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Abstract 

Recent research has shown that value prediction is a promising way to collapse the true data 

dependencies. To fully exploit the potential of value speculation, however, a highly accurate value 

predictor and efficient architectural support for value speculative execution are both necessary. In this 

paper, we address in detail value speculative execution in a generalized superscalar model based on 

MIPS R10000. In particular, in order to minimize misprediction recovery penalties, the selective 

reissuing mechanism is discussed and the necessary support at each pipeline stage are described. In 

this study, three important design issues are highlighted including: 1) when to resolve/verify the 

prediction; 2) where to keep the dispatched instructions after they are issued speculatively to enable 

reissuing; 3) how to dynamically construct the data dependence chain. The critical paths in the 

possible implementation are also identified. Then, potential benefits on the performance are discussed 

with different reissue latencies and value misprediction rates. Our experimental results show that there 

is a great speedup potential, on average up to 12% in our 4-way issue superscalar model, once highly 

accurate value predictors are available, and also it is shown that value speculation can achieve much 

higher speedups with better branch predictors and wider issue bandwidth.  

1. Introduction 

As the modern superscalar microprocessors become deeply pipelined with wider window sizes, 

speculative execution is crucial for performance enhancement. In particular, great performance gains 

can be obtained by collapsing the true data dependencies with the use of value prediction, i.e., value 
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speculative execution. In order to fully exploit the potential of value speculation, however, a highly 

accurate value predictor and efficient architectural support for value speculative execution are 

necessary. 

Previous research [1, 2, 12] has shown that the outcome of many dynamic instructions is highly 

predictable, and several value predictor designs [1, 2, 3, 12, 13, 14, 15, 16] have been proposed to 

exploit the characteristics of the dynamically produced data sequences so as to produce high prediction 

accuracies. However, as is the nature of speculative execution, there are misprediction recovery 

penalties whenever a value misprediction occurs and the mispredicted value has been consumed. To 

balance the benefits of value prediction with misprediction recovery penalties, some selective value 

prediction techniques, either hardware-based dynamic techniques [4, 9, 12] or compiler-based static 

techniques [5, 6], have been proposed to predict only the values whose benefits of speculation 

outweigh the potential risk of misprediction. It is also important to note that value prediction can 

improve the branch prediction accuracy, as discussed in [7]. With all the previous research, it is 

desirable to perform a detailed study on superscalar pipeline support for value speculative execution, 

highlighting the important design issues, and stressing the potential benefits from value speculative 

execution. 

In this paper, we present our study of value speculative execution in a generalized superscalar model 

based on MIPS R10000 [8]. Different misprediction recovery schemes are discussed, and in particular 

the selective reissuing mechanism is studied in detail. It is shown that in order to design an efficient 

selective reissuing mechanism, three important issues should be considered. The first is when to 

resolve (i.e., verify) the prediction since the execution results of the instruction may depend on another 

predicted value. The second is where to keep the dispatched instructions after they are issued 

speculatively to enable the reissuing. And the third is how to dynamically construct the data 
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dependence chain in order to reissue only the dependent instructions.  We then discuss the necessary 

support at each pipeline stage to enable such a selective reissuing scheme and point out the potential 

critical paths. Our experimental results show that 1) there is a great speedup potential to exploit by 

using value speculative execution; 2) high value prediction accuracy can help tolerate some latency in 

the reissue critical path, and the latency is more critical when the misprediction rate is significant; 3) 

wider issue bandwidth and larger window sizes provide higher potential for being exploited by value 

speculative execution; 4) higher speedups can also be achieved from value speculation with better 

branch prediction accuracies. In any case, a high-accuracy value predictor is essential to achieve 

performance gains. 

The remainder of the paper is organized as follows. Section 2 briefly describes the microarchitecture 

of our generalized superscalar model based on MIPS R10000. Value speculative execution and the 

recovery schemes are discussed in Section 3.  Simulation methodology and result analysis are 

presented in Section 4, and Section 5 discusses the related work. Finally, Section 6 concludes the paper 

and discusses the future work. 

2. The generalized superscalar model based on MIPS R10000  

In order to examine value speculative execution and its impact on the superscalar pipeline, we use a 

generalized superscalar model based on MIPS R10000 in this paper. The structure of such a 

microprocessor can be modeled as shown in Figure 1.  

The left hand side in Figure 1 includes an active list, a free list, an architectural map, a speculative 

map, and several shadow maps. This can be viewed as the control mechanism in the microarchitecture 

as there is no actual data movement. The free list maintains a list of unused physical registers, 

available for renaming the destination registers of newly fetched instructions. The map table keeps the 

speculative renaming information and the architectural map reflects the architectural register map state, 
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which is used to provide the precise state at the time of exception handling. The shadow maps are used 

to recover the renaming state from a branch misprediction. The active list records all instructions that 

are active within the processor. For each instruction, it keeps the current mapping and the previous 

mapping of the destination registers, which are used to update the architectural map and free the 

previously mapped physical register when the instruction retires. In the right hand side of Figure 1, the 

instruction moves down from the frontend (the fetch engine and I-cache) into the issue queue and the 

actual data moves into/out of the physical register file.  

 

 

 

 

 

 

 

 

Figure 1. The microarchitecture of our generalized superscalar model based on MIPS R10000 (the parts in dotted lines 
are to be modified to support value speculative execution, described in Section 3.4) 

In the case when there is no value speculative execution, the pipeline stages and their operations can 

be summarized as follows: 

a) Instruction fetch (IF) stage: fetch instructions from L1 instruction cache (I-Cache); generate the 

next program counter from the branch predictor and the return address stack (RAS). 
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b) Instruction dispatch (ID) stage: decode the instructions and rename the registers to remove 

false data dependencies, dispatch the instruction into the issue queue and append the 

instruction into the active list. 

c) Instruction issuing (IS) stage: check the source operands, if they are ready, the instruction can 

be issued when there is available issue bandwidth.  

d) Register read (RR) stage: read the data from the physical register file. 

e) Execution (EX) stage: execute the computation. For the memory operations, this stage can be 

further divided into address generation (AGEN), memory stage 1 (MEM 1), memory stage 2 

(MEM 2) to perform the load and store operations.  

f) Write back (WB) stage: write the computation result back into the physical register file. 

g) Retire (RET) stage: commit the changes to the architectural state by updating the architectural 

map, freeing the physical register, and moving the instruction out of the active list if the 

instruction reaches the head of it. 

These pipeline stages are decoupled by the issue queue and the active list, (or called a reorder 

buffer-ROB), whose size determines the dynamic window size used for superscalar execution.  

3. Value speculative execution and misspeculation recovery schemes 

In this section, value speculative execution and misspeculation recovery schemes are discussed in 

detail. We begin with the easy case of perfect prediction. The misprediction and recovery schemes are 

then introduced and several important design issues are highlighted in order to design an efficient 

recovery scheme.  

3.1 Value speculative execution with perfect prediction 

If we assume the perfect confidence in our value predictor (i.e., the predicted value is known to be 

correct), there is little additional work to do to support value speculative execution. 
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Considering the pipeline stages listed in Section 2, we need to add a value predictor in the front-end 

and access this predictor at the IF stage. If the prediction is made, then we put this value into the 

physical register file and mark the destination register as ready so that its dependent instructions 

(called value prediction consumer instructions [4]) can be issued without waiting for the completion of 

the current instruction (called the value prediction producer instruction). In other words, the consumer 

instructions can be executed speculatively while the producer instruction still takes its normal path in 

the pipeline. When the value prediction producer instruction completes at the WB stage, it compares 

the result with the prediction and updates the value predictor accordingly. Since we assume the perfect 

prediction model, this verification result is always true. Note that in this discussion, the predicted value 

is stored into the physical register file at the IF stage and compared with the actual result at the WB 

stage, this complicates the register file design since it requires reading the stored value and comparing 

it to the value that is to be written at the same WB stage. One way to alleviate this problem is to use an 

additional storage area for the predicted value. This method may result in a simpler register file design 

at the cost of area since the additional storage is virtually a duplicated physical register file keeping the 

speculative value information. 

3.2 Resolving the value prediction 

In the real cases when it is impossible for the value predictor to provide the perfect prediction, 

misprediction recovery is necessary. There are two recovery mechanisms considered in this paper: 

complete squashing and selective reissuing.  

However, before we discuss the recovery schemes, we must first consider when do we resolve the 

value predictions to catch the potential misspeculations. This problem arises because the execution 

result may not be able to resolve a value prediction since the execution may depend on another 

predicted value (i.e., the execution result may be speculative itself). There are two ways to solve this 
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problem: non-speculative resolution and speculative resolution. Non-speculative resolution resolves 

the prediction until its source operands are not value speculative. Here, we use the term value 

speculative to describe the value that is either predicted or computed using a predicted value. 

Speculative resolution puts confidence in previous predictions and resolves the prediction once the 

execution is complete even if it uses some value speculative operands. These two methods are both 

possible for resolving the prediction but choosing one of them affects the processing in the case of 

correct predictions. In the non-speculative resolution scheme, if a prediction is verified to be correct, 

the corresponding dependent instructions’ source operands need to be marked as non-speculative in 

order to enable the further resolution of those dependent instructions. In speculative resolution scheme, 

such processing is not necessary since it is assumed that the previous predictions are correct and the 

incorrect predictions will cause re-execution anyway. But the potential problem with speculative 

resolution is that the re-execution may happen more than once and this increases the misprediction 

recovery penalties. In this study, non-speculative resolution is chosen to minimize the recovery 

penalties and processing in the case of correct predictions is discussed. 

3.3 Value misprediction recovery by complete squashing 

When a value prediction is made at the IF stage, the producer instruction will not be able to resolve 

the prediction until it reaches the WB/RET stage and its own source operands are not value 

speculative. When a misprediction is detected and the mispredicted value has been consumed by 

dependent instructions, a recovery is inevitable to ensure the correct execution.  

Complete squashing works by flushing all the instructions following the misspeculated instruction 

from the issue queue and the active list, and then re-fetching those instructions from the cache. This 

process is identical to the branch misprediction recovery mechanism. Similarly, a shadow map needs to 

be allocated to maintain the correct renaming state when a value prediction is made. Multiple shadow 
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maps are required in order to make multiple value predictions in the current instruction window. One 

way to eliminate the requirement of multiple shadow maps is to back up to the latest branch instruction 

when a value misprediction occurs. This would result in more recovery penalties since it requires more 

instructions to be flushed and refetched. 

Since the complete squashing method takes the same approach as the branch misprediction recovery, 

it has a similar high recovery penalty in terms of the clock cycles. However, this high recovery penalty 

is not necessary since value misprediction is different from the branch misprediction. Branch 

misprediction will result in the wrong path of the execution; therefore it should be backed up to take 

the right path. Value misprediction, on the other hand, does not necessarily change the execution path 

or the renaming information. This can be further explained with the example shown in Figure 2. 

 

 

 

Figure 2. An example of complete squashing (The register index starting with ‘p’ denotes the physical register) 

In Figure 2, instruction a makes a misprediction on register p1, which is consumed by instruction b 

directly and instruction d indirectly. When instruction a finishes the execution and resolves the 

misprediction, the instructions b, c, and d are flushed out of the window, re-fetched and re-dispatched 

into the issue queue. From this example, it can be seen that there are two reasons for the unnecessarily 

high recovery penalty. First, data independent instructions, like instruction c in our example, are 

unnecessarily flushed out. Second, the re-fetching increases the workload of the frontend and the re-

dispatch repeats the renaming process, which is unnecessary as well.  

Also if we use non-speculative resolution discussed in Section 3.2, there is additional processing in 

the case of correct prediction. This will require hardware support similar to what will be discussed in 

Section 3.4 for selective reissuing.  Since the idea of the complete squashing is to simplify the 

a. p1 = p2+p3 (WB, mispredicted) 
b. p4 = ld(p1) (WB) 
c. p6 = p10 + p12 (EX) 
d. p15 = p4 + p6 (RR) 

a. p1 = p2+p3 (RET) 
b. p4 = ld(p1) (IS) 
c. p6 = p10 + p12 (IS) 
d. p15 = p4 + p6 (IS) 
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hardware at the cost of recovery penalties, speculative resolution may be more appropriate for the 

complete squashing scheme. 

3.4 Value misprediction recovery by selective reissuing 

From the analysis of the previous example in Figure 2, it can be seen that the ideal recovery scheme 

must only put the dependent instructions back into the issue queue and must not stall the independent 

instructions after a value misprediction. Using the same example as Figure 2, the recovery using 

selective reissuing is shown in Figure 3. 

 

 

Figure 3. An example of selective reissuing 

After the misprediction is resolved, instructions b and d are put back into the issue queue and the 

independent instruction c continues execution in the pipeline. Three problems are observed from this 

example: 1) the decoded and renamed instructions must be kept after being issued in order to enable 

selective reissuing; 2) there must be enough empty entries in the issue queue for the instructions to be 

reissued; 3) the data dependence must be identified dynamically to select only the dependent 

instructions. One way to handle the first problem is to add a storage field in the ROB/active list to 

retain the dispatched instructions, so an instruction leaves the issue queue once it is issued, 

speculatively or non-speculatively. This method requires no changes in the issue logic and it is the 

approach used in this study. Another method is to keep the speculatively issued instructions in the 

issue queue until it is no longer speculative [17, 21]. This approach enables quick reissuing for 

multiple times and solves the second problem easily, but it limits the dynamic window size especially 

when a predicted value requires long latencies to resolve. For example, a load instruction with its 

destination register predicted will prevent all its dependent instructions from leaving the issue queue in 

a. p1 = p2+p3 (WB, mispredicted) 
b. p4 = ld(p1) (WB) 
c. p6 = p10 + p12 (EX) 
d. p15 = p4 + p6 (RR) 

a. p1 = p2+p3 (RET) 
b. p4 = ld(p1) (RR) 
c. p6 = p10 + p12 (WB) 
d. p15 = p4 + p6 (IS) 
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recovery 



 10

the case of a miss in the data cache. When the predicted value is verified, there is also a structural 

hazard since many completed instructions will compete to write back their execution results into the 

register file.  

The second problem depends on the issue queue architecture. For processors with a single, shared 

issue queue, this is not a problem as long as the size of the ROB is the same as the issue queue. But for 

those processors with separate issue queues (e.g., separate issue queues for load/store and integer 

operations), there is a chance that some issue queues may not have enough empty entries for the 

instructions to be reissued since the size of the separate issue queues is less than the size of the ROB. 

One possible solution is to stall the fetch engine until all instructions that need to be reissued enter the 

issue queue. This may introduce additional penalties for recovery. In this study, a shared issue queue 

model is used. For the third problem, two possible solutions are considered. One is using an expanded 

ROB entry to maintain the producer information of each source operand and the other is to use a data 

dependency matrix. Both will be discussed in the following subsection. 

a. Dynamic construction of data dependence chain 

In order to get the producer information of source operands, the ROB entry number is used, as it is a 

unique identifier for the instructions in the window. Here, it needs to be noted that any other identifier 

can be used for the same purpose as long as it uniquely identifies the instruction. The ROB entry 

number is chosen in this paper since it helps to explain both methods of dependence chain 

construction. By keeping this number in the register map, the processor knows which instruction 

produces the current version of the architectural register. Then, the producer-consumer dependency can 

be constructed from the ROB entry number in the map table corresponding to the source operands of 

the consumer instructions. This can be illustrated using the earlier example in Figure 2, as shown in 

Figure 4. 
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As shown in Figure 4, the data dependence relationship between instructions can be determined 

through a match between source operands’ ROB entry numbers and the earlier instructions’ destination 

ROB entry numbers. 

 

 

 

Figure 4. Data dependence chain construction 

To facilitate this data dependence chain construction method, some modifications are made in the 

processor architecture shown in Figure 1. First, for each entry in the ROB/the active list, the fields are 

included to store the decoded instruction, the source operands’ ROB entry numbers, and the flags to 

show whether the source and destination operands are speculative, which is shown in Figure 5. Then a 

field is added in the map table for the ROB entry number of the instruction that produces the register. 

The same change is also made in the shadow maps to restore not only the renaming state but also the 

data dependence state. With such modifications, the data dependence information can be constructed at 

the renaming stage, as described below. Another change in the architecture is the physical register file. 

We may either keep the speculative value in the same register file or use a different storage, as 

discussed in Section 3.1. In addition to the value, a flag is included to show that the value is 

speculative (i.e., predicted or computed using a predicted value), or non-speculative. All those 

structures that need to be modified in the processor are enclosed with a dotted line shown in Figure 1.  

 

Figure 5. Fields added in the ROB entry 

The dependency matrix approach uses an N-bit by N-bit matrix where N is the length of the 

ROB/active list. The rows and columns correspond to the ROB entries. Each row represents a bit mask 

Src. 1 ROB # Src. 1 flags Src. 2 ROB # Src. 2 flags Dst. flags Decoded inst. 
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showing the instructions that the instruction in the ROB entry is dependent on. For the example in 

Figure 4, the matrix is shown in Figure 6. The bit in row 2 column 1 shows that the instruction b is 

dependent on the instruction a. 

 

 

 

Figure 6. The data dependency matrix 

This dependency matrix can be constructed in the dispatch stage using the ROB entry number in the 

map table. The current row in the dependency matrix can be obtained by setting the bits in the columns 

corresponding to the producer instructions of the source operands and then OR-ing it with the rows of 

the producer instructions. In Figure 6, the row corresponding to instruction d is constructed by setting 

bits in the columns corresponding to instructions b and c, and then OR-ing the rows corresponding to 

instructions b and c. This method simplifies the process of finding the dependent instructions, 

however, it requires additional work at the dispatch stage to construct such a matrix and also it is hard 

to tell from the matrix whether a dependency is direct or indirect. Such information may be useful 

when selecting which dependent instructions are to be put back into the issue queue first.  

b. Pipeline execution support for selective reissuing 

After such modifications are made in the processor microarchitectural model, additional operations 

are considered at each pipeline stage to support the selective reissuing. At the IF stage, the value 

predictor is accessed and a choice is made whether or not to predict the target value. At the ID stage, it 

reads the source operand’s ROB entry number from the map table, and puts the ROB number of the 

current instruction into the entry of its destination register. Then, it stores the data dependence 

information either in the expanded ROB entry or the data dependency matrix. If the target value is 

p1 = p2+p3 
p4 = ld(p1)  
p6 = p10 + p12  
p15 = p4 + p6  
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predicted, then the predicted value is stored, the ready flag of the target register is set and the flag of 

the value is set as speculative. 

Based on the availability of the source operands (i.e., by checking the ready flag of the source 

registers), the instructions in the issue queue can be issued if issue bandwidth and the function unit are 

available. Here, it needs to be noted that the ready flag can be set speculatively at the ID stage with a 

value prediction or at the EX stage by the wake up and select logic when the result is computed using a 

speculative value. Instructions such as store, branch, function call, and return are not issued with a 

value speculative source operand. The reason is that value speculative execution of a store will require 

the dynamic identification of memory dependent load instructions to perform selective reissuing and 

value speculative execution of branches may result in the wrong execution path, which would require a 

complete squash. At the RR stage, when the speculative value is read out as the source operand, the 

destination value must also be marked as speculative. At the EX stage, there is no additional operation 

except for the load instruction. If the target of the load instruction is predicted, the ready flag of the 

destination register should be maintained in order to enable its dependent instructions to be issued 

speculatively when the data cache miss happens, since the data cache miss would reset the ready bit of 

its destination register and stop waking up its dependent instructions. 

At the WB stage, a validation flag is set to show whether the real computation result is the same as 

the prediction if the target of the instruction is predicted. Then the instruction leaves the execution 

pipeline and enters the RET stage.  

When the instruction is at the WB/RET stage, if its source operands are non-speculative, it processes 

the validation flag that is set at the WB stage. If the validation flag shows the correct value prediction, 

the instruction needs to broadcast its ROB entry number to find its dependent instructions. Then, the 

source operand of its dependent instructions would be set as non-speculative. After the setting, if the 
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dependent instruction’s source operands are all non-speculative, the dependent instruction must verify 

its own result if it is at the RET stage. If the validation flag shows there is a mismatch between the 

predicted value and the non-speculatively computed result (i.e., a misprediction occurs), in addition to 

broadcasting its ROB entry number to find the dependent instructions, it requires a mechanism to put 

those dependent instructions back into the issue queue if they have already been issued. Here, finding 

the dependent instructions is similar to the process in the case of a correct prediction. The difference is 

that for correct predictions, the dependent instruction will broadcast its ROB entry number only if all 

of its source operands are non-speculative, and for the misprediction case, any source operand 

misprediction causes the instruction to broadcast its ROB entry number to invoke reissuing.  

As we discussed earlier, there are two ways to keep the data dependence information. So there are 

two corresponding ways to find the dependent instructions. One is to broadcast the ROB entry number 

recursively and the other is to use a dependency matrix. If we use the recursive method (i.e., the 

instruction broadcasts its ROB entry number to find its immediate dependents and the dependent ones 

will broadcast their ROB entry number to invoke indirect dependent instructions, etc.), it is serial in 

nature. This part will then be the critical path for the selective reissuing mechanism. The use of the 

dependency matrix can alleviate this critical path penalty. Also, since multiple instructions need to be 

put back into the issue queue when a misprediction occurs, this will increase the pressure on the 

bandwidth of getting into the issue queue (i.e., how many of instructions can be put into the issue 

queue simultaneously). However, this pressure is not so critical since the issue bandwidth is more 

likely to be a bottleneck than the bandwidth to get in the issue queue. This surmise is based on the fact 

that the reissued instructions inherently have true data dependencies. So the performance would not 

degrade if we put the immediate (direct) dependent instructions back into the issue queue earlier than 

the indirect dependent instructions. Using this method, the pressure on the critical path of finding the 
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dependent instructions can be also relieved if the misprediction occurs infrequently so that there is no 

overlapping conflict on the broadcast buses.  

Also, in the case of a misprediction, upon identifying the dependent instructions, the allocated 

resources of those instructions need to be freed, such as the result shift register and the memory ports. 

After the instruction processes the validation flags, it remains at the RET stage of the ROB until it is at 

the head of the ROB. When the instruction is to be retired, it checks the map table for its destination 

register’s ROB entry number. If the rob entry number keeps unchanged after the instruction is 

dispatched, this number in the map table is invalidated since the producer is leaving the current 

window. 

4. Simulation methodology and experimental results 

In order to examine the impact of value speculative execution with the selective reissuing 

mechanism, our superscalar timing simulator [10, 11] is extended according to the microarchitectural 

modification and pipeline execution discussed in Section 3.4. Table 1 shows the base processor 

configuration. The entire SPECint95 benchmark suite is used in the simulation. Table 2 lists the input 

sets and all benchmarks were run to completion. 

       Table 1. Base Processor configuration 
Fetch bandwidth: 2-way interleaved to fetch full cache block 
Size/assoc/replacement = 64kB/2-way/LRU 
Line size = 16 instructions 

 
 

Instruction 
cache Miss penalty = 12 cycles 

Size/assoc/replacement = 64kB/4-way/LRU 
Line size = 64 bytes 

 
Data Cache 

Miss penalty = 14 cycles 
Re-order buffer: 64 entries 
Dispatch/issue/retire bandwidth: 4-way 
4 fully-symmetric function units 

 
Superscalar 

Core 
Issue mem bandwidth: 4 
Address generation: 1cycle 
Memory access: 2 cycle (hit in cache) 
Integer ALU ops = 1cycle 

 
Execution 
latencies 

Complex ops = MIPS R10000 latencies 
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        Table 2. Benchmarks 
Benchmark  Input dataset Instr. Count 
Compress Compress95.ref 24 million 
Gcc -O3 genrecog.i –o genrecog.s 117 million 
Go 9 9 133 million 
Jpeg Vigo.ppm 166 million 
Li Test.lsp (queens 7) 202 million 
M88ksim -c < ctl.in (dcrand.big) 120 million 
Perl scrabble.pl < scrabble.in (dictionary) 108 million 
Vortex vortex.in (persons.250, bendian.*) 101 million 

In order to separate the impact of the selective reissuing from other factors such as value predictor 

designs and selective value prediction, we chose to predict all the register-defining instructions and 

vary the misprediction rate from 0% to 15%. Then, in order to simulate the confidence mechanism to 

find those highly predictable instructions, we randomly choose 70% of register-defining instructions to 

predict and vary the misprediction rate from 0.0% to 2% (70% is chosen since it is the average value 

prediction accuracy of the current value predictors [3, 6, 20]). The misprediction rate is simulated 

using a probabilistic approach by using a uniform distributed random number generator. If the result is 

in a certain range, then we deliberately use a wrong value as the predicted value, otherwise we use the 

correct value as the prediction. Also in our simulation, we choose not to issue the store, branch, 

function call and return instructions if any of the source operands is value speculative. The base results 

in IPC where no value speculative execution is allowed is shown in Table 3. 

Table 3. The base model results in IPC 

Benchmarks compress gcc go jpeg li M88ksim perl vortex Average 

IPC 1.53 1.87 1.62 1.97 2.09 1.74 1.91 2.30 1.85 

In our simulator, we modeled the selective reissuing mechanism with different reissue penalties. In 

the ideal case when we assume that the reissue can be done in one clock cycle (i.e., the instructions to 

be reissued get into the issue queue in 1 clock cycle), the simulation results are shown in Figure 7. The 

average IPC is computed using the harmonic mean. 
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Figure 7.  The speedup with the selective reissuing latency of 1 cycle 

From Figure 7, it can be observed that pure data dependence has different impacts on different 

benchmarks. For benchmark jpeg, when the data dependence is broken down by prefect value 

prediction, there is 22% speedup. The benchmark perl, on the other hand, just has around a 5% 

speedup. This shows that the data dependence is more dominant in benchmark jpeg than perl. 

Compared with the speedup of an ideal prediction, the performance is pretty good when the 

misprediction rate is 1%. However, when the value misprediction rate increases further, the 

performance speedup decreases more dramatically. This means that the high prediction accuracy is 

crucial for value speculative execution even with the selective reissuing mechanism. Among the 

benchmarks, compress is most robust against the change of misprediction rate with a speedup of 14.4% 

for ideal prediction and a speedup of 4.6% for the misprediction rate of 15%. Overall, the average 

speedup drops from 11.9% to 1.6% when the misprediction rate increases from 0% to 15%.  

When we increase the latency of selective reissue from 1 cycle to 2 cycles, the performance of value 

speculative execution depends more on the accuracy of value prediction, which is shown in Figure 8.  
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Figure 8. The speedup with the selective reissuing latency of 2 cycles 

In Figure 8, when the misprediction rate is low, e.g., 1%, there is not much difference in 

performance when compared to the speedup shown in Figure 7. This means that with high value 

prediction accuracy, more delay along the critical path of the selective reissue mechanism can be 

tolerated. However, compared to the results shown in Figure 7, the speedup drops more significantly 

when the misprediction rate increases further. On average, the speedup drops from 11.9% to –1.1% 

when the misprediction rate increases from 0% to 15%. 

We also investigate the relationship between the performance gain from branch prediction and value 

prediction. Here, the reissue latency is set to 2 cycles and the simulation results are shown in Figure 9. 
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Figure 9. The speedup using branch prediction (BP) and value prediction (VP) 
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From Figure 9, it can be seen that in all benchmarks except jpeg, m88ksim, and vortex, control 

dependence is more dominant than data dependence. However, when we assume perfect value 

prediction and perfect branch prediction, the speedup is higher than the sum of the speedup resulted 

from a single perfect prediction. For example, the average speedup is 11.9% for ideal value prediction 

and 18.4% for perfect branch prediction. And the combined prefect prediction results in the speedup of 

34.6%. This means that with more accurate branch prediction, higher speedup can be obtained from 

value prediction, which in turn may tolerate more value mispredictions for the same speedup. When 

we compare the speedup of cases with perfect branch prediction and different value misprediction 

rates, we can see that with perfect branch prediction, the speedup of a value misprediction rate of 15% 

is still slightly better than that without value prediction. The reason is that branch misprediction will 

squash value speculative execution result on the mispredicted path regardless of whether it is a correct 

value prediction or not. So a more accurate branch predictor will utilize value speculative execution 

more efficiently, resulting in the ability to tolerate higher value misprediction rates. 

Another investigation in our study is the impact of the larger window size and the wider issue 

bandwidth. We increased the window size to 256 and increased the dispatch, issue, and retire 

bandwidth to 16. With the reissue latency set to 2 cycles, the simulation results are shown in Figure 10. 

From Figure 10, it can be seen that with a larger window size and wider issue bandwidth, the 

speedup of value speculative execution is higher, which can be expected since the data dependence is 

more dominant and more issue bandwidth can be filled with the wider issue processors. The same 

conclusion is shared in [18]. Also, comparing to the results in Figure 8, it can be seen that the wider 

machine can tolerate a higher misprediction rate because there are more benefits from value 

speculative execution in wider issue machines with the same misprediction rate.  
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Figure 10. The speedup using a wider issue machine with value speculative execution 

As the results show, the misprediction rate is highly crucial to attain speedup. Considering the 

current proposed value predictors, the accuracy is not high enough if all the instructions are to be 

predicted. So the confidence mechanism is necessary to filter out those hard-to-predict instructions. In 

our simulations, we randomly choose 70% of the instructions to predict and the results are shown in 

Figure 11 with the reissue penalty of 2 cycles. Comparing this to the results in Figure 8, it can be seen 

that the speedup of the confidence mechanism with misprediction rate less than 2% is greater than the 

speedup when predicting all instructions with a 10% misprediction rate and is less than the speedup 

when predicting all instructions with a 5% misprediction rate. This result shows that although the 

confidence mechanism is very useful, we still need value predictors with better accuracies and larger 

coverage to fully exploit the potential of the value prediction scheme and we expect this to be a great 

challenge in the research of this area. 

5. Related work 

As discussed in Section 1, several schemes have been proposed to design highly accurate value 

predictors and research has been performed for either hardware-based or compiler-driven selective 

value prediction to exploit the potential of value prediction more efficiently.  
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Figure 11. The speedup with the selective reissuing latency as 2 cycles and predicting 70% of instructions 

For the misspeculation recovery, the idea of complete squashing and selective reissuing has been 

described briefly in [4, 12]. In [17], a selective reissuing scheme called selective reissue core (SRC) is 

developed. In the SRC scheme, a PowerPC style of superscalar processor is used as the baseline 

architecture and the instruction remains in the reservation station until it reaches the final (non-

speculative) state, which enables quick reissue for multiple times. The SRC uses the non-speculative 

resolution method to validate the prediction and the data dependence chain is maintained through the 

register names contained in the reservation station. The SRC also introduces the speculative execution 

path and the promotion path to support speculative execution. The instruction issued to the speculative 

execution path will not broadcast its result in the result bus and if the prediction is correct, it will be 

issued to the promotion path to broadcast its result on result bus. The potential problem with SRC is 

the structural hazard. It is likely that the normal execution results and the validation results compete for 

the result bus. Also the dynamic instruction window size is limited as discussed in Section 3.4. 

Another selective reissue scheme (RUU) is described in [19], which expands the entry of the 

instruction window to support value speculative execution, and also depends on the result bus to find 

the dependent instructions to reissue in the case of misspeculation.  



 22

6. Conclusions 

    In this paper, a detailed study of value speculative execution is performed using a generalized 

superscalar model based on MIPS R10000 and possible recovery mechanisms including the complete 

squashing and the selective reissuing are examined. Three important issues are highlighted in 

designing an efficient recovery scheme: when to resolve the prediction, speculatively or non-

speculatively, where to keep the dispatched instructions after they are issued speculatively so as to 

enable reissuing, and how to construct the data dependence chain dynamically. Necessary support at 

each pipeline stage is then discussed to enable such a selective reissuing scheme and the potential 

critical path is pointed out as finding the dependent instructions and putting them back into the issue 

queue. From our experiments, it shows that 1) there is a great speedup potential to exploit by using 

value speculative execution; 2) high value prediction accuracies can tolerate some latencies in the 

reissue critical path and the latency is more critical when the misprediction rate is significant; 3) wider 

issue bandwidth and larger window sizes provide more opportunities to be exploited by value 

speculative execution; 4) higher speedups can also be achieved from value speculation with better 

branch prediction accuracies. In any case, however, a high-accuracy value predictor is essential to the 

possible performance gains.  

     Our future work will investigate the effect of value speculation on different processor paradigms 

from superscalar processors, such as slipstream processors [22]. With the microarchitecture features of 

the slipstream processor, there exist chances to use value speculation for different purposes in addition 

to break the true data dependency in the program. Also, as it is pointed out in the paper, the design of a 

highly accurate value predictor is worthwhile to investigate. The associated issues including the 

prediction bandwidth and updating mechanisms also need to be exploited further.  
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