
Anomaly-Based Bug Prediction, Isolation, and Validation: An Automated
Approach for Software Debugging

Martin Dimitrov and Huiyang Zhou

School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816

{dimitrov,zhou}@cs.ucf.edu.edu

Abstract
Software defects, commonly known as bugs, present a
serious challenge for system reliability and dependability.
Once a program failure is observed, the debugging
activities to locate the defects are typically nontrivial and
time consuming. In this paper, we propose a novel
automated approach to pin-point the root-causes of software
failures.

Our proposed approach consists of three steps. The first
step is bug prediction, which leverages the existing work on
anomaly-based bug detection as exceptional behavior
during program execution has been shown to frequently
point to the root cause of a software failure. The second
step is bug isolation, which eliminates false-positive bug
predictions by checking whether the dynamic forward slices
of bug predictions lead to the observed program failure. The
last step is bug validation, in which the isolated anomalies
are validated by dynamically nullifying their effects and
observing if the program still fails. The whole bug
prediction, isolation and validation process is fully
automated and can be implemented with efficient
architectural support. Our experiments with 6 programs and
7 bugs, including a real bug in the gcc 2.95.2 compiler,
show that our approach is highly effective at isolating only
the relevant anomalies. Compared to state-of-art debugging
techniques, our proposed approach pinpoints the defect
locations more accurately and presents the user with a much
smaller code set to analyze.
Categories and Subject Descriptors C.0 [Computer
Systems Organization]: Hardware/Software interfaces;
D.2.5 [Software Engineering]: Testing and Debugging –
debugging aids
General Terms Languages, Reliability, Performance
Keywords Automated debugging, Architectural support

1. Introduction
Software defects1, commonly known as bugs, present a
serious challenge for computer system reliability and
dependability. Once a program failure such as a program
crash, an indefinite loop, or an incorrect output value, is
observed, the debugging process begins. Typically, the
point of the failure (i.e., the instruction where the failure is
manifested) is examined first. Then the programmer reasons
backwards along the instruction flow and tries to figure out
the cause of the failure. Such backward slicing [1, 14, 33]
(i.e., the process of determining all the instructions that
have affected the failing instruction) is a tedious and time
consuming effort, which may require the programmer to
examine a significant portion of the program. Certain bugs,
such as memory corruption, make this effort even harder
because their effects may manifest only after a very long
period of program execution or at unexpected locations.
After tracing back the chain of program statements, the
programmer creates a hypothesis of what could be the root
cause of the failure. He/she then verifies the hypothesis, by
modifying the source code and observing whether the
failure still occurs. If the failure is still there, then the
hypothesis was wrong and the search resumes. To relieve
developers of such repetitive exploration, there has been
active research toward automated debugging by leveraging
the power of modern processors to perform the task.

A key technique used in debugging (automated or not) is
backward slicing, which reasons backwards and tracks the
origins of a failure. The main issue with this approach is the
cost of constructing backward slices, especially dynamic
ones. In a recent work, Zhang et. al. [42] proposed an
algorithm to significantly reduce the slicing time and the
storage requirements so as to make it practical. However, as
pointed out in [10, 41], even with efficient backward
slicing, a nontrivial portion of the program needs to be
examined manually to locate the faulty code.

1 We use the terminology from the book “Why Programs Fail” [38]. The
programmer is responsible for creating a defect in the source code. At
runtime, the defect may create an infection in the program state. The
infection propagates until it becomes an observable program failure. The
terms: software defects, bugs, faulty code and failure root-cause, are used
interchangeably.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’09 March 7–11, 2009, Washington, DC, USA.
Copyright © 2009 ACM 978-1-60558-406-5/09/03…$5.00.

Another promising technique to facilitate debugging is
anomaly-based bug detection [8, 9, 11]. An anomaly
detector is either a software or hardware module initially
trained to recognize some aspects of correct program
behavior during passing program phases/runs (i.e., runs that
do not crash or produce faulty results). Then, it is used
during a faulty program phase/run to detect violations of the
previously learned behavior. Previous works [11, 44] show
that such anomalies can lead the programmer to the root
cause of hard-to-find, latent bugs. The main issue with
those approaches is that they tend to report too many
anomalies and it is not clear which anomalies have a cause-
effect relation to the program failure.

In this paper, we propose a novel approach to automate
the debugging effort and accurately pinpoint the failure root
cause. It avoids the expensive backward slicing and
overcomes the limitations of the existing anomaly-based
bug detection schemes. The proposed approach contains
three steps, as illustrated in Figure 1.

Figure 1. Overview of the proposed automated debugging
process (the symbol ‘?’ represents a predicted bug).

After a program failure is observed during execution
(Figure 1a), the automated debugging process starts. The
failure point may be a crash, incorrect results, etc. In the
first step, we re-execute the program to reproduce the
failure using the existing work on faithful record and
replay. At the same time, we enable a set of bug predictors
to monitor program execution and signal any abnormal
behavior (Figure 1b). In this work, we leverage two
previously proposed bug detectors– DIDUCE [11] and
AccMon [44], and propose a new loop-count based bug
predictor. The combination of various bug predictors offers

higher bug coverage as a more complete set of program
invariants are monitored (see Section 6).

In step 2, we examine each of the predicted bugs to see
whether it leads to the failure and isolate only the relevant
ones (Figure 1c). To do so, we construct dynamic forward
slices from all the predicted bug points. With the anomaly-
based bug predictors, the forward slices include all the
instructions that have used anomalous results as source
operands, directly or indirectly. If the failing instruction is
not in the forward slice of a predicted defect, the predicted
defect is considered irrelevant and discarded. Compared to
the approaches built upon backward slicing, forward slicing
is much easier to compute and can be efficiently
constructed in hardware by leveraging tagged architectures
proposed for information flow or taint tracking [5, 6, 26,
30].

In step 3, we validate the isolated bugs by nullifying the
anomalous execution results (Figure 1d). If the failure
disappears, we know that the bug infection chain has been
broken, and we have a high confidence that the root cause
has been pinpointed. The number of validated defects after
this step is very small, even for large software programs
like the gcc compiler, showing that the proposed approach
accurately pinpoints to the software defect.

In summary, this paper makes the following
contributions:

• We propose a novel, automated approach to predict,
isolate and validate software defects. The proposed method
overcomes the limitations of existing anomaly-based bug
detection schemes and avoids the high cost of backward
slicing.

• Instead of requiring new hardware, we propose novel
ways to reuse existing or previously proposed hardware
structures for debugging, thereby reducing the overhead for
hardware implementation. We also propose an adaptive
partition scheme to overcome hardware resource limitation
on bug prediction tables.

• We create a useful software tool2 using the PIN 2
dynamic binary instrumentation system [19], to emulate the
proposed architecture support, which can also be used as a
standalone software for automated debugging.

• We perform a detailed evaluation on 6 programs with a
total of 7 bugs, including a real bug in the gcc-2.95.2
compiler, which highlights the limitations of existing bug
detection techniques. The experimental results show that
the proposed approach is highly effective at isolating only
the relevant anomalies and pin-pointing the defect location.
Compared to a state-of-art debugging technique based on
failure-inducing chops [10] our approach locates the defects
more accurately and presents the user with a much smaller
code set to analyze.

The remainder of the paper is organized as follows.
Anomaly-based bug prediction is addressed in Section 2.
Bug isolation using dynamic forward slicing is presented in
Section 3. Section 4 discusses the validation of the isolated

2 The tool is available at: http://csl.cs.ucf.edu/debugging.

time

Dynamic instruction stream

….

failure

(a) Program failure observed (b) Step 1: Anomaly-based
 bug/defect prediction

(d) Step 3: Validating isolated bug
predictions by nullifying the
anomalous effects

time

Dynamic instruction stream

….

 failure

?

?

?

?

time

Dynamic instruction stream

….

 failure

?

?

?

?

√ time

Dynamic instruction stream

….

?

(c) Step 2: Isolating relevant
anomalies via dependence

defect predictions by altering dynamic instruction
execution. The experimental methodology is in Section 5
and the experimental results are contained in Section 6. We
highlight the limitations of our work and discuss the future
directions in Section 7. The related work is presented in
Section 8. Finally, Section 9 concludes the paper.

2. Predicting Software Bugs
2.1. Method
Previous research [8, 9, 11] has observed that when infected
by a software bug, a program is very likely to behave in
some unexpected, abnormal ways. Common abnormal
instruction-level behavior includes events such as
producing out-of-bound addresses and values, executing
unusual control paths, causing page faults, performing
redundant computations and possibly many others. Given
the correlation between program anomalies and the
existence of software defects, several research works [11,
44] have used anomalies to locate the likely root causes of
software failures. In our proposed scheme, we use such
anomaly detection tools as bug predictors. Anomaly
detectors or bug predictors can be viewed as a way to
automatically infer program specifications from the passing
runs, and then to turn those specifications into ‘soft’
assertions for the failing run, meaning that we will record
the violation of those assertions instead of terminating the
program. One attractive feature of instruction-level
anomaly detectors is that they usually point to the first
consequence of the defect, or the first change from normal
to abnormal behavior (i.e., the first infection point). This is
very helpful in determining the root cause of latent bugs,
such as memory corruption, which may manifest as a
failure at an execution point far from the original faulty
code. Many bug predictors are possible and they can
monitor various program aspects to detect anomalies. Our
approach is not restricted to using any particular bug
predictor. A combination of multiple bug predictors is
preferable as a more complete set of program invariants are
monitored. In this paper, we leverage two previously
proposed anomaly detectors DIDUCE [11] and AccMon
[44] and propose a new one based on loop-count invariance.

DIDUCE exploits invariance in execution results, based
on the insight that most instructions tend to produce values
within a certain range, e.g. a variable “i”, is always between
0 and 100. This insight also applies to memory operations,
which usually access a certain data structure and produce a
limited range of addresses. DIDUCE learns the invariants
during passing program runs/phases by initially
hypothesizing a strict invariant and then relaxing the
invariant as new values are observed. During the failing
run, or the bug detection phase, any violation of the learned
invariants is reported as a possible cause of the program
failure. As a side benefit, DIDUCE can also report “new-
code” violations, or instructions, which have no invariance
information learned from the training runs. The invariants
in DIDUCE are represented in a compact form using a bit-
mask, which specifies the bit positions where execution

results are expected to vary. The variance between dynamic
execution results is computed by a simple XOR operation.

AccMon stands for Access Monitor [44]. Its main idea is
that for most memory locations only a few static
instructions access a given memory location. This locality
is also referred to as the load/store set of a memory location
 [3]. AccMon exploits this locality to detect memory related
defects. After learning the store sets during the training
runs, AccMon will make sure that each memory update
instruction belongs to the store set of the updated memory
location. If it does not, an anomaly will be signaled. Since
maintaining the store set for each memory location is
expensive, bloom filters are used to test for membership in
the set.

In this work, we also propose a new bug predictor to
monitor for abnormal number of loop iterations. In general,
program defects may result in abnormal control flow
behavior and branch mispredictions can used to detect
control flow anomalies. One possible approach is to use
mispredictions of branches with high confidence, as
exploited in [32] for soft-error protection. However, even
with a confidence mechanism, the misprediction rate
(which is in the range of one misprediction per ten-
thousand dynamic instructions) is still exceedingly high for
software-bug detection. It is not trivial to reason about the
effect that each of those mispredicted conditional branches
may have on the observed failure. Therefore, in this paper,
we propose to focus on one special type of branches, loop
branches. We learn the normal range of loop iterations
during passing runs, and detect too few or too many
iterations as anomalies during the failing runs. For each
anomaly, the instructions in the loop body will be examined
for their relevance to the failure using the approach
presented in Section 3. We call this bug predictor
LoopCount. As we will show in our experimental results
(see Section 6), such a simple loop-based bug predictor is
effective in catching some interesting memory corruption
defects, which DIDUCE misses.

Next, we use a code example from bc-1.06 to illustrate
each of the bug predictors. BC is a program from bugbench
 [16] and is an arbitrary precision calculator language.
Figure 2 shows the faulty code in function more_arrays().
This function is called when more storage needs to be
allocated to an array. It allocates a new, larger array, copies
the elements of the old array into the new one, and
initializes the remaining entries of the new array to NULL.
The defect is on line 18 and is due to the fact that a variable
v_count is used mistakenly instead of the correct variable
a_count. Thus, whenever v_count happens to be larger than
a_count, the buffer arrays will be overflown and its size
information, which is located right after the buffer, will be
lost. This results in a segmentation fault when
more_arrays() is called one more time, and the buffer with
corrupted size information is freed at line 23.

1 void more_arrays () {
2 int indx; int old_count;
3 bc_var_array **old_ary;
4
5 /* Save the old values. */
6 old_count = a_count;
7 old_ary = arrays;
8
9 /* Increment by a fixed amount and allocate. */
10 a_count += STORE_INCR;
11 arrays = (bc_var_array **)
 bc_malloc (a_count*sizeof(bc_var_array 12*));
12
13 /* Copy the old arrays. */
14 for (indx = 1; indx < old_count; indx++)
15 arrays[indx] = old_ary[indx];
16
17 /* Initialize the new elements. */
 /* defect: incorrect loop condition */
18 for (; indx < v_count; indx++){
 /* infection: overflows its size information */
19 arrays[indx] = NULL;
20
21 /* Free the old elements. */
22 if (old_count != 0){
 /* crash: when the buffer size is corrupted */
23 free (old_ary);
24 }
25 }

Figure 2. Incorrect loop condition in bc-1.06 leads to an
overflow in a heap buffer ‘arrays’, which corrupts its size
information. The subsequent call to free(old_ary) causes a
segmentation fault due to the corrupted size information.

To detect the bug in Figure 2, we initially trained all the
bug predictors using several BC runs such as computing
prime numbers, square roots, etc. Then, we executed BC
with a specially crafted input program, which was able to
trigger the defect and overflow the buffer on line 19. The
store instruction in assembly responsible for the overflow
is: “movl $0x0, (%eax, %ebx,4)”. During the passing runs,
DIDUCE has learned the range of addresses that this store
instruction accesses. During the failing run, more storage is
required and the function more_arrays() is called with
requests for larger arrays. This causes the loop on line 18 to
execute more times than usual and the store instruction on
line 19 to access a wider range of memory addresses.
DIDUCE detects this abnormal behavior and signals an
anomaly. It is interesting to note that if we changed the
variable v_count to the correct variable a_count, DIDUCE
would still signal an anomaly, which would then be a false
positive. This implies that DIDUCE does not exactly detect
the defect, but rather the abnormal behavior triggered by the
buggy input. In our particular example, DIDUCE signaled
an anomaly on line 19 in Figure 2, which is the immediate
infection point of the defect on line 18. Therefore, we
consider it a successful detection of the bug. Besides this
anomaly, DIDUCE also signaled twenty-three false-positive
ones, one of them on line 15. The rest of the false-positive
anomalies include eighteen “new-code” and four non new-
code anomalies in the same and other functions. AccMon
also detects the defect in Figure 2, because the store
operation on line 19 does not belong to the store set of the

corrupted memory location. In our implementation,
AccMon also signaled another 67 false-positive anomalies
(3 in this function and 64 in other functions). LoopCount
detected the abnormal behavior in the for-loop on line 18,
whose loop condition is the defect. It also signaled an
anomaly in the for-loop on line 14 (a false positive) and
thirty-four additional false positives in other functions.

One issue with AccMon is that virtual addresses of
memory objects allocated on the heap or stack may vary
among different program runs. Therefore, the invariants
obtained during the passing runs will not be useful for the
failing run. To solve this problem, AccMon uses a special
call-chain naming for stack and heap objects by intercepting
each memory allocation. In our implementation, we do not
use the call-chain naming strategy since we assume no
compiler/system support for intercepting memory
allocation. Instead, we use an offset address relative to the
current stack pointer for stack accesses. For heap accesses,
virtual addresses are used and our experiments show that it
results in a higher number of false alarms than reported in
 [44] but is still effective in detecting relevant anomalies.
The reason is that that we report new store addresses as
anomalies as well. AccMon utilizes different heuristics and
confidence mechanisms to reduce the number of false-
positive anomalies. For example, the compiler is used to
identify possible array and pointer accesses, which are more
likely to contain software defects. Memory accesses, which
are not pointer or array references, are not monitored. This
optimization reduces false positives but may cause AccMon
to miss some bugs. In our implementation, we choose to
monitor every memory update and use automated bug
isolation to eliminate false positives (see Section 3).

2.2. Architectural Support
The bug predictors described in this section are suitable for
hardware implementation. The reason is that modern
processors already exploit various program localities to
improve performance. Our proposed LoopCount bug
predictor is light weight since it can simply reuse existing
loop-branch predictors. The invariants used by DIDUCE
and AccMon, can be captured using cache structures with
limited sizes. In [7, 24], hardware implementations of
DIDUCE with limited sizes are proposed for either soft-
error detection [24] or software bug detection [7]. In this
work, we model DIDUCE as described in [7] by tracking
anomalies in store addresses. This approach reduces the
pressure on the DIDUCE table and is effective because
most bugs manifest through memory operations [16]. A
hardware implementation using cache-like structures was
proposed for AccMon in [44]. The most frequently
accessed addresses and their bloom filters are maintained in
a small cache with only 4 to 8 entries. In this paper, we
implement the AccMon bug predictor as a table of bloom
filters and also assume that part of this table can be cached
in hardware.

As highlighted in [44], efficient architectural support for
anomaly detectors has the benefits of minor performance

impact, high accuracy in run-time event measurement, and
portability. The high performance efficiency also makes it
possible for the detectors to be used in production runs to
generate detailed error reports. In our proposed automated
debugging approach, the hardware implementation also
enables efficient ways to change or invalidate dynamic
instruction execution – the third step of our approach. For
example, if an out-of-range store needs to be skipped during
the validation step, once an anomaly detector captures such
an out-of-range store address, it can inform the processor to
invalidate the corresponding dynamic instance. This way,
the validation can be performed without source code
modification or binary instrumentation.

A concern, however, lies in limited hardware resource,
which may cause both an increased number of false-
positives as well as a loss of bug detection coverage due to
replacements in prediction tables. To solve this problem, we
propose to adaptively partition a program into code regions
and use multiple runs to cover the whole program. In each
run, only one of the regions is monitored. The policy for
determining the code regions is as follows. If the number of
replacements in the predictor table exceeds a threshold T,
then we split the current program/region into two and
monitor each of them separately. We perform this partition
recursively, until the number of table replacements becomes
less than T. We also use a PC-based XOR function to
generate a uniform distribution of instructions among code
partitions. In our experiments in Section 6, we use a 2K-
entry prediction table and our splitting threshold T is 20.
The results show that the performance of this approach is
very close to that of a 64K-entries table and all root causes
are successfully detected.

3. Isolating Relevant Bug Predictions
3.1. Method
As discussed in Section 2, anomaly-based bug predictors
are capable of identifying abnormal behavior, which may
be a reason for the program failure. However, two problems
remain. First, it is not clear which anomaly(s) points to the
actual defect and which ones are false positive. In the
example in Figure 2, among the 24, 68 and 38 anomalies
detected by DIDUCE, AccMon and LoopCount,
respectively, the programmer is expected to go through
each of them to evaluate its validity. Depending on the size
of the software program and the quality of the training
inputs used to train the bug predictors, the number of false
positives can become very large. Second, there is always a
tradeoff between bug coverage and the number of false-
positive anomalies. On one hand, producing too many
anomalies places a burden on the programmer. On the other
hand, if the predictor is made very conservative and signals
only few anomalies using some heuristics or confidence
mechanism, some defects may go undetected. Our solution
to this problem is to allow each bug predictor to signal
anomalies aggressively, thereby increasing the coverage at
the cost of false positives. Then, an automated process is
devised to isolate relevant anomalies, i.e., those that

actually lead to the program failure, instead of placing the
burden upon the programmer. To achieve this, we construct
dynamic forward slices of each anomaly and retain only
those anomalies whose forward slices contain the point of
failure. The relevant anomalies can also be extracted from
the dynamic backward slice originating from the point of
failure. While both approaches are possible, computing
dynamic forward slices is much less expensive than
computing dynamic backward slices.

3.2. Architectural Support
In this paper, we propose to construct the dynamic forward
slices in hardware by leveraging tagged architectures
proposed for information flow tracking or taint tracking [5,
6, 30]. In our implementation, each memory word and each
register contains a single extra bit, which we call a token.
When bug predictors detect an anomaly, they will set the bit
(the token) associated with the destination memory location
or register of the violating instruction. Subsequent
instructions propagate this token based on data
dependencies. When the program eventually fails, we
examine the point of failure for the token. If the failure
point is a single instruction, e.g. causing a segmentation
fault, then we examine the source operands of the
instruction for the token. If the failure point is a function
call, such as a call to output erroneous results, or a call hung
in infinite recursion, then we examine the function call
parameters for the token. If the token is present, this means
that there is a relevant anomaly among those signaled by
the bug predictors.

We illustrate this point with the example from Figure 2.
The for-loops on lines 14 and 18 iterate more times than
usual. The bug predictors signal anomalies and mark with
tokens the two store instructions corresponding to:
“arrays[indx]=old_ary [indx]” on line 15 (false-positive)
and “arrays[indx]= NULL” on line 19 (buffer overflow).
Due to the overflow, the memory location, which holds the
size information of arrays, is overwritten by “arrays[indx] =
NULL”. Therefore, it will be marked with the token. When
the statement chunk_free inside the function free(old_ary)
on line 24 crashes the program, it will carry the token
because the corrupted size information is used as its
parameter.

 Since we have only one token and potentially many
anomalies, we do not know which specific anomalies are
responsible for propagating the token to the point of failure.
In this example, only the one corresponding to the
statement “arrays[indx] = NULL” on line 20 is responsible
for marking the corrupted memory location. To isolate the
relevant anomalies, we leverage the delta debugging
algorithm proposed by Zeller [38, 40]. The delta debugging
algorithm is a divide-and-conquer approach, which is used
to automatically simplify and isolate failure inducing input
 [40], failure inducing differences in program state [4], as
well as failure inducing cause-effect chains [37].
Conceptually, our anomaly isolation algorithm works as
follows. First we divide the anomalies in half, and allow

only one half to propagate the token. If the selected
anomalies do not propagate the token to the failure point,
then we discard them and continue the process with the
other half. If both halves propagate the token to the failure
point, this means that there is at least one relevant anomaly
in each half. In this case, we increase the granularity (divide
into quarters and eighths, etc) and continue the process. The
algorithm terminates, when we cannot divide the anomalies
any further and we have discovered all the relevant
anomalies. We illustrate the process in Figure 3 for our
running example of bc-1.06. We start with the 24
anomalies, detected by DIDUCE. In each run, the
anomalies marked in bold in Figure 3 are selected to
propagate the token, while the anomalies in grey are
ignored. After 15 delta debugging iterations, the anomalies
are reduced to only three. The defect “arrays[indx] =
NULL” on line 19 is among those three. The other two
isolated anomalies are responsible for setting up the
parameters to the function call chunk_free, which crashes
the program, and thus they are on the defect infection chain.
In general, the worst case complexity (i.e., the number of
delta debugging runs) is n2 + 3n [40], where n is the
number of anomalies. The process for AccMon is identical.
For LoopCount we mark all instructions in the loop body
with a single token.

4. Validating Bug Predictions
After isolating relevant anomalies, we are typically left with
only few remaining bug predictions. Each of these
remaining ones forms a hypothesis that it is the root cause
of the failure. As addressed in Section 1, the final step of a
debugging process is to validate the hypothesis by
modifying the suspicious code and observing if the failure
disappears. We propose to automate this part of the
debugging effort as well. We validate each hypothesis
individually, by applying a fix and observing whether the

failure still occurs. The fix is simply nullifying (or turning
into a no-op) the dynamic instance of the violating
instruction to prevent it from updating memory or its
destination register. In the case of ‘new code’ anomalies,
we do not know which dynamic instance of the instruction
is causing the problem, and thus we nullify every dynamic
instance. Consider again our example from bc-1.06. If we
do not allow the dynamic instruction: “arrays[indx] =
NULL”, which overflows the buffer, to be executed (i.e. if
we turn the instruction into a no-op), the size information
will not be corrupted and the segmentation fault disappears.
In general, after nullifying a dynamic instruction, four
possible outcomes can be expected:

• Application execution succeeds. We consider
execution to be successful, if the failure symptom (crash,
infinite loop, corrupted results) disappears and the output
produced by the program is correct. In this case, we say that
we have validated a hypothesis, and we have the highest
confidence that the selected anomaly points to the defect, or
is at least part of the defect infection chain. In bc-1.06, after
nullifying the root cause instruction, the program does not
crash and prints the correct output to the screen. Such
dynamic nullification can also serve as a temporary bug fix,
if necessary.

• Application execution does not crash. The program
does not crash (or hang in infinite loop), but it produces
incorrect or missing output. Such outcome is possible when
the nullified instruction is vital to the computation of
correct results. We can also expect this outcome, when
dynamic nullification causes the program to take a different
control path or exit prematurely.

• Application execution fails. In this case, even after
nullifying the violating instruction, the application fails
with the same symptoms as before and with the same call-
chain stack. This does not necessarily imply that the bug is
false positive. The reason is that the failure may be a result

an1
an2
an3
an4
an5
an6
an7
an8
an9
an10
an11
an12
an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an1
an2
an3
an4
an5
an6
an7
an8
an9
an10
an11
an12
an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an1
an2
an3
an4
an5
an6
an7
an8
an9
an10
an11
an12
an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15
an16
an17
an18
an19
an20
an21
an22
an23
an24

an13
an14
an15

an13
an14
an15

an13
an14

an13
an14

an22
an23
an24

an22
an23
an24

 Figure 3. Using delta-debugging to automatically isolate relevant anomalies. The symbol means that the token
 is present at the failure point. Anomalies marked in bold are allowed to start tokens while those in grey are not.

of multiple infections of a single or several defects and
fixing one of them is not sufficient to eliminate the
problem. Therefore, if after isolation, more than one
relevant anomaly remains and nullifying them one-by-one
results in the same failure symptoms, we propose to nullify
a combination of several dynamic anomalous instructions
together. This approach becomes expensive if the number
of anomalies is large because of the exponential number of
possible combinations. In such a case, we could try to prune
the search space by nullifying violating dynamic
instructions based on their dependency relationship. For
example, all anomalies in the same dependence chain can
be nullified at once. Such dependency exploration is left as
future work.

• Application execution outcome is unknown. In some
cases, nullifying a dynamic instance of a violating
instruction causes the application to terminate with a
different error from the original failure symptom. In this
case, we cannot be sure whether the anomaly directly leads
to the defect, and we mark it as unknown. In bc-1.06, after
nullifying the other two isolated anomalies, the function
call parameters to chunk_free become incorrect and bc-1.06
crashes with a different error. Therefore, we label those two
anomalies as unknown.

Our experimental results show that nullifying the results
of violating instructions is a simple, but effective approach
to validate the relevance of anomalies. However, this part
of our approach is not guaranteed to succeed because of
incorrect outputs or unknown execution outcomes. Thus,
we use validation to rank the isolated bugs from most to
least relevant: execution succeeds, execution does not
crash, execution is unknown, and finally execution fails. In
the running example of bc-1.06, the root cause is ranked
highest since “execution succeeds” when it is nullified.

5. Experimental Methodology
5.1. Dynamic Binary Instrumentation
As a proof of concept and a working debugging tool, we
implemented our approach using the Pin 2 dynamic binary
instrumentation system [19]. In this software
implementation, instrumentation functions are inserted
before each dynamic instruction (including instructions in
shared libraries). The instrumentation functions perform
anomaly detection, token propagation, and selective
nullification of dynamic instructions, as described in
Sections 2, 3, and 4, respectively. The experiments were
conducted on a Red Hat Linux 8.0 system with an Intel
Xeon 3.0 GHz processor. Because of the IA-32 instruction
set architecture, we wrote custom token propagation rules
for certain instructions. For example, in IA-32 it is a
common practice to produce 0, by XORing a register with
itself, such as ‘XOR %eax, %eax’. In this case, we reset the
token of the destination register %eax. IA-32 also contains
a variety of conditional move instructions, MOVcc. If a
certain condition is satisfied the move operation is
performed, otherwise the instruction turns into a no-op. For
these instructions, we evaluate the condition and propagate

the token only if the instruction will actually be executed.
Other instructions, such as PUSH and POP, place or
retrieve a value from the stack and at the same time
increment or decrement the stack pointer. For those
instructions, we do not propagate a token to the stack
pointer (SP) register. Also, when nullifying the execution
results of a dynamic PUSH or POP instruction, we restore
the destination memory or register value, but we allow the
update to the SP to occur. If we naively removed the whole
instruction, the SP would be corrupted and the application
would almost certainly crash in an unexpected way.

5.2. Evaluated Applications
Dynamic binary instrumentation allows us to test our
approach on unmodified application binaries. We tested our
proposed mechanism on six applications and seven bugs as
shown in Table 1. Six of the applications are from the
BugBench suite [16]. Some of them contain more defects
than those shown in Table 1, however we were not able to
produce a program failure by exploiting those defects. For
example, some memory corruption defects corrupt unused
memory regions and do not alter program execution.
Although some of these defects were captured by our bug
predictors, since no failure can be observed our isolation
and validation techniques cannot be applied. The last
application that we tested is the gcc-2.95.2 compiler. The
purpose of the gcc test is to evaluate the applicability of our
approach to large programs. Gcc has an order of magnitude
more lines of code than any of the BugBench programs.
The real bug in gcc is analyzed in [37].

6. Bug Detection Results
Summarize your work and discuss future work. Table 2
summarizes the results of our experiments. It reports the
number of bug predictions at each stage of our approach:
prediction, isolation, and validation (execution succeeds).
At each stage, we show the number of bug predictions
originating from each type of bug predictors, ‘D’ for
DIDUCE, ‘A’ for AccMon, and ‘L’ for LoopCount. The
column “Defect Rank” shows where the actual defect ranks
among the isolated anomalies, based on the validation step
detailed in Section 4 and combining three predictors. In
other words, “Defect Rank” represents the maximum
number of anomalies to be analyzed by the user to locate
the actual defect. Taking gzip as an example, we have 1
validated (with correct outputs) anomaly from each
predictor. Among them, 2 are unique and one of them is the
actual defect. So, the rank of the actual defect is reported as
2. In polymorph, the actual defect is among the 3 unique
isolated anomalies. Although the validation step fails to
produce the correct output, the user needs to examine at
most 3 anomalies to locate the defect. Results marked as
“n/a” mean that the bug corrupted Pin’s memory as well
causing it to crash.

In our experiments, we compile all the applications with
the “-static” option and monitor each instruction, including
library code. Without monitoring library code, all bugs

except the strcpy bugs in gzip and ncompress can be caught.
Monitoring library code, however, slightly increases the
initial number of bug predictions, which are quickly filtered
by isolation and validation. The results in Table 2 are
obtained using large 64K-entry prediction tables. The
impact of hardware implementation and limited table sizes
is discussed in Section 6.2.

We can make several important observations from the
results in Table 2. First, even if a large number of
anomalies are signaled initially, they are quickly isolated to
only a few. After the validation step, the remaining
predictions accurately point to the actual defect. Except
polymorph and ncompress (stack underflow), the rest of the
programs produced correct outputs in the validation step. In
the case of the stack underflow bug in ncompress, a single
prediction is isolated. However, after nullifying this
instruction during validation, the program fails with a
different stack trace. Therefore, the outcome of the
validation stage for this bug prediction is labeled as
unknown. As described in Section 4, we use the validation
stage to rank the isolated anomalies. Since there is a single
isolated anomaly, its rank remains as 1 and the faulty code
is still successfully pinpointed. In polymorph memory is
corrupted from two different locations and the two
instructions need to be nullified together in order for the
crash to disappear. In gzip, DIDUCE validates a different
anomaly from AccMon and LoopCount. AccMon and
LoopCount both detect the bug root-cause. When nullifying
the root-cause, we prevent the buffer overflow, and the
application succeeds. In comparison, DIDUCE detects a
violation in a function call to free, which ultimately crashes
the program. When nullifying the anomaly signaled by
DIDUCE, we allow the buffer overflow to occur, but we
still prevent the application from crashing.

Second, combining multiple bug predictors improves
bug-detection coverage. For example, DIDUCE is not able

to detect some bugs in gzip and ncompress, while AccMon
and LoopCount catch those bugs. On the other hand,
DIDUCE is the only one that catches the defect in gcc.
Third, large applications such as gcc cause the bug
predictors to report many anomalies, which highlights that
the traditional approaches based solely on anomaly
detection are less practical for large applications. As shown
in Table 2, even though DIDUCE signaled the violation,
without our approach DIDUCE will not be able to pinpoint
the root cause since it is buried in too many (hundreds of)
false positives. Next, we present a detailed case study on
gcc, as it reveals some interesting aspects of our proposed
approach.

6.1. Case Study: The gcc 2.95.2 Compiler
The gcc 2.95.2 compiler has a defect, which causes the
compiler to crash when compiling the program ‘fail.c’ with
optimizations. The program ‘fail.c’ is shown in Figure 4.

The root-cause of the failure is a function call to
apply_distributive_law in combine.c: lines 4013-4018,
listed in Figure 5. The call to apply_distributive_law
transforms expressions of the form (MULT (PLUS A B) C)
to the form (PLUS (MULT A C1) (MULT B C2)), see
Figure 6 (a) and (b). The problem is that C1 and C2 share a
common grandchild (the macro XEXP(x, 1)) and thus they
create a cycle in the abstract syntax tree, Figure 6 (c).
Subsequent versions of gcc have fixed this defect by calling
the apply_distributive_law function with a copy of C2 to
prevent the common grandchild: copy_rtx (XEXP (x, 1)).
Because of the cycle in the abstract syntax tree, the gcc
compiler plunges into an infinite recursion loop in the
function if_then_else_cond in combine.c: lines 6757-6788.
The infinite recursion loop consumes so much stack space
that eventually causes the operating system to terminate
gcc. Using the call stack trace, we identified the function
if_then_else_cond as the one in the infinite recursion loop.

Table 1. Evaluated applications including the defect location and description.
Application Lines of Code Defect Location Defect Description
bc-1.06 17,042 storage.c: 176 Incorrect bounds checking causes heap buffer overflow
gzip-1.2.4 8,163 gzip.c: 1009 Buffer overflow due to misuse of library call strcpy
ncompress-4.2.4
2 defects

1,922 compress42.c: 886
and 1740

Buffer overflow due to misuse of library call strcpy
Incorrect bounds checking causes stack buffer underflow

polymorph-0.4.0 716 polymorph.c: 200 Incorrect bounds checking causes stack buffer overflow
man-1.5h1 4675 man.c:998 Incorrect loop exit condition causes stack buffer overflow
gcc-2.95.2 338,000 combine.c: 4013 Incorrect call to apply_distributive_law causes a loop in the RTL tree

Table 2. Bug detection results (The bug predictions are from three predictors: D- DIDUCE, A-AccMon and L-Loop).
 Applications are compiled with “-static” option and library code is monitored for anomalies.

Initial Bug Predictions Isolated Bug Predictions Validated (Application Succeeds) Application
D A L D A L D A L

Defect
Rank

bc-1.06 24 68 36 3 2 4 1 1 1 1
gzip-1.2.4 21 40 19 1 1 1 1 1 1 2
ncompress-4.2.4 (strcpy defect) 6 7 6 2 2 1 0 1 1 1
ncompress-4.2.4 (stack underflow) 2 4 n/a 1 1 0 0 0 0 1
polymorph-0.4.0 21 10 20 3 1 0 0 0 0 3
man-1.5h1 15 114 46 2 2 0 1 1 0 1
gcc-2.95.2 768 1062 666 84 130 47 2 4 3 9

This function constitutes the failure point of the program,
and thus during automated debugging we examine the
function call parameters for the token.

1 double mult(double z[], int n){
2 int i, j;
3
4 i = 0;
5 for(j =0; j<n; j++){
6 i = i + j + 1;
7 z[i] = z[i] * (z[0] + 1.0);
8 }
9 return z[n];
10 }

Figure 4. The fail.c program causes gcc 2.95.2 to crash.
4009 case MULT:
4010 /* If we have (mult (plus A B) C), apply the
 distributive law and then the inverse
 distributive law to see if things simplify. */
4011 if (GET_CODE (XEXP (x, 0)) == PLUS)
4012 {
4013 x = apply_distributive_law
4014 (gen_binary (PLUS, mode,
4015 gen_binary (MULT, mode,
4016 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4017 gen_binary (MULT, mode,
4018 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
 /*defect: causes a cycle in the abstract syntax tree */
4019
4020 if (GET_CODE (x) != MULT)
4021 return x;
4022 }
4023 break;

Figure 5. GCC defect: the call to apply_distributive_law
creates a cycle in the RTL tree.

Zeller [37] showed that removing ‘+ 1.0’ on line 6 from
‘fail.c’, makes the failure disappear. We used this passing
input, as well as several other random C programs to train
the bug predictors. After the training phase, we ran gcc on
fail.c. DIDUCE produced 768 anomalies and 743 of them
were ‘new-code’ anomalies. Since the failure point carried
the token, we continued with the next step of our approach:
automatic isolation of relevant bug predictions. After 571
delta-debugging runs, the number of anomalies was reduced
to 84. Each of those 84 anomalies propagates the token to
the failure point and constitutes a hypothesis for the root
cause of the program failure. In the third step, we
automatically validated each of these hypotheses. After the
validation step, the 84 anomalies were classified as follows:
application succeeds 2, application does not crash 9,
unknown 28, and application fails 45. Nullifying the results
of the 2 successfully validated instructions breaks the cycle

in the abstract syntax tree and gcc does not enter into
infinite recursion. Moreover, gcc produces a correct and
working executable program. One of the validated
anomalies corresponds to the root cause on line 17 in Figure
5. The other one is also involved in the construction of this
portion of the abstract tree, which is the reason why it also
breaks the cycle. Thus, we reduce the number of DIDUCE
violations from 768 to only 2. To understand why gcc
produces correct outputs in those two cases, consider Figure
6 again. The buggy version of gcc transforms the RTL tree
as shown in Figure 6 (a) and (c). However, due to
dynamically nullifying a certain instruction, the
construction of the RTL tree remains incomplete, Figure 6
(d). Gcc iterates over the RTL tree multiple times and
performs simplifications recursively, maintaining an undo
buffer for each transformation. After a simplification, the
resulting expression is evaluated to determine if it is still
valid and if the simplification is profitable. If the simplified
expression is found not to be valid or not profitable, then it
is restored to its original state from the undo buffer. During
our validation experiment, the incomplete transformation of
the RTL tree is undone, and gcc produces correct code. In
comparison, during an unmodified gcc execution, gcc
plunges into an infinite loop while evaluating the RTL
transformation and thus it is never able to undo the
transformation. The same isolation and validation process
was also automatically carried out for AccMon and
LoopCount bug predictions. The number of AccMon
anomalies was reduced from 1062 to 4 (17 does not crash
and 4 produce correct outputs). The 666 LoopCount
anomalies were reduced to 3. Thus, the number of relevant
predictions was reduced from (768+1062+666, 2430 unique
ones) to only (2+4+3, 9 unique ones). This example
demonstrates that our approach is scalable to large software
programs, and is able to pinpoint the defect among only 9
lines of code.

6.2. Impact of Hardware Implementation
Our proof-of-concept implementation using binary
instrumentation incurs large performance overhead,
typically two or three orders of magnitude. This is due to
heavy instrumentation for each dynamic instruction
(including library code). Combining multiple bug
predictors, further contributes to this problem. To eliminate
such overhead, we promote architectural support, which fits
nicely for our proposed approach. Here, note that since our
approach uses delta debugging to isolate relevant

PLUS

MULT

MEM

MEM

REG

MEM

(a) Correct RTL tree before

transformation
(b) Correct RTL tree after

transformation
(c) Incorrect RTL tree after
transformation due to bug

(d) Incompletely transformed
tree due to bug validation

 Figure 6. GCC RTL tree transformations before and after function call to “apply_distributive_law”.

anomalies, multiple debugging runs are required. This
overhead is not our major concern since the purpose of
automated debugging is to use computers to relieve
software developers of this tedious job. Instead, we focus
on the performance overhead of each debugging run as it
may be critical in reproducing timing-related bugs.

Our proposed architectural support reuses the existing or
previously proposed hardware structures in novel ways for
debugging. Therefore, rather than presenting a detailed
evaluation of hardware implementation issues such as area,
latency or power, we analyze the impact of limited
hardware resources on bug detection capability and show
how our adaptive partition proposal in Section 2.2 solves
the problem. In this experiment, we use 2k-entry prediction
tables. If we do not apply our adaptive partition scheme, the
debugging capability is impaired significantly due to
frequent replacements, which may result in a high number
of false positives or may even miss the actual root cause.
For example, in gcc, the 2k-entry DIDUCE bug detector
reports a total of 16,671 anomalies. Among those
anomalies, many are detected as ‘new code’ violations
incorrectly since the information of the executed dynamic
instances are replaced. Such ‘new code’ violations further
complicate the subsequent isolation or validation steps
since all their dynamic instances need to be examined. To
eliminate this adverse resource limitation impact, our
proposed partition scheme tracks the number of
replacements and adaptively partitions the code into a
different number of regions, which are then monitored
separately. This way, we can effectively reduce the resource
requirement of the bug detectors. The bug detection results
using our proposed adaptive partition scheme are reported
in Table 3. Compared to Table 2, we can see that the
number of initial bug predictions still varies. The reason is
that with adaptive partitioning, the code is divided into only
two or four regions for the BugBench applications, which
under-performs a large 64K-entry table. On the other hand,
in gcc, the code was partitioned into sixty-four regions,
which has fewer replacements and false-positives than a
64K table. However, the differences in initial bug
predictions are quickly smoothed away after the isolation
and validation steps, where the false-positives are discarded
and the actual defects are ranked.

6.3. Comparison to Other Approaches
In this section, we compare our proposed approach to a
state-of-art debugging technique based on failure-inducing
chops [10]. In this technique, the minimum failure-inducing
inputs are isolated using delta-debugging [40]. Then, a
dynamic forward slice originating from the minimum
failure-inducing input is created. The forward slice is
intersected with the dynamic backward slice originating
from the program failure point, to obtain a chop. The
instructions in the resulting chop are relevant to both the
failure-inducing input as well as the failure point, and thus
are likely to contain the program defect. We implemented
the chop, by using only the dynamic data slices and
ignoring control dependencies. For bc-1.06 the defect was
control dependent on the input, and so we manually
expanded the slices to include the selected control
dependences. A crash in Pin prevented us to obtain the chop
for man-1.5h1. Because we only consider data
dependencies, our resulting chop sizes are conservative,
since the chops that we compute are a subset of the original
chops. From the results presented in Table 4, we can see
that our proposed approach pin-points the defect more
accurately and presents the user a much smaller set of code
to analyze. The reason is that our approach constructs
dynamic slices originating from program anomalies rather
than the program input. On the other hand, the failure-
inducing chop approach is more general at the cost of
requiring backward slicing and may find defects that escape
our bug predictors. However, the large size of the failure-
inducing chops, e.g., 1335 instructions in gcc, makes it very
difficult for the user to analyze.
Table 4. Number of instructions in failure-inducing chops
vs. the faulty code pinpointed by the proposed approach.

Application Failure-Inducing
Chops

Proposed
Approach

bc-1.06 167 1
gzip-1.2.4 6 2
ncompress-4.2.4
(strcpy defect)

4 1

ncompress-4.2.4
(stack underflow)

11 1

polymorph-0.4.0 8 3
man-1.5h1 n/a 1
gcc-2.95.2 1335 9

Table 3. Bug detection results with adaptive partitioning of the bug predictor tables. Applications are compiled with “-
static” option and library code is monitored for anomalies.

Initial Bug Predictions Isolated Bug Predictions Validated (Application Succeeds) Application
D A L D A L D A L

Defect
Rank

bc-1.06 48 79 40 6 3 4 1 1 1 1
gzip-1.2.4 66 62 30 2 1 1 1 1 1 2
ncompress-4.2.4 (strcpy defect) 7 6 6 0 1 1 0 1 1 1
ncompress-4.2.4 (stack underflow) 7 1 n/a 1 1 0 0 0 0 1
polymorph-0.4.0 24 10 20 4 1 0 0 0 0 4
man-1.5h1 31 115 36 3 2 0 1 1 0 1
gcc-2.95.2 210 380 424 17 38 32 1 4 1 6

7. Limitations and Future Directions
In this section, we highlight the limitations of our proposed
automated debugging approach. First, the effectiveness of
our scheme relies on the ability of bug predictors to signal
relevant anomalies. If the defect is not signaled as an
anomaly by the bug predictors, it will go undetected. As
part of our future work, we are investigating the effects on
program behavior caused by different types of software
defects. One of them is invariance in redundant operations.
It has been shown in previous work that redundant
operations, such as impossible Boolean conditions, critical
sections without shared state, variables written but never
read, are likely indicators of software defects [34]. During
our study with dynamic program execution, we observed a
new locality that some instructions are very likely to
produce redundant assignments, while others almost never
result in redundant operations. Similar to other bug
predictors, we can train a prediction table or a bloom filter
to learn this locality. Then, any instruction performing an
unexpected redundant operation will signal an anomaly.
Our preliminary studies indicate that this approach can
detect some bugs, including some logical ones from [2],
which the other bug predictors fail to detect.

Second, in our current token tracking approach for bug
isolation, only data dependencies are used to propagate the
token. However, it is possible that an anomaly only leads to
a branch condition and alters the control flow of a program.
Since tokens are not propagated based on control
dependencies, the token information may be lost in such
cases. To address this problem, we can use confident
branch mispredictions to filter this type of anomalies. In
other words, a detected anomaly will be considered relevant
only if it leads to a confident branch misprediction. Among
the buggy code we examined, however, we have not found
such a bug to evaluate this solution.

Third, the automatic verification approach can be further
improved to serve as automatic program patches. As we
could see from our gcc case study, about a third of the
validation experiments resulted in an unknown state. Such
unknown state is undesirable for systems that require
failure-oblivious computing or self-healing. More
intelligent approaches such as jumping to existing error
handling code [28] may result in a safer program state.

Fourth, this paper shows that our proposed scheme is
effective at debugging deterministic bugs. Further
investigation on how to predict, isolate and validate
concurrency bugs is part of our future work.

8. Related Work
There exists a rich body of research work to automate or
facilitate software debugging. Due to space limitations, we
briefly describe those works that are most closely related to
ours and have not been previously described.

Anomaly Detection Dynamic program invariants were
introduced in [8, 9] to facilitate program evolution and
detect software defects. DIDUCE [11] and AccMon [44], as

described in Section 3, exploit a compact representation of
value-based or store-set invariants. Program anomalies have
been shown useful to detect inconsistent use of locks [27]
or atomicity violations [17, 18] in multithreaded programs.
In [24], dynamic invariants have also been used in detecting
and filtering soft errors.

Code coverage or spectra between passing and failing
runs [12, 25] has been used for software debugging based
on the observation that code executed only during the
failing run(s) is more likely to contain software defects. The
DIDUCE predictor that we use also has the capability to
signal such ‘new-code’ anomalies, which combined with
isolation and validation, were extremely helpful in pin-
pointing the defect in gcc.

Dynamic Program Slicing Program slicing [31, 33]
facilitates debugging, by presenting to the programmer all
the statements which could possibly influence a variable of
interest, and excluding the statements which are irrelevant.
Dynamic program slicing [1, 14] includes all the
statements which influence a variable of interest during a
specific program run. Dynamic slicing typically results in a
much smaller number of relevant statements than static
slicing, but may still require the programmer to examine a
significant portion of the program to locate the defect. To
address this problem, a confidence mechanism is proposed
in [41] to prune dynamic backward slices. The insight is
that a statement that leads to the failure point may also
produce correct values before the failure. The confidence of
a statement is then computed from the profile of how likely
it produces the incorrect values. Our approach is most
closely related to failure-inducing chops [10], which we
discuss in Section 6.3.

Delta Debugging Delta debugging is an automated
process to isolate differences (deltas) between a passing and
a failing run. The delta-debugging algorithm was first
introduced by Zeller and applied to automatically isolate the
failure inducing changes between an old and a new version
of a program [38]. Subsequently, delta debugging is used to
isolate and simplify failure-inducing input [40], to isolate
failure inducing differences in program state [37], and to
obtain cause-effect chains [4] that lead to the program
failure. In our work, we apply the delta-debugging
algorithm to isolate relevant bug predictions. Recent
advances to speed up delta debugging [20] can also be used
to improve our bug isolation process.

Nullifying Instructions Concurrently to our work, D.
Jeffrey et al. [14] proposed to suppress/nullify memory
writes to detect memory corruption bugs. In comparison,
our approach is more general since we nullify instructions
to validate various bugs and not only memory corruption.
Also, nullifying is one step of our proposed approach.

Architectural Support Recently, a growing interest in
architectural support for software debugging has been
observed. iWatcher [43] exploits architecture support to
implement flexible watch points to monitor program
execution. Given the difficulty of reproducing failures,
especially synchronization problems in multithreaded

applications, hardware assisted checkpoint-replay schemes
[13, 13, 21, 22, 23, 29, 35, 36] have been proposed for
deterministic replay of faulty runs. Although our work
focuses on different aspects of software debugging, it
benefits from these schemes as reproducing program
failures is essential for any automated debugging process.

9. Conclusions
In this paper, we present a novel, automated approach to
pinpoint the root causes of software failures. Our approach
consists of three main components. First, we use a set of
bug predictors to detect anomalies during program
execution. Second, among the detected anomalies, we
automatically isolate only the relevant ones. To achieve
this, we construct the forward slices of anomalies to
determine if they lead to the failure point. Each of the
isolated anomalies then forms a hypothesis for the root
cause of the failure. Third, we validate each hypothesis by
nullifying the anomalous execution results. If the failure
disappears, we can be confident that we have pinpointed the
defect or the bug infection chain. We demonstrate that our
approach is very accurate in pin-pointing the defects in all
seven applications that we tested, and also outperforms
existing state of the art debugging techniques. Further, we
show that our approach is scalable to large software
programs, such as the gcc compiler.

Acknowledgements
We thank Luis Ceze and the anonymous reviewers for
helping us improve this paper. This research is supported by
an NSF CAREER award CCF- 0747062.

References
[1] H. Agrawal and J. Horgan, “Dynamic program slicing”, PLDI, 1990.
[2] A. Barr, “Find the Bug”, Addison-Wesley, 2004.
[3] G. Chrysos and J. Emer, “Memory dependence prediction using store

sets”, ISCA-25, 1998.
[4] H. Cleve and A. Zeller, “Locating Causes of Program Failures”,

ICSE, 2005.
[5] J. Crandall and F. Chong, “Minos: Control data attack prevention

orthogonal to memory model”, MICRO-37, 2004.
[6] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible

information flow architecture for software security”, ISCA-34, 2007.
[7] M. Dimitrov and H. Zhou, “Unified architectural support for soft-

error protection or software-bug detection”, PACT-16, 2007.
[8] M. Ernst, J. Cockrell, W. Griswold and D. Notkin, “Dynamically

discovering likely program invariants to support program evolution”,
IEEE TSE, Vol.27, No. 2, Feb 2001.

[9] M. Ernst, A. Czeisler, W. Griswold and D. Notkin, “Quickly
detecting relevant program invariants”, ICSE, 2000.

[10] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code
Using Failure-Inducing Chops”, ASE, 2005.

[11] S. Hangal and M. Lam, “Tracking down software bugs using
automatic anomaly detection”, ICSE, 2002.

[12] M.J. Harrold, G. Rothermel, K. Sayre, R. Wu and L. Yi, “ An
empirical investigation of the relationship between spectra
differences and regression faults”, Journal of Software Testing and
Reliability, Vol. 10, No. 3, 2000

[13] D. Hower and M. Hill, “Rerun: exploiting episodes for light weight
memory race recording”, ISCA-35, 2008

[14] D. Jeffrey, N. Gupta and R. Gupta, “Identifying the root causes of
memory bugs using corrupted memory location suppression”, ICSM
2008

[15] B. Korel and J. Laski, “Dynamic program slicing”, Information
Processing Letters (IPL), Vol. 29, No. 3, 1988

[16] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools”, Work. on Eval. of
SW Defect Detection Tools, June 2005.

[17] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: detecting atomicity
violations via access interleaving invariants”, ASPLOS, 2006

[18] B. Lucia, J. Devetti, K. Strauss, and L. Ceze, “Atom-Aid: Detecting
and Surviving Atomicity Violations”, ISCA-35, 2008.

[19] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. Reddi and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation”, PLDI, 2005.

[20] G. Misherghi and Z. Su, “Hierarchical delta debugging”, ICSE, 2006.
[21] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: recording and

deterministically replaying shared-memory multiprocessor execution
efficiently”, ISCA-35, 2008

[22] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging”,
ISCA-32, 2005.

[23] M.Prvulovic and J. Torrellas, “ReEnact: using thread-level
speculation mechanisms to debug data races in multithreaded codes”,
ISCA-30, 2003.

[24] P. Racunas, K. Constantinides, S. Manne, and S. Mukherjee,
“Perturbation-based fault screening”, HPCA-13, 2007

[25] M. Renieris and S. Reiss, “ Fault localization with nearest neighbor
queries”, ASE, 2003

[26] H. Saal and I. Gat, “A hardware architecture for controlling
information flow”, ISCA-5, 1978

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs”,
ACM TCS, 1997

[28] S. Sidiroglou, M. Locasto and A. Keromytis, “Hardware support for
self-healing software services”, Workshop on Arch. Supp. for
Security and Anti-Virus, 2004.

[29] D. Sorin, M. Martin, M. Hill and D. Wood, “SafetyNet: improving
the availability of shared memory multiprocessors with global
checkpoint/recovery”, ISCA-29, 2002.

[30] G. E. Suh, J. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking”, ASPLOS, 2004.

[31] F. Tip, “A survey of program slicing techniques”, Journal of
Programming Languages, Vol.3, No. 3, 1995.

[32] N. Wang and S. Patel, “ReStore: Symptom Based Soft Error
Detection in Microprocessors”, DSN, 2005.

[33] M. Weiser, “Program Slicing”, IEEE TSE, Vol. SE-10, No. 4, 1982.
[34] Y. Xie and D. Engler., “Using redundancies to find errors”, ACM

SIGSOFT Symp. on Foundations of Software Engineering (FSE),
2002

[35] M. Xu, R. Bodik, and M. Hill, “Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording”, ASPLOS 2006.

[36] M. Xu, R. Bodik, and M. Hill, “A flight data recorder for enabling
full-system multiprocessor deterministic replay”, ISCA-30, 2003.

[37] A. Zeller, “Isolating cause-effect chains from computer programs”,
FSE-10, 2002

[38] A. Zeller, “Yesterday my program worked. Today, it does not.
Why?”, FSE-7, 1999

[39] A. Zeller, “Why programs fail: a guide to systematic debugging”,
Morgan Kaufmann, 2005.

[40] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input”, IEEE TSE, Vol. 28, No. 2, 2002. X.

[41] X. Zhang, N. Gupta and R. Gupta, “Pruning dynamic slices with
confidence”, PLDI, 2006.

[42] X. Zhang and R. Gupta, “Cost effective dynamic program slicing”,
PLDI, 2004.

[43] P. Zhou, F. Qin, W. Liu, Y. Zhou, J. Torrellas, “iWatcher: efficient
architectural support for software debugging”, ISCA-31, 2004.

[44] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S.Midkiff and J.
Torrellas, “AccMon: Automatically detecting memory-related bugs
via program counter-based invariants”, MICRO-37, 2004.

