
Scatter-and-Gather Revisited: High-Performance
Side-Channel-Resistant AES on GPUs

Zhen Lin
North Carolina State University

Raleigh, NC
zlin4@ncsu.edu

Utkarsh Mathur
North Carolina State University

Raleigh, NC
umathur@ncsu.edu

Huiyang Zhou
North Carolina State University

Raleigh, NC
hzhou@ncsu.edu

Abstract
Recent works have shown that there exist microarchitec-
tural timing channels in contemporary GPUs, which make
table-based cryptographic algorithms like AES vulnerable to
side channel timing attacks. Also, table-based cryptographic
algorithms have been known to be vulnerable to prime-and-
probe attacks due to their key-dependent footprint in the
data cache. Such analysis casts serious concerns on the fea-
sibility of accelerating table-based cryptographic algorithms
on GPUs. In this paper, we revisit the scatter-and-gather
(SG) approach and make a case for using this approach to
implement table-based cryptographic algorithms on GPUs
to achieve both high performance and strong resistance to
side channel attacks. Our results show that our SG-based
AES achieves both high performance and strong resistance
against all the known side channel attacks on these different
generations of NVIDIA GPUs. We also reveal unexpected
findings on a new timing channel in the L1 data cache (D-
cache) on NVIDIA Maxwell and Pascal GPUs.

1 Introduction
Cryptography algorithms such as Advanced Encryption Stan-
dard (AES) are a critical foundation of information security.
Although the AES algorithm remains mathematically secure
to cryptoanalysis, various implementations of AES have been
shown vulnerable to side channel attacks. In this paper, we
focus on GPUs and revisit the scatter-and-gather approach
for AES on GPUs so as to achieve both high performance
and high resistance to existing side channel attacks includ-
ing prime-and-probe attacks (aka access-driven attacks) and
timing attacks.
Recent works have highlighted that the table-based AES

implementation on GPUs, which is based on the AES code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPGPU-12, April 13, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6255-9/19/04. . . $15.00
https://doi.org/10.1145/3300053.3319415

in OpenSSL [20], is vulnerable to timing channel attacks
due to their memory coalescing logic and/or shared memory
conflicts [11, 12]. The fundamental reason is that the corre-
lation between the degrees of memory un-coalescing/bank
conflicts and the execution time leaks the table index infor-
mation through the timing channel. As the indices of the
table lookups are dependent on the secret key, an attacker
can derive the key by observing the timing differences when
encrypting (or decrypting) pre-determined plaintexts (or ci-
phertexts). Besides timing information, it is also known that
the table-based AES leaves key-dependent footprints in data
caches, thereby becoming vulnerable to prime-and-probe at-
tacks [21], aka access-driven cache attacks [14, 18], although
such attacks require a more restrictive attack model that an
attacker is able to set up and probe the cache used by the
table-based AES.

To overcome the vulnerabilities of table-based AES, differ-
ent AES implementations have been proposed such as bit-
sliced AES [23], in which a processor operates like a bit-level
SIMD (single-instruction multiple-data) machine. Essentially,
each bit in an n-bit processor works on one block (i.e., 128
bits) of the input. Therefore, each instruction in this imple-
mentation accomplishes one step for encrypting/decrypting
n input blocks. Bitsliced AES eliminates all the tables and
only utilizes logic operations, thereby immune to timing and
prime-and-probe attacks. Unfortunately, it is vulnerable to
differential power analysis or electromagnetic side channel
attacks [2]. With n identical input blocks being fed to bit-
sliced AES, all the bits in a register will have the same value,
either all 1s or all 0s, which are relatively easy to be distin-
guished using power or electromagnetic analysis, thereby
leaking the intermediate results during encryption/decryp-
tion. This vulnerability can be more significant on GPUs
than CPUs due to the vector-style registers in GPUs since
the higher register width, the more distinguishable between
the states of all 1s and all 0s.
In this paper, we aim to overcome all these vulnerabili-

ties and retain high throughput close to table-based AES on
contemporary GPUs. We first revisit the scatter-and-gather
(SG) approach, which was proposed to implement Sbox-
based AES on CPUs [3] and also used in RSA in OpenSSL
(1.0.2f) [20]. In this work, we make the case for using SG
in T-table-based AES on GPUs, the last round in particu-
lar. The main idea behind SG is to slice and re-organize

1

https://doi.org/10.1145/3300053.3319415

the pre-computation tables such that key-dependent table
lookups will not leak any timing or address pattern informa-
tion. Also, the register values during encryption/decryption
are randomized such that the intermediate results will not
be leaked through power or electromagnetic analysis. We
explore both Sbox based and T-table based AES and examine
different SG granularities, which results in different perfor-
mance and security trade-offs. We test the SG-based AES
implementation on the D-cache in NVIDIA Kepler, Maxwell,
Pascal, and Turing GPUs. Our results show that as long as
we eliminate uncoalesced accesses, the D-cache in NVIDIA
Kepler and Turing GPUs show constant latency and non-
information-leaking footprint for all table lookups. The D-
cache in Maxwell and Pascal GPUs, however, exhibits an
undiscovered timing channel. Even when the accesses from
all the threads in a warp fall into a single cache line, the
load latency may vary. And this new timing channel can
also be exploited to leak the key. Consequently, we choose to
implement the SG-based AES using shared memory. Further-
more, as shared memory is statically allocated and cannot be
replaced by a co-running kernel, it is inherently immune to
prime-and-probe attacks and also the timing attacks relying
on cache hit-miss patterns such as the collision attacks [5].

Our experimental results show that with the SG approach
protecting both the first and last rounds of AES, we can
achieve a throughput of 84 Gbps, 152 Gbps, 301 Gbps, and 261
Gbps on an NVIDIA Tesla K40, GTX 980, GTX 1080, and RTX
2080 GPUs, respectively. In comparison, the implementation
using the special AES-NI instruction on an Intel Xeon CPU
(E5-1607) achieves 27 Gbps throughput.

In this work, we make the following contributions. First,
we make a case for SG to be used for table-based AES on
GPUs to achieve both high performance and high resistance
to all the known side channel attacks. Second, we identify a
new timing channel in the L1 D-cache on NVIDIA Maxwell
and Pascal GPUs. Third, we show that applying SG to T-table
for the last round actually improves the performance rather
than incurring overhead.

2 Background and Related Works
2.1 AES and Table-Based AES Implementation on

GPUs
AES is a widely used symmetric-key block-cipher algorithm
with the block size of 128 bits [7]. With different the key
sizes of 128 bits, 192 bits, or 256 bits, it performs 10, 12, or
14 rounds of operations on the input data, respectively. In
this work, we focus on AES encryption with 128-bit keys
while the same discussion can be applied to the decryption
process and other key sizes. In each round of AES cipher,
there are multiple permutation, substitution, mixing, and
logic operations involving the key. To speedup the process,
pre-computed tables are used and each round can be imple-
mented with a sequence of table lookups and bit-wise XOR

operations with the round keys, which are expanded from
the 128-bit key. In the T-table AES implementation from the
OpenSSL library [20], each of the pre-computed tables has
256 entries and each entry has 32 bits. Therefore, each table
has the size of 1kB. The output of one round is used as in-
dices of the table lookups in the next round, except for the
final round, whose output is the ciphertext.
To implement AES on GPUs, a standard approach is to

leverage the data-level parallelism among the input data
blocks [11, 12]. Each thread in a thread block (aka CTA) is
responsible for generating one block (128 bits or 16 bytes) of
ciphertext. There are two options to access the pre-computed
T-tables. The first is to store the T-tables in the global mem-
ory and to leverage the L1 D-cache in each streaming mul-
tiprocessor (SM) for low-latency accesses. The second is to
load the T-tables from global memory into on-chip shared
memory within each SM. The trade-off is that the T-tables
in shared memory are only accessible to the threads within
the same thread block while the T-tables in the D-cache are
accessible to all the threads running on the same SM, no
matter which the thread block they belong to. As a result, if
there are multiple thread blocks of the AES kernel running
on an SM, there will be multiple redundant T-tables kept in
shared memory if shared memory is used while only one set
of the T-tables are loaded into the D-cache.

2.2 Side Channel Attacks against AES on GPUs
Although AES remains mathematically secure against cryp-
toanalysis, the table-based AES implementation is known
to be vulnerable to side channel attacks. On CPUs, various
cache attacks [15, 21] have been shown to be effective in
deriving the keys. The reason can be explained through the
last round of AES. Using a dedicated table T4, which has
256 32-bit entries, the last round operation to produce the
first byte of the ciphertext, c0, can be described as: c0 =
(T4[t3]&0x000000f f) ∧ k0, where t3 is the 4th byte of the
16-byte state generated after 9th round and k0 is the first
byte of the last round key. With c0 known to an attacker,
k0 can be computed as k0 = c0 ∧ (T4[t3]&0x000000f f). The
fundamental vulnerability is that if the index value toT4 can
be somehow determined, the key can be easily computed.
To obtain such index information, prime-and-probe attacks
set up the cache state with their own data and then let the
last round of AES run. After that, by measuring the access
latency of the originally cached data, an attacker can know
which cache line(s) has been replaced, thereby stealing the
index information. Although there could be more than one
index resulting in the same replacement, with a few repeated
prime-and-probes, the correct index can be revealed. AES
on GPUs is vulnerable to the same prime-and-probe attacks
as long as the D-cache is used for such table lookups.
Besides prime-and-probe attacks, new timing channels

due to the memory coalescing logic and shared memory bank
2

conflicts on GPUs have been recently identified [11, 12]. The
GPUmemory coalescing logic combines the accesses from all
(or part) of the threads in a warp into as few numbers of cache
lines as possible. The reason for the timing channel is that
different numbers of shared memory conflicts or different
degrees of memory un-coalescing lead to different load la-
tency. In other words, the load latency leaks the information
on the number of bank conflicts if shared memory is used for
table lookups or the degree of memory un-coalescing (i.e.,
the number of cache line accessed) if the D-cache is used. An
attacker can leverage the known ciphertext produced by all
the 32 threads in a warp with a guessed key byte, e.g., k ′

0, to
perform an inverse table lookup, t ′3 = T

−1
4 [k ′

0 ∧ c0] for all the
threads (different threads having different c0). The attacker
then uses t ′3 to perform a table lookup T4[t ′3] and measure
its latency. If the guessed key byte is correct, i.e., k ′

0 being
the same as k0, t ′3 would be same as t3 and the resulting bank
conflicts or degree of un-coalesecing would also be the same.
As different degrees of bank conflicts or un-coalescing might
result in similar latency, multiple iterations of the attack
with different plaintexts can be used to get high confidence.
Pearson’s correlation coefficient [22] can be used to extract
linear correlations across different iterations. The correct
guess of the key byte will have a high value of the Pearson’s
correlation coefficient as its latency information would be
strongly correlated with the actual encryption latency.
To overcome the timing channel due to the memory coa-

lescing logic, randomized memory coalescing [13] has been
proposed, which adds noise to the measured latency and
trades performance for resistance against the timing channel
by always accessing a predetermined number of cache lines.
As we will show in Section 5.2, there exists an undiscovered
timing channel in the D-cache of some GPU models. Even if
the timing channel due to memory coalescing is eliminated,
the D-cache still may leak the key to an attacker.

Due to the vulnerability of table-based AES to both prime-
and-probe and timing attacks, different implementations
have been proposed. On CPUs, AES instructions, AES-NI [9],
have been introduced to perform each round of computation
on specialized hardware. A different implementation, bit-
sliced AES [23], was proposed to completely eliminate table
lookups. However, it is shown that bitsliced AES is vulnera-
ble to power or electromagnetic analysis [2] and is expected
to be more so when implemented on GPUs as explained
in Section 1. For table-based AES on GPUs, a prior work
[16] also showed that power analysis may reveal substantial
information.
Among the prior proposals on secure AES implementa-

tion, the one that is based on scatter and gather upon the
Sbox [3] is considered secure on CPUs but suffers from low
efficiency [3].
In this work, we propose to use the scatter and gather

in the T-table based AES so as to achieve high resistance

to all these above-mentioned timing and prime-and-probe
side channel attacks on contemporary GPUs. In addition,
we would like to retain the performance advantage of the
table-based AES so as to achieve high throughput without
special hardware support.

3 Scatter and Gather
3.1 Table Reorganization
As discussed in Section 2.2, the fundamental vulnerability
for table-based AES is that the indices of the table lookups
are key-dependent. Scatter-and-gather (SG) makes such de-
pendency not observable by providing constant latency and
non-information-leaking cache footprints.
Here, we use the last round of AES to motivate the idea.

Considering the timing channel of memory coalescing logic
on a GPU, the table lookup T4[t3] for a warp of threads may
result in different execution latency, which leaks the key.
The table T4 has 256 entries and each entry has 4 bytes.
Different threads in a warp may produce different t3 from
their previous round. Therefore, with a cache line size of 128
bytes, this table lookup may span from 1 to 8 cache lines
depending on the t3 values from the threads in the warp. As
a result, the latency of this table lookup is dependent on how
many cache lines are actually accessed, which then leaks
the information on the index t3. However, after a careful
look at the last round operation before XORing with the key
byte, i.e., (T4[t3]&0x000000f f), we can see that only the least
significant byte (LSB) of the 4-byte word is needed. In other
words, although each thread loads a 4-byte word through
this table lookup, only the LSB is needed, as highlighted
in Figure 1. Then, an intriguing question would be: how
about we extract and pack all the LSB of the 256 entries
together into a new sub-table? We refer to this sub-table
containing only the LSB of the words as T40 and use the
data type of ‘unsigned char’ rather than ‘unsigned int’ for
this sub-table. This way, the operation (T4[t3]&0x000000f f)
would be reduced to a single table lookup (T40[t3]), and the
logic operation extracting the LSB is no longer needed. More
importantly, the footprint of this new table lookup becomes
at most 256 bytes or up to 2 cache lines as the size of table
T40 is 256 bytes, which are much reduced compared to the
original T4 lookup. This reorganization leads to lower latency
variation and less distinguishable cache footprints.

Recognizing the benefit of such a table reorganization,
i.e., extracting and grouping the LSB of all the entries in a
pre-computed table altogether, and then the next byte, and
so on, we can make it more generic such that we can group
an arbitrary slice of each table entry into a new sub-table.
The granularity can be 1 bit, 2 bits, 4 bits, and 8 bits, and we
refer to them as SG-1, SG-2, SG-4, and SG-8. As an example,
SG-8 is the reorganization as shown in Figure 1.

Another way to look at the scatter-and-gather approach is
to treat each table as a 2-dimension (2D) data structure. The

3

4 bytes

. . .

4 bytes 4 bytes

T4

. . .T40

256 entries (1024 bytes)

T4[t3] & 0x000000ff

T40[t3]

Figure 1. Reorganizing the table T4 in the last round of AES. The LSB of each entry is put together as T40, and the next byte as
T41, and so on.

32 bits

256
entries

4 bits

0

.

.

.

1

2

255

1024 (256x4) bits

line 0

0 1 2 255

line 1

line 2

line 3

line 4

line 5

line 6

line 7

byte 0

byte 1

byte 2

byte 3

4 bits

Figure 2. Scatter-and-Gather for 128-byte cache lines.

Y dimension is the number of entries in a table, e.g., 256. The
X dimension is the number of bits/bytes in each entry, e.g.,
32 bits. We scatter such a table into multiple columns and
gather one column into a new sub-table, as shown in Figure
2. The width of a column is the SG granularityw . With SG,
the original 2D data structure is reorganized into another 2D
data structure. The new X dimension isw × 256 and the new
Y dimension is the number of sub-tables, which is 32/w .

The choice of the SG granularity is to make sure that
the resulting sub-table size is the same as a cache line or a
cache sector, if a sectored cache structure [24] is employed.
The reason is two-fold. First, with a sub-table residing in one
cache line, all its table lookups are guaranteed to be coalesced,
eliminating the timing channel due to the coalescing logic.
Second, each lookup will bring in the entire sub-table as the
fill granularity of the cache is a cache line (or a sector) and
the index of a table lookup essentially becomes the offset
within a cache line. Therefore, the footprint in the cache
leaks no information on the table index at all. Given this SG
granularity requirement and considering that the number of
table entries is unchanged (i.e., 256), SG granularity can be
computed asw = cache_line_size/256 for a particular cache
design.

1 void SG4(uchar *OTAB, uchar *ITAB) {

2 for (int i = 0; i < 8; i += 2) {

3 for (int j = 0; j < 256; j += 2) {

4 uchar b0, b1, lh, hh;

5 b0 = ITAB[j*4 + i/2];

6 b1 = ITAB[(j+1)*4 + i/2];

7 lh = (b0 & 0x0f) | ((b1 & 0x0f) << 4);

8 hh = ((b0 & 0xf0) >> 4) | (b1 & 0xf0);

9 OTAB[i*128 + j/2] = lh;

10 OTAB[(i+1)*128 + j/2] = hh;

11 } } }

Figure 3. The code for scatter-and-gather with a granularity
of 4 bits (SG-4).

With the cache line size of 128 bytes, the SG granularity
of 4 bits ensures that an entire sub-table resides in one cache
line as long as it is aligned at the cache line boundary. Figure
2 illustrates this case. Eight cache lines are required to store
a T-table in its original format. After SG, the first sub-table
stores bits 0-3 of all entries in the original table, and the
second sub-table stores bits 4-7, etc.

Reorganization of the pre-computed tables can be viewed
as another step in pre-computation and only needs to be
done once for a particular SG granularity. Figure 3 shows the
our proposed implementation to reorganize a T-table for the
cache line size of 128 bytes, which implies the granularity
of 4 bits. The input table, ITAB in Figure 3, is treated as a
256x4B matrix and the output table, OTAB in Figure 3, is a
8x128B matrix (or 8 sub-tables). The outer loop is used to
traverse the 8 columns (two at a time) while the inner loop
is used to traverse all the elements in every two columns.
In each iteration, two vertically adjacent bytes are accessed.
Then the lower halves of the two bytes are merged into a
byte, lh, and the higher halves are merged into another byte,
hh. At last, these two bytes are stored to the output table in
the row-major manner such that one column in the input
table is stored as one row in the output table.

The SG approach shown in Figure 3 can be easily adapted
for various cache line sizes. In this paper, we implement SG-
1, SG-2, SG-4 and SG-8 for 32B, 64B, 128B and 256B cache
line/sector sizes, respectively.

3.2 Accessing the Reorganized Tables
With the SG mechanism, each table lookup instruction for
all the threads in a warp can only access one cache line.
With each entry of a sub-table containsw bits, each lookup

4

1 #define SG_4_LH(T, s, b) \

2 (T[((b) << 8) + (s >> 1)] >> ((s & 0x1) << 2))

3 #define SG_4_HH(T, s, b) \

4 (T[((b) << 8) + (s >> 1) + 128] >> ((s & 0x1) << 2))

5 #define FETCH_SG_4(T, s, b) \

6 ((TS_4_LH(T, s, b) & 0x0f) | (TS_4_HH(T, s, b) << 4))

7 #ifdef SG_4

8 #define FETCH_SG(T, s, b) FETCH_SG_4(T, s, b)

9 #endif

Figure 4. The macros introduced for SG-4 table accesses.

only fetches w useful bits. As a result, multiple lookups or
multiple sub-tables may be needed to return the required
data. Specifically, fetching n bits requires n/w lookups. For
example, as discussed before, with SG-8, the last-round table
lookup (T4[t3] & 0x000000ff) is simply converted to a single
sub-table lookup, T40[t3], as shown in Figure 1. With SG-4,
in comparison, the same lookup (T4[t3] & 0x000000ff) will
be implemented with two sub-table lookups, with each re-
turning 4 bits, and logic shift and XOR operations to merge
the returned 4-bit values. Similarly, for a 32-bit table lookup
T4[t3], eight sub-table lookups are needed. The same index
t3 is used to get the 4-bit information from each sub-table.
With each sub-table size as the cache line size, t3 becomes
the offset for the 4-bit value within a cache line.

In our proposed implementation, we definemacros to facil-
itate the transformation from the original table lookups into
the reorganized table lookups. Figure 4 shows the macros
to transform a 1-byte access from the original tables to the
SG-4 tables. In general, a 1-byte access to the original table is
represented as T [s]b , where s is an 8-bit index (as the tables
have 256 entries) and b (ranging between 0 and 3) is the
byte offset, denoting which byte of the 4-byte table entry
to fetch. Using the macros, the access T [s]b is transformed
to SG_4(ST , s,b), where TS is the reorganized table of T . As
shown in Figure 4, SG_4(ST , s,b) is converted to two table
lookups, TS_4_LH and TS_4_HH . As a result, two 128-byte
cache lines are accessed to fetch one byte from the reorga-
nized table. The reason is that with the SG granularity as 4
bits, each byte in the original table corresponds to 2 rows,
as shown in Figure 2. The original byte offset b is used to
determine the row index in the reorganized table or which
sub-table(s) to be used. And the original table lookup index
s is used as the offset of the desired 4 bits within a row/sub-
table. Specifically, the higher 7 bits in s are used to locate the
bytes within the 128-byte cache lines and the last bit in s is
used to determine lower 4 bits or higher 4 bits to be used.

3.3 Integrating into the AES Algorithm
Figure 5 shows two code snippets from the AES implementa-
tion in OpenSSL v1.1.1 [20]. The statement in Line 1-7 shows
a typical example of the operations in the first 9 rounds while
the statement in Line 9-15 shows the last round. Note that in
this implementation, there is no dedicatedT4 andT0 −T3 are
reused instead. This implementation is functionally equiva-
lent to the one with a dedicated T4. We can see from Figure

1 // Code example of the first 9 rounds

2 t0 =

3 T0[(s0 >> 24)] ^

4 T1[(s1 >> 16) & 0xff] ^

5 T2[(s2 >> 8) & 0xff] ^

6 T3[(s3) & 0xff] ^

7 rk[4];

8 // Code example of the last round

9 s0 =

10 (T2[(t0 >> 24)] & 0xff000000) ^

11 (T3[(t1 >> 16) & 0xff] & 0x00ff0000) ^

12 (T0[(t2 >> 8) & 0xff] & 0x0000ff00) ^

13 (T1[(t3) & 0xff] & 0x000000ff) ^

14 rk[0];

Figure 5. Code snippets of the AES implementation in
OpenSSL.

1 union u32_t {

2 uint u32;

3 uchar u8[4];};

4 #define LOAD_U8_M4(s, b) { \

5 m0.u8[b] = FETCH_SG(T0, s0.u8[3], b); \

6 m1.u8[b] = FETCH_SG(T1, s1.u8[2], b); \

7 m2.u8[b] = FETCH_SG(T2, s2.u8[1], b); \

8 m3.u8[b] = FETCH_SG(T3, s3.u8[0], b); \}

9 // Code example of the first 9 rounds

10 u32_t m0, m1, m2, m3;

11 LOAD_U8_M4(s, 0); LOAD_U8_M4(s, 1);

12 LOAD_U8_M4(s, 2); LOAD_U8_M4(s, 3);

13 t0.u32 = m0.u32 ^ m1.u32 ^ m2.u32 ^ m3.u32 ^ rk[4];

14 // Code example of the last round

15 u32_t m;

16 m.u8[0] = FETCH_SG(T1, t3.u8[0], 0);

17 m.u8[1] = FETCH_SG(T0, t2.u8[1], 1);

18 m.u8[2] = FETCH_SG(T3, t1.u8[2], 2);

19 m.u8[3] = FETCH_SG(T2, t0.u8[3], 3);

20 s0.u32 = m.u32 ^ rk[0];

Figure 6. Code snippets of the AES implementation using
the reorganized tables.

5 that all the table lookups and bit-wise logic operations are
performed at the 32-bit granularity even though only 8 bits
are actually used in the last round table lookups.
Using the FETCH_SG(T , s,b) macro defined in Figure 4,

a byte can be accessed from the reorganized tables. One op-
tion to implement the SG-based AES is to perform bit-wise
logic operations also at the 8-bit granularity. However, it
requires separating a 32-bit operation into four 8-bit opera-
tions, which can significantly increase the number of ALU
instructions. Instead, in our proposed implementation, as
shown in Figure 6, we use a union data type u32_t to enable
both 8-bit table lookups and 32-bit bit-wise logic operations.
As shown in Line 14-15 in Figure 6, for the first 9 rounds, the
table lookups are performed at the 8-bit granularity. Once
all bits are in place, in Line 16, the bit-wise logic operations
are performed at the 32-bit granularity. The implementation
of last round is actually simpler than the original AES imple-
mentation because 8-bit table lookups eliminate the need of
operations to extract the desired byte from the 32-bit table
lookups.

5

Tesla K40 GTX 980 GTX 1080 RTX 2080
Architecture Kelper Maxwell Pascal Turing
#SMs 15 16 20 46
L1 D$ size / SM 48KB/16KB 24KB 24KB 64KB/32KB
L1 D$ line size 128B 32B 32B 128B
Smem size / SM 48KB/16KB 96KB 96KB 64KB/32KB
Smem #Banks 32 32 32 32
Smem bank width 8B 4B 4B 4B
Table 1. Hardware specifications of the evaluated GPUs.

4 Methodology
In this paper, we evaluate 128-bit ECB mode AES encryption,
which is ported from OpenSSL v1.1.1 to CUDA using the
approach as described in Section 2.

We evaluate the SG-based AES on four Nvidia GPUs which
span different architectural generations, including Tesla K40
(Kepler), GTX 980 (Maxwell), GTX 1080 (Pascal) and RTX
2080 (Turing). Table 1 lists hardware specifications of the
GPUs. CUDA 10 is used for our experiments and the GPUs
are hosted on a Red Hat 7.5 Linux machine. To make sure the
global memory reads are always cached on L1, the compiler
flag "-Xptxas -dlcm=ca" is used [19].

5 Security Analysis
5.1 Resistance to Timing Attacks
In this paper, to evaluate the resistance of our mechanism
against timing attacks, we adopt the approach by Jiang et. al.
[11] for attacking the GPU AES implementations. The attack
relies on two sets of timing samples. One set is collected with
the real key and the other is collected with the guessed keys.
To reduce the timing noises, in each trial, we only launch
one warp with 32 threads to encrypt 32 blocks of randomly
generated plaintext. During each trial of the encryption with
the real key, the attacker times the latency of every table
lookup in the last round. There are 16 table lookups in the
last round to produce 16 bytes (i.e., 1 block) of ciphertext.
Then, another GPU kernel with 32 threads is launched to
collect the timing with the guessed keys. Because each byte
of the key can have 256 different values, it uses 256 values
as each byte of the key to repeat the last round encryption.
After N trials, the timing sample using the real key contains
16xN data points while the sample using the guessed keys
contains 16x256xN data points. For each byte of the key, the
Pearson correlation [22] is calculated between the sample
with real key and the 256 samples with guessed keys. The
byte of the key is successfully recovered if the guessed one
with the highest correlation value matches the real one.

Using the correlation timing attack, we show how many
bytes in the 128-bit key can be recovered for various AES
implementations in Table 2 in 100,000 trials. Actually, be-
cause the timing information in our attack is collected in
an ideal environment, the keys can be recovered within 100
trials if an implementation is vulnerable to timing attacks.
As expected, the baseline T-table AES is vulnerable to the

Tesla K40 GTX 980 GTX 1080 RTX 2080
Base 16 16 16 16
SG-8 16 16 16 16
SG-4 0 16 16 0
SG-2 0 16 16 0
SG-1 0 16 16 0

Table 2. Number of bytes in the 128-bit key that can be
recovered using the timing attack against various table-based
AES using the D-cache in 100,000 trials.

-0.2

0

0.2

0.4

0.6

0.8

1

0

2
6

5
2

7
8

1
0
4

13
0

15
6

18
2

2
0
8

23
4

k0

-0.2

0

0.2

0.4

0.6

0.8

1

0

2
6 52 78

1
0
4

13
0

15
6

1
8
2

20
8

23
4

k1

-0.2

0

0.2

0.4

0.6

0.8

1

0

2
6

5
2

7
8

10
4

13
0

15
6

18
2

20
8

23
4

k2

-0.2

0

0.2

0.4

0.6

0.8

1

0

2
6

5
2

7
8

10
4

13
0

1
5
6

18
2

20
8

2
3
4

k3

Figure 7. Pearson’s correlation coefficients for guessing the
first 4 bytes of the 128-bit key from AES with SG-1 tables on
a GTX 1080 GPU.

timing attacks on all GPUs. In the SG-8 implementation,
each table lookup is constrained within 256 bytes, which
is larger than the cache line size for all GPUs. Therefore,
this implementation is also vulnerable. According to Table
1, the L1 data cache line size on Kepler and Turing GPUs is
128 bytes. Therefore, as expected, the SG-4, SG-2 and SG-1
implementations of AES become resistant to timing attacks
on Tesla K40. The line size of Maxwell and Pascal GPUs are
both 32 bytes. Therefore, it is reasonable that the SG-4 and
SG-2 implementations are vulnerable. However, our results
with our SG-1 AES are unexpected. As the SG-1 AES con-
strains each table lookup to 32 bytes, there should be no
un-coalesced memory accesses and we expect that it would
be resistant to timing attacks. However, our results indicate
otherwise. Figure 7 shows the correlation coefficients of the
first 4 bytes of the 128-bit key using the timing attack against
the SG-1 AES on the GTX 1080 GPU. And the remaining 12
key bytes exhibit similar patterns. Clearly, the figure shows
that the correct keys, which are circled, can be derived using
the timing attack. The same attack also succeeds on the GTX
980 GPU against the SG-1 AES.

5.2 An Undiscovered Timing Channel
In order to figure out the source that leaks the keys on
Maxwell and Pascal GPUs, we use the micro-benchmark

6

1 // Host code: randomly init the indices.

2 srand(FIXED_SEED);

3 for (iter = 0; iter < N_ITERS; iter++) {

4 for (i = 0; i < 32; i++)

5 index[i] = rand() % LINE_SIZE;

6 kernel<<<1, 32>>> (input, output, index, latency);

7 }

8 // Kernel code: time the access latency.

9 int idx = index[tid];

10 start = clock();

11 uchar a = input[idx]; // load one byte per thread

12 uchar b = a + 1; // make sure the load is done

13 latency = clock() - start;

Figure 8. The micro-benchmark for timing access latency
of random access patterns.

as shown in Figure 8 to emulate the access patterns in our
SG-based AES. In the host code, the index array is initial-
ized with random numbers ranging from 0 to LINE_SIZE-1
and copied to the GPU. Then the kernel is launched with 32
threads. In the kernel code, each thread loads one byte from
the input array using the values from the index array and
we time the latency of the load operation. To make sure the
results of the benchmark are repeatable, we use a fixed seed
for the random generator in the host code to produce fixed
random sequences in the index array for different invoca-
tions.

On the Tesla K40 and RTX 2080 GPUs, the latency is fixed
if the indices from all the threads in the warp are within 0-
127. However, on GTX 980 and GTX 1080 GPUs, even though
the indices are generated within 0-31, the latency is not fixed
for different random sequences. On the GTX 1080 GPU, the
latency varies among 97, 98, 99, 100 and 101 cycles. Similarly,
the latency varies among 98, 99, 100 and 101 cycles on the
GTX 980 GPU. For a particular set of indices, however, the
latency is fixed as long as the same set of indices repeats.
However, we failed to observe a clear pattern between the
random indices and the latency.

The exact reason for such variable latency is dependent on
the D-cache design, which we don’t have access to. However,
even though the reason for this variable access latency is not
clear, we are able to answer why our SG-1 AES is vulnerable
to the timing attack on Maxwell and Pascal GPUs. In the tim-
ing attack, the access indices to the table are also randomized
within the cache line size (i.e., from 0 to 31). In different trials,
different plaintexts lead to different sets of access indices. In
the guessing runs, when the guessed key matches the correct
key, the index sequence for a warp would exactly match the
indices in the encryption run, which leads to the same access
latency. Using an enough number of trials, the guessed key
byte exhibits the highest correlation with the correct key
byte. Note that this side channel is different from the one
due to the memory coalescing logic that has been studied in
previous works [11, 13]. Even when the accesses from all the
threads in a warp are coalesced to a cache line, the access
latency is not constant and the keys can still be leaked on
Maxwell and Pascal GPUs. Therefore, using global memory

Tesla K40 GTX 980 GTX 1080 RTX 2080
Base 16 16 16 16
SG-8 0 15 14 16
SG-4 0 0 0 0
SG-2 0 0 0 0
SG-1 0 0 0 0

Table 3. Number of bytes in the 128-bit key that can be
recovered using the timing attack against various table-based
AES using shared memory in 100,000 trials.

for table lookups, the SG-based AES is not secure on Pascal
and Maxwell GPUs against timing attacks.

5.3 Resistance to Prime-and-Probe Attacks
As discussed in Section 3, our design decision for the SG
granularity is to ensure that each row / sub-table fits in one
cache line. Not only does it eliminate un-coalesced accesses,
but also it converts the original table lookup index into offset
with the cache line. And this provides the foundation for
our defense against prime-and-probe attacks. Taking SG-4
as an example for a cache with the cache line size of 128
bytes. As shown in Figure 5, the table lookups in AES have
two granularities, 32 bits for table lookups in rounds 1-9 and
8 bits in the last round. A table lookup in the last round is
converted to two sub-table lookups (or cache line accesses) as
shown in Figure 2 and Figure 4. Therefore, with a prime-and-
probe attack, an attacker can know which byte (and either
the higher 4 bits or lower 4 bits of the byte) is accessed. But
such information carries no secrets as the AES source code
already indicates which byte to be accessed in a table. The
table index, which carries the key dependent information, is
not leaked as it is converted the offset within the cache line.
The code transformation is shown in Figure 5 also explicitly
shows that the table index s is used as the offset within each
sub-table.
A table lookup in round 1-9 fetches 32-bit information.

In this case, with SG-4, all the 8 sub-tables / rows will be
accessed with each providing 4-bit information as can been
seen from Figure 2.2. In other words, the entire pre-computed
table is accessed and no table index information can be
leaked. Therefore, we conclude that SG-based AES is effec-
tive against prime-and-probe cache attacks.

6 SG with Shared Memory
So far, we focus on SG-based AES using global memory,
meaning that the table lookups are through the D-caches. In
Section 5, we observe that our approach is not completely
secure due to an unexpected timing channel on Maxwell
and Pascal GPUs. In this section, we discuss the security
implications for SG-based AES using shared memory, i.e,
when the pre-computed tables are stored in shared memory.

As introduced in Section 2, a previous work by Jiang et
al. [12] shows that table-based AES using shared memory is
vulnerable to timing attacks. The reason is that the shared

7

memory access latency is dependent on the number of bank
conflicts, which leaks the index information of a table lookup.
As long as we can avoid bank conflicts, a table lookup in
shared memory will leak no secret information. We achieve
this using the SG approach discussed in Section 3.

In this paper, we refer to "a row" in shared memory as an
aggregation of storage units with the same row address in
all the banks. Similar to SG-based AES using the L1 D-cache,
the key idea here is to reorganize the table so that each table
lookup to the shared memory is constrained to a single row.
The mechanisms of SG-based AES with shared memory is
identical to what is presented for D-cache in Section 3. The
only difference is that the tables need to be loaded from the
global memory at the beginning of each thread block before
the cipher process.

6.1 Resistance to Timing Attacks
To verify whether the accesses have constant latency when
accessing the addresses within a single row in shared mem-
ory, we resort to the same micro-benchmark as shown in
Figure 8. The only change is that the input array is allocated
on shared memory and the LINE_WIDTH is replaced with
ROW_SIZE. Our test results show that on the Tesla K40 GPU,
which has a 256-byte row size, the access latency is constant
at 74 cycles. On GTX 980 and GTX 1080 GPUs, the row size
is 128 bytes and the latency is constant at 52 cycles, indepen-
dent upon the different random indices. The access latency
on the RTX2080 GPU is constant at 56 cycles.
We perform the timing attack as described in Section 5.1

against SG-based AES with shared memory. Table 3 shows
how many bytes (out of 16) can be recovered with 100,000
trials for various table-based AES implementations. The en-
tire key can be recovered for the baseline AES within only
100 trials on any GPU in our experiment. The SG-8 AES,
which constrains one access within 256 bytes, is resistant
to the timing attack on the Tesla K40 GPU because its row
size is 256 bytes. For GTX 980, GTX 1080 and RTX 2080
GPUs, however, the SG-8 version leaks 15, 14 and 16 bytes,
respectively, since the row size is 128 bytes on these GPUs.
In contrast, the SG-4 AES is resistant to the timing attacks on
GTX 980, GTX 1080 and RTX 2080 GPUs because one access
can only span a region of 128 bytes, which is the row size of
the shared memory on these GPUs. The SG-2 and SG-1 AES
implementations are resistant to the timing attack on all the
GPUs since their table lookup is smaller than the row sizes
of shared memory.

6.2 Resistance to Prime-and-Probe Attacks
On GPUs, shared memory space is allocated when a thread
block is dispatched. Then, the pre-computed tables are fetched
into shared memory before the cipher process starts. Such
sharedmemory data, i.e., the tables, will remain there through-
out the lifetime of the thread block and cannot be replaced or

evicted. Therefore, AES implementations using shared mem-
ory for its tables is inherently immune to prime-and-probe
attacks. Furthermore, since all table lookups are guaranteed
to retrieve their data from shared memory, these accesses are
all ‘hits’. Therefore, the attacks based on hit/miss patterns,
such as collision attacks, are not effective.

7 Performance Results
In this section, we evaluate the throughput of SG-based AES
encryption on different GPUs with various plaintext sizes.
Four AES implementations are evaluated in every test. ‘Base-
line’ is the AES version that we ported from OpenSSL. As
discussed in Section 5 and 6, it is vulnerable to the timing
attack with table lookups in either global memory or shared
memory. The label ‘SG-w’ denotes the SG-based AES with
the w-bit granularity. In the ‘SG-w_last’ approach, we only
apply the reorganized table to the last round, which is the
most vulnerable round and used as the target of previous
GPU timing attacks [11, 12]. In ‘SG-w_first+last’, we ap-
ply the reorganized table to both the first and last rounds
while the original tables are used for the remaining rounds.
As pointed out in prior works [4, 6, 8], the first and last
rounds are more susceptible to side channel attacks than
inner rounds as the input/output of the inner rounds are
processed with the roundkeys while the plaintext/ciphertext
is the input/output of the first/last round. The prior work [6]
also suggested that it is probably sufficient to protect both
the first and last round because of this reason. In ‘SG-w_all’,
the reorganized tables are used for all rounds, providing the
highest resistance against side channel attacks. We include
the SG approach used for the T-tables and Sbox, denoted
by SG-w_t and SG-w_s, respectively. The tradeoff is that
the Sbox approach accesses a smaller lookup table than T-
tables but requires more computations. For the last round,
as accessing the reorganized T-table is more efficient than
the reorganized Sbox, we also explore the option of using
the reorganized Sbox for the first round and the reorganized
T-table for the last round, denoted as ’SG-w_s_first+t_last’.
All these approaches are implemented with tables residing
in either global memory or shared memory. In the shared
memory implementations, to reduce the number of shared
memory loading times, every thread iteratively encrypts
the plaintext blocks until all data blocks are finished. For
each implementation on different GPUs, the grid size and
thread block size parameters are tuned to achieve the best
performance. The source code our implementations are avail-
able online [1] for result reproducibility and further security
analysis.
Figure 9(a) and (b) show the throughput of various AES

approaches on the Tesla K40 GPU with the tables residing
in global memory and shared memory, respectively. Accord-
ing to Table 2 and 3, SG-4 is used for global memory while
SG-8 is used for shared memory to ensure their resistance

8

(a)

(b)

0

20

40

60

80

100

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t (
G

b
p

s)

Shared memory
T-table SG-8_t_last SG-8_t_first+last

SG-8_t_all Sbox SG-8_s_last

SG-8_s_first+last SG-8_s_all SG-8_s_first+t_last

0

20

40

60

10MB 100MB 1000MB

T
h

ro
u

gh
p

u
t

(G
b

p
s)

Global memory
T-table SG-4_t_last SG-4_t_first+last
SG-4_t_all Sbox SG-4_s_last
SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

Figure 9. Throughput of SG-based AES on a Tesla K40 GPU.

to side channel attacks. On Kepler GPUs, the same on-chip
memory is used for the L1 D-cache and shared memory and
the capacity can be configured to prefer the L1 cache or
shared memory. In our experiment, we configure the pref-
erence to the L1 D-cache when running the global memory
implementation while the preference is set to shared mem-
ory when running the shared memory version. Comparing
to the baseline, the performance is actually improved by ap-
plying the reorganized table only to the last round. This is
because the table accesses in the last round are performed
at byte granularity, as shown in Figure 5, and the accesses
to the reorganized T-tables are guaranteed to be coalesced
or bank-conflict free. However, in the first 9 rounds, SG re-
quires multiple byte accesses and bit-wise logic operations
to merge them into 32 bits, while the same 32-bit informa-
tion can be accessed with just one load instruction using the
original T-tables. Therefore, the performance is significantly
affected. In order to mitigate the performance loss and also
remain the resistance to all the known attacks, we choose
to apply SG to the first and last rounds. The throughput of
‘SG_s_first+t_last’ approach is 45 Gbps and 84 Gbps with
global memory and shared memory, respectively.
Figure 10 shows the performance of SG-based AES on

the GTX 1080 GPU. According to Table 3, SG-4 is used for
sharedmemory implementation. Although none of the global
memory implementations on GTX 1080 is secure, we show
the performance of SG-4 for performance comparison pur-
poses. The sharedmemory implementations achieve about 2x
throughput than the global memory one due to lower latency
and higher bandwidth. According to previous works [10, 17],
on Pascal GPUs, the shared memory latency is 3.4x lower
than the L1 D-cache and the bandwidth is 4x higher. The ‘SG-
4_s_first+t_last’ approach achieves 301 Gbps using shared
memory.

(a)

(b)

0

50

100

150

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t (
G

b
p

s)

Global memory
T-table SG-4_t_last SG-4_t_first+last

SG-4_t_all Sbox SG-4_s_last

SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

0

100

200

300

400

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t (
G

b
p

s)

Shared memory
T-table SG-4_t_last SG-4_t_first+last
SG-4_t_all Sbox SG-4_s_last
SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

Figure 10. Throughput of SG-based AES on a GTX 1080
GPU.

0

40

80

120

160

200

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t (
G

b
p

s)

Shared memory
T-table SG-4_t_last SG-4_t_first+last
SG-4_t_all Sbox SG-4_s_last
SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

Figure 11. Throughput of SG-based AES on a GTX 980 GPU.

(a)

(b)

0

80

160

240

320

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t
(G

b
p

s)

Shared memory
T-table SG-4_t_last SG-4_t_first+last
SG-4_t_all Sbox SG-4_s_last
SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

0

80

160

240

320

10MB 100MB 1000MB

Th
ro

u
gh

p
u

t (
G

b
p

s)

Global memory
T-table SG-4_t_last SG-4_t_first+last

SG-4_t_all Sbox SG-4_s_last

SG-4_s_first+last SG-4_s_all SG-4_s_first+t_last

Figure 12. Throughput of SG-based AES on a RTX 2080
GPU.

Similar to the GTX 1080 GPU, as shown in Figure 11, we
use SG-4 with shared memory for the GTX 980 GPU. The
throughput achieved by the ‘SG-4_s_first+t_last’ approach
is 152 Gbps.

9

According to Table 2 and 3, on the RTX 2080 GPU, SG-4
AES using both global memory and shared memory is resis-
tant to timing attacks. Similar to the Kepler architecture, the
L1 cache and shared memory share the same on-chip mem-
ory. According to the CUDA Programming Guide [19], the
capacity preference is automatically selected by the driver to
achieve the highest performance. The ‘SG-4_s_first+t_last’
approach achieves 227 Gbps using global memory and 261
Gbps using shared memory.

8 Conclusions
In this paper, we make a case for scatter-and-gather to imple-
ment table-based cryptography algorithms on GPUs. Recent
works show that the current table-based AES is vulnerable to
side channel attacks on GPUs due to the timing channels in
shared memory or memory coalescing logic. The scatter-and-
gather based approach reorganizes the tables such that the
key-dependent table index information becomes not observ-
able anymore. Not only is this transformation expected to be
effective against timing attacks, but also is effective against
prime-and-probe style attacks. Our study on four NVIDIA
GPU generations also reveals an undiscovered timing on the
D-cache of both Maxwell and Pascal GPUs. As a result, we
conclude that our SG-based AES, using the reorganized Sbox
for the first round and the reorganized T-table for the last
round, with shared memory achieves the highest resistance
to side channel attacks and also offers the best performance,
84 Gbps, 152 Gbps, 301 Gbps, and 261 Gbps on a Tesla K40,
GTX 980, GTX 1080, and RTX 2080 GPU, respectively, which
is 105%, 99%, 104%, and 90% of the throughput of the original
(unsecure) T-table based AES from OpenSSL on these GPUs,
respectively.

Acknowledgements
We would like to thank Lars Nyland and Jin Wang from
NVIDIA for their insightful discussions. We thank the anony-
mous reviewers for their valuable comments. This work is
supported by NSF grants CCF-1618509, CCF-1717550.

References
[1] [n. d.]. https://github.com/zhenlin36/scatter_gather_aes_cuda
[2] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Ver-

bauwhede. 2015. DPA, Bitslicing and Masking at 1 GHz. In Cryp-
tographic Hardware and Embedded Systems - CHES 2015 - 17th Interna-
tional Workshop, Saint-Malo, France, Sep 2015, Proceedings. 599–619.

[3] Johannes Blömer and Volker Krummel. 2007. Analysis of Counter-
measures Against Access Driven Cache Attacks on AES. In Selected
Areas in Cryptography, 14th International Workshop, SAC 2007, Ottawa,
Canada, August 16-17, 2007, Revised Selected Papers. 96–109.

[4] Joseph Bonneau. 2006. Robust Final-Round Cache-Trace Attacks
Against AES. IACR Cryptology ePrint Archive 2006 (01 2006), 374.

[5] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing At-
tacks Against AES. In Cryptographic Hardware and Embedded Systems
- CHES 2006, 8th International Workshop, Yokohama, Japan, October
10-13, 2006, Proceedings. 201–215.

[6] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert.
2006. Software mitigations to hedge AES against cache-based software
side channel vulnerabilities. jean-pierre.seifert@intel.com 13192
received 13 Feb 2006.

[7] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES -
The Advanced Encryption Standard. Springer. https://doi.org/10.1007/
978-3-662-04722-4

[8] Qian Guo, Vincent Grosso, and FranÃğois-Xavier Standaert. 2018.
Modeling Soft Analytical Side-Channel Attacks from a Coding Theory
Viewpoint. Cryptology ePrint Archive, Report 2018/498. https://eprint.
iacr.org/2018/498.

[9] Intel. 2010. Intel Advanced Encryption Standard (AES) New Instructions
Set .

[10] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo
Scarpazza. 2018. Dissecting the NVIDIA Volta GPU Architecture via
Microbenchmarking. CoRR abs/1804.06826 (2018). arXiv:1804.06826
http://arxiv.org/abs/1804.06826

[11] Z. H. Jiang, Y. Fei, and D. Kaeli. 2016. A complete key recovery tim-
ing attack on a GPU. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 394–405.

[12] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2017. A Novel Side-
Channel Timing Attack on GPUs. In Proceedings of the on Great Lakes
Symposium on VLSI 2017 (GLSVLSI ’17). ACM, New York, NY, USA,
167–172. http://doi.acm.org/10.1145/3060403.3060462

[13] G. Kadam, D. Zhang, and A. Jog. 2018. RCoal: Mitigating GPU Timing
Attack via Subwarp-Based Randomized Coalescing Techniques. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 156–167.

[14] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou.
2013. Architecting against Software Cache-Based Side-Channel At-
tacks. IEEE Trans. Computers 62, 7 (2013), 1276–1288.

[15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
2015. Last-Level Cache Side-Channel Attacks are Practical. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA. 605–622.

[16] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. 2015.
Side-channel Power Analysis of a GPU AES Implementation. In Pro-
ceedings of the 2015 33rd IEEE International Conference on Computer
Design (ICCD ’15). IEEE Computer Society, Washington, DC, 281–288.

[17] X. Mei and X. Chu. 2017. Dissecting GPU Memory Hierarchy Through
Microbenchmarking. IEEE Transactions on Parallel and Distributed
Systems 28, 1 (Jan 2017), 72–86.

[18] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-
Driven Cache Attacks on AES. In Selected Areas in Cryptography, 13th
International Workshop, SAC 2006, Montreal, Canada, August 17-18,
2006 Revised Selected Papers. 147–162.

[19] NVIDIA. 2018. CUDA C PROGRAMMING GUIDE.
[20] OpenSSL. [n. d.]. url: https://www.openssl.org/.
[21] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks

and Countermeasures: The Case of AES. In Topics in Cryptology - CT-
RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February 13-17, 2006, Proceedings. 1–20.

[22] Karl Pearson. 1895. Note on Regression and Inheritance in the Case
of Two Parents. Proceedings of the Royal Society of London 58 (1895),
240–242. http://www.jstor.org/stable/115794

[23] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. 2006. Bitslice
Implementation of AES. In Cryptology and Network Security, 5th Inter-
national Conference, CANS 2006, Suzhou, China, December 8-10, 2006,
Proceedings. 203–212.

[24] André Seznec. 1994. Decoupled Sectored Caches: Conciliating Low
Tag Implementation Cost and LowMiss Ratio. In Proceedings of the 21st
Annual International Symposium on Computer Architecture. Chicago,
IL, USA, April 1994. 384–393.

10

https://github.com/zhenlin36/scatter_gather_aes_cuda
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://eprint.iacr.org/2018/498
https://eprint.iacr.org/2018/498
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
http://doi.acm.org/10.1145/3060403.3060462
http://www.jstor.org/stable/115794

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 AES and Table-Based AES Implementation on GPUs
	2.2 Side Channel Attacks against AES on GPUs

	3 Scatter and Gather
	3.1 Table Reorganization
	3.2 Accessing the Reorganized Tables
	3.3 Integrating into the AES Algorithm

	4 Methodology
	5 Security Analysis
	5.1 Resistance to Timing Attacks
	5.2 An Undiscovered Timing Channel
	5.3 Resistance to Prime-and-Probe Attacks

	6 SG with Shared Memory
	6.1 Resistance to Timing Attacks
	6.2 Resistance to Prime-and-Probe Attacks

	7 Performance Results
	8 Conclusions
	References

