If the failure 
disappears, we can be confident that we have pinpointed the 
defect or the bug infection chain.  We demonstrate that our 
approach is very accurate in pin-pointing the defects in all 
seven applications that we tested, and also outperforms 
existing state of the art debugging techniques. Further, we 
show that our approach is scalable to large software 
programs, such as the gcc compiler.  
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