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Abstract—Dual-core execution (DCE) is an execution paradigm proposed to utilize chip multiprocessors to improve the performance of

single-threaded applications. Previous research has shown that DCE provides a complexity-effective approach to building a highly

scalable instruction window and achieves significant latency-hiding capabilities. In this paper, we propose to optimize DCE for power

efficiency and/or transient-fault recovery. In DCE, a program is first processed (speculatively) in the front processor and then reexecuted

by the back processor. Such reexecution is the key to eliminating the centralized structures that are normally associated with very large

instruction windows. In this paper, we exploit the computational redundancy in DCE to improve its reliability and its power efficiency. The

main contributions include: 1) DCE-based redundancy checking for transient-fault tolerance and a complexity-effective approach to

achieving full redundancy coverage and 2) novel techniques to improve the power/energy efficiency of DCE-based execution paradigms.

Our experimental results demonstrate that, with the proposed simple techniques, the optimized DCE can effectively achieve transient-

fault tolerance or significant performance enhancement in a power/energy-efficient way. Compared to the original DCE, the optimized

DCE has similar speedups (34 percent on average) over single-core processors while reducing the energy overhead from 93 percent to

31 percent.

Index Terms—Multiple data stream architectures, fault tolerance, low-power design.
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1 INTRODUCTION

THE advent of the billion-transistor processor era presents
new challenges in computer system design. Among

them, the key challenges include 1) how the increasing
number of transistors can be effectively converted into
performance enhancement, 2) how a high level of reliability
can be sustained, given a processor’s soft error rate being
proportional to its integration scale [19], and 3) how the first
two goals can be achieved in a highly power/energy-
efficient manner. On the first front, the industry turns to
chip multiprocessor (CMP) architectures for high system
throughput. The performance of single-threaded applica-
tions, however, is not addressed adequately. Furthermore,
as indicated from Amdahl’s law, even in parallel tasks, their
sequential parts will dominate the scalability and the
overall performance. On the second front, most existing
designs incur some performance overhead to meet their
reliability requirements. A recently proposed paradigm, the
dual-core execution (DCE) [40], utilizes CMPs collabora-
tively to improve the performance of single-threaded
applications, and it has been shown that DCE achieves
substantial performance gains by forming a highly scalable
instruction window to tolerate long-latency cache misses. In
this paper, we propose optimizing DCE to address the
remaining two challenges, and our study shows that, with
the proposed simple techniques, the optimized DCE can

effectively achieve high performance and/or transient-fault
tolerance in a highly power/energy-efficient manner.

In DCE, a program is first processed in a very fast yet
highly accurate way in the front processor and then
reexecuted by the back processor. Such reexecution in the
back processor is the key to eliminating centralized
structures normally associated with a very large instruction
window. In this paper, we show that this inherent
computation redundancy can be easily exploited to provide
transient-fault tolerance. To detect and recover from
transient faults in DCE, the speculative execution results
from the front processor are simply carried over to the back
processor and then compared with the nonspeculative
execution results in the back core. Any discrepancy, either
due to a wrongful speculation or an actual transient fault,
will then be recovered transparently with the existing
wrongful speculation recovery mechanism. This way, the
processor reliability can be efficiently improved at very
little hardware cost. Then, we propose a new complexity-
effective extension to DCE to achieve full redundancy
coverage, that is, redundancy checking for all retired
instructions, and we show that such redundancy checking
has only limited performance impact compared to the
original DCE. In other words, both transient-fault tolerance
and significant performance improvement can be achieved
at the same time.

Although it is the key to performance enhancement, the
very large instruction window formed with DCE incurs
extra energy/power overhead. The reason is due to those
branch mispredictions that are dependent on long-latency
cache misses. Given the large instruction window, a high
number of wrong-path instructions would be fetched and
executed before such a misprediction is resolved. To
overcome such overhead while retaining the benefits of
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large instruction windows, we propose to adaptively adjust
the window size and selectively invalidate cache-missing
loads based on workload characteristics. With the proposed
simple optimizations, full redundancy coverage and high
performance can be achieved in a highly energy/power-
efficient manner. For systems without a strong reliability
requirement, more aggressive approaches can be incorpo-
rated to further reduce the energy/power consumption of
DCE. First, the redundant execution in DCE can be
significantly reduced while still ensuring execution correct-
ness. Second, to avoid the energy overhead in those
workloads/execution phases where DCE is not highly
effective, a dynamic mechanism is devised to enable DCE
only when it is beneficial. Our experimental results show
that those techniques effectively reduce the energy over-
head at very little performance cost, and the optimized DCE
achieves even higher energy/power efficiency than a
single-core processor.

The remainder of the paper is organized as follows:
Section 2 presents the background on DCE and other related
work. Section 3 explains the experimental methodology
used in this paper. Exploiting redundant execution in DCE
to achieve transient-fault tolerance is detailed in Section 4.
The optimizations to improve the energy/power efficiency
of DCE with and without the reliability requirement are
presented in Sections 5 and 6, respectively. Section 7
concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Background on DCE

DCE [40] is an execution paradigm proposed to use CMPs
to speed up single-threaded applications, and it is built
upon two superscalar processor cores (called the front
processor and the back processor) coupled with a hardware
queue (called the result queue), as shown in Fig. 1.

In DCE, a program is first preprocessed by the front
processor and then reexecuted by the back processor. The
preprocessing in the front processor is the same as the
normal execution except for long-latency cache-missing
loads, for which an invalid (INV) value is used to substitute
the data being fetched from memory, similar to the run-
ahead mode in [12] and [23]. Dependent instructions of
those invalidated loads are also invalidated through INV
flag propagation. Invalidated branches are resolved as if
their predictions are correct, and the stores with invalidated
addresses simply become nops. When a store instruction
with a valid address retires, it will not update the data cache

and will only update a structure called the run-ahead cache
[23] to forward the store value (either valid or invalid) to
subsequent loads in the front processor. Instructions retired
from the front processor are kept in the result queue and
then fetched and reexecuted by the back processor. Unlike
traditional superscalar designs for a large instruction
window, those in-flight instructions in the result queue
are not associated with any centralized resources, thereby
making it highly scalable. During the reexecution in the
back processor, when a branch misprediction is detected,
the misprediction recovery synchronizes the front processor
and the back processor by flushing all instructions in the
front processor, the back processor, and the result queue
and then copying the current architectural state, including
the architectural register values and the program counter
(PC), from the back processor to the front processor. In
DCE, the front processor runs faster because of the virtually
ideal level-2 (L2) cache, and the back processor makes faster
progress, as the front processor effectively prefetches the
data through the shared L2 cache and resolves most branch
mispredictions for the back processor. Overall, DCE
achieves a significant performance improvement and
eliminates the need for any centralized resources.

In DCE, the execution results (if not invalidated) in the
front processor, although speculative, are highly accurate,
and it is reported in [40] that using the non-INV front
execution results as value prediction if the accuracy is over
99.99 percent. The reasons for such a high accuracy include
1) as the front processor only invalidates long-latency
cache-missing loads, the execution of independent instruc-
tions is not affected, 2) among dependent instructions of
those invalidated loads, if the dependency is carried with
register data flow, then such dependent instructions are
invalidated as well through the INV propagation, and 3) if
the dependency is carried with memory data flow, then the
INV propagation through store-load forwarding in the
load-store queue (LSQ) and the run-ahead cache invalidates
most of those dependent instructions. Only in the very rare
cases when a store with an invalidated address followed by
a load accessing the same location or the replacement of an
INV flag from the run-ahead cache could a stale value be
fetched, resulting in a wrong execution result. The high
accuracy of the speculative execution of the front processor
has important implications on performance and resource
utilization. First, the front processor resolves most branch
mispredictions and provides a highly accurate instruction
stream to the back processor. Second, the prefetches
initiated by the front processor are highly accurate, and
the resources are utilized very efficiently compared to other
prefetching techniques. In this paper, we explore this fast,
speculative, and highly accurate preprocessing to achieve
transient-fault tolerance and enhance the power/energy
efficiency.

2.2 Related Work

DCE is a CMP-based approach to building a highly scalable
single-thread instruction window. Besides the flexibility of
supporting multithreaded workloads, it eliminates the need
for any centralized resources compared to out-of-order
processors with large instruction windows [1], [11], [16],
[33], two-pass/multipass in-order pipelining [4], [5], or
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decoupled kilo-instruction processors [24]. Run-ahead ex-
ecution [12], [23] is another alternative to large instruction
windows which does not require any large centralized
structures. However, in the run-ahead execution, whenever
a mode-transition-triggering cache miss is repaired, the
processor has to return to the normal mode, even if the
preexecution is along the right paths and generates accurate
prefetches. DCE effectively overcomes this fundamental
limitation and achieves significantly higher performance
[40]. The efficiency of the run-ahead execution is examined in
[22], and it is found that one main source of inefficiency
results from overlapping run-ahead periods; that is, the
processor reenters the run-ahead mode due to adjacent cache
misses, dependent or independent, and preexecutes the same
set of dynamic instructions repeatedly. In DCE, the front
processor makes exactly one pass of the instructions and does
not have such a drawback. Furthermore, redundant execu-
tion in DCE enables efficient ways to achieve transient-fault
tolerance, as discussed in Section 4. The energy-saving
optimizations proposed in this paper, such as instruction
window size adaptation (Section 5.2) and selective instruc-
tion invalidation (Section 5.3), can also be used to improve the
energy efficiency of those large instruction window designs,
as well as run-ahead execution.

Leader/Follower architectures provide an efficient plat-
form for fault tolerance by exploiting the results from the
leading thread. In most existing leader/follower architec-
tures for fault tolerance, including AR-SMT [27], DIVA [2],
simultaneous and redundant threading (SRT) [26], Simul-
taneously and Redundantly Threaded processors with
Recovery (SRTR) [36], and chip-level redundant threading
with recovery (CRTR) [15], both leader and follower
thread/processor results are nonspeculative, that is, correct
if free of hardware errors. This constraint is a main reason
for their performance degradation, since the leader has to
wait for the follower to check the execution results before
retiring them (for example, store values and store ad-
dresses). The delayed retirement increases the pressure on
critical resources such as the store queue and register file.
To alleviate such an adverse impact, it is proposed in [15]
that instructions except stores can commit their states
before checking, whereas stores commit to an enlarged
store buffer and only update memory after checking. In
[38], the verification thread is paralleled to improve the
power efficiency of thread-level redundancy checks. In
order to overcome the difficult store-load forwarding
associated with the large store buffer (named post commit
buffer in [38]), it is proposed that the stores update both
level-1 (L1) D-cache and the post commit buffer. The dirty
data in L1 D-cache is dropped when being replaced, and
the post commit buffer is only searched in the case of L1
misses. In contrast to those schemes, the preprocessing in
DCE is speculative and relieved of the correctness require-
ment. To our knowledge, slipstream processing [35] is the
only other thread-level redundancy scheme whose leading
thread (A-stream) is speculative. Such speculative proces-
sing is the key to enabling DCE and slipstream processors
to achieve both performance enhancement and fault
tolerance at the same time.

Although DCE and the slipstream processing share a
similar high-level architecture, they achieve performance
improvements in fundamentally different ways. In slip-
stream processors, the A-stream runs a shorter program

based on the removal of ineffectual instructions, whereas
the R-stream uses the A-stream results as predictions to
make faster progress. DCE, however, relies on the front
processor to accurately prefetch data into caches. Com-
pared to slipstream processors, DCE achieves much
higher performance improvement with less hardware
complexity (that is, no need for IR detectors, IR pre-
dictors, and value prediction support). Both slipstream
processors and DCE can exploit redundant execution to
improve fault tolerance, and the detected faults can be
corrected with the existing wrongful speculation recovery
mechanisms. Many mechanisms proposed in this paper,
such as the dual execution for full redundancy coverage
(Section 4.3) and the elimination of redundant execution
for power/energy efficiency (Section 6.1), can also be used
to enhance the slipstream processing. In a way, DCE can
be viewed as a hybrid between the slipstream and the
run-ahead executions. It synergistically combines the
slipstream and run-ahead executions and uses one to
cancel the drawbacks of the other. The run-ahead
execution cancels the drawback of slipstream that dead-
instruction removal does not give the front processor
sufficient lead. Slipstream cancels the drawbacks of the
run-ahead execution that constant transitions into and out
of the run-ahead mode have high overhead.

DCE is also influenced by other leader/follower architec-
tures such as Master/Slave Parallelization [43] and the
preexecution/precomputation paradigm using multi-
threaded architectures [3], [10], [17], [28], [37], [42]. The
comparison between DCE and those leader/follower archi-
tectures is detailed in [40]. Also, it is worth highlighting that
coupling two (or more) relatively simple processors to form a
large instruction window for out-of-order processing was
originated in multiscalar processors [32], and DCE provides a
complexity-effective way to construct such a window while
eliminating elaborate interthread (or intertask) register/
memory communication. Other proposals using dual cores
to enhance single-thread performance include a dual-core
architecture for speculative multithreading [34] and future
execution [14]. Besides homogeneous CMPs, smart memories
[18] provide a platform on which DCE can be mapped.

3 METHODOLOGY

Our simulator infrastructure is built upon the SimpleScalar
toolset [8], but our execution-driven timing simulator is
completely rebuilt to model MIPS-R10000-style superscalar
processors. In our simulator, both data and tag stores are
modeled in the cache modules (including the run-ahead
cache), and wrong-path events are also faithfully simulated.
The functional correctness of our simulator is ensured by
asserting that the source and destination values of each
retired instruction match with those from the functional
simulator. Our baseline processor, shown in Table 1, is a
MIPS-R10000-style out-of-order superscalar processor,
which is used for both front and back processors in DCE.
The front and back processors share a unified L2 cache. When
simulating DCE, the correctness assertions are disabled in the
front processor model but enforced in the back processor
model. The default DCE setup includes a 4-Kbyte four-way
associative run-ahead cache with a block size of 8 bytes, a
1,024-entry result queue with a 16-cycle delay to account for
interprocessor communication, separate 32-Kbyte two-way
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L1 caches, and a shared unified 1-Mbyte eight-way L2 cache.
A latency of 64 cycles is assumed for copying the architectural
register values from the back to the front processors in the
case of a branch misprediction. A stride-based stream buffer
hardware prefetcher, which has eight four-entry stream
buffers with a PC-based two-way 512-entry stride prediction
table, is also included in the baseline processor model. All our
experiments are performed using SPEC CPU 2000 bench-
marks with the same selection criterion and simulation points
as described in [40], that is, memory-intensive benchmarks
for which an ideal L2 cache introduces at least 40 percent of
speedup and two computation-intensive benchmarks, gap
and bzip2, to illustrate interesting aspects of DCE and other
competitive approaches.

4 OPTIMIZING DCE FOR TRANSIENT-FAULT

TOLERANCE

4.1 Sphere of Replication and Error Protection

In DCE, instructions are fetched from the L1 I-cache of the
front processor, retired from the front processor into the
result queue, and then forwarded to the back processor. To
protect the instruction stream, we propose to include parity
bits in both the L1 I-cache and the result queue. If a faulty
instruction is accessed in the L1 I-cache, then the failed
parity check will nullify the cache block and the read access
becomes an L1 I-cache miss. If an instruction is corrupted in
the result queue, then the back processor simply treats it as
a branch misprediction and rewinds the front processor to
refetch and reexecute the faulty instruction. For instruction
execution, the front and back processors provide spatial
redundancy, as discussed in Section 4.2. To protect from
transient faults that could result in a deadlock (for example,
a ready flag is incidentally flipped so that an instruction can
never move forward), a watchdog timer similar to that used
in DIVA is added in the back processor to restart the
execution from the current architectural state whenever the
timer expires. The architectural state of the back processor,
including an architectural register file, the PC, and the
memory state, needs to be protected with integrity coding
schemes such as error correction coding (ECC).

As part of the memory state, the L1 D-cache of the back
processor and the shared L2 cache may contain dirty data if

the write-back policy is employed, and transient faults to
such dirty data could be irrecoverable. Therefore, they also
need to be protected with ECC bits.

4.2 Reliability Enhancement Using DCE

DCE enables efficient ways to detect and recover from
transient faults. As highlighted in Section 2.1, the execution
results from the front processor in DCE, if not invalid, are
highly accurate. Therefore, we can simply carry them in the
result queue and use them to perform redundancy checking
with the back processor results. Any discrepancy, either due
to a transient fault during execution or a wrongful specula-
tion by the front processor, will incur a misprediction
recovery using the existing branch misprediction mechanism
in the back processor. We call DCE with this redundancy
check as DCE_R. Note that, although it is possible in DCE_R
that a dynamic load may return different values when
executed in the front and back processors, such a discrepancy
will simply be treated as a speculation error, and the same
load will be reexecuted by both the front and back processors.
In a sense, the loads executed in the front processor can be
viewed as an aggressive load speculation in an out-of-order
processor, and the reexecution of the same loads in the back
processor is simply a value-based approach to ensure the
correct memory ordering [9]. For those nonrepeatable loads
such as I/O accesses, the front processor can simply
invalidate those instructions and rely on the back processor
to process them properly.

Although utilizing the speculative execution results from
the front processor conveniently enables redundancy check-
ing in DCE_R, the wrongful speculations in the front
processor will incur additional recoveries even in transient-
fault-free execution. Fortunately, as discussed in Section 2.1,
such wrongful speculations are extremely rare events, and
our experimental results confirm the observation (0.02 recov-
eries per 1,000 retired instructions on the average) and show a
negligible performance impact compared to the original DCE
(see Fig. 4). On the other hand, as DCE_R exploits the
execution results in the front processor to provide redun-
dancy checking, the instructions that are invalidated by the
front processor are only executed by the back processor and
still susceptible to transient faults. In Fig. 2, we report the
redundancy coverage (that is, the percentage of retired
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instructions with redundancy check) for each benchmark by
using DCE_R, and it can be seen that DCE_R protects an
average of 81 percent of all retired instructions with
redundancy checking.

4.3 Achieving Full Redundancy Coverage

In order to achieve redundancy coverage for all instruc-
tions, we propose a novel complexity-effective way to
extend the back processor in DCE_R so that it dual-executes
the instructions that are invalidated by the front processor,
and such an extension to DCE for full redundancy is named
DCE_FR. The main idea is similar to previous work on the
dual use of data path for fault tolerance [25]. The difference
is that only a small subset of instructions needs to be
executed twice in DCE_FR, and the pipeline replication
sphere is extended by replicating instructions as early as in
the fetch stage.

In DCE_FR, the result queue appends a flag (F_INV) to

each instruction to indicate whether it is invalidated by the

front processor. When the back processor fetches an instruc-

tion with a true F_INV (meaning invalidated by the front

processor), the same instruction will be fetched twice: the first
used for redundancy checking and the second for normal
execution. The order here is important, as it significantly
simplifies the required changes in the renaming logic of the
back processor to support such redundant execution. For the
redundant copy of an instruction with a true F_INV, its source
operands access the rename table as usual to get their physical
register mappings. Its destination register(s) obtain(s) a new
physical register from the free list, but does not update the
rename table. The renaming process for the original instruc-
tion stream, including the original copy of those with a true
F_INV and the instructions with a false F_INV, remains
unchanged. At the retire stage, the redundant copy frees its
destination register(s) right after its results are used to
compare with the results of the original instruction. Fig. 3
illustrates this process with an example.

In Fig. 3, instructions A and B are invalidated by the
front processor, so they are replicated (A0 and B0) in the
back processor when fetched from the result queue.
Instruction C is not invalidated by the front processor and
carries a valid result in the result queue for redundancy
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Fig. 3. An example to illustrate the renaming process to achieve full redundancy coverage.

Fig. 4. The performance impact of fault-tolerant DCE.



checking. The redundant instructions A0 and B0 access the
rename table for their source operands and then obtain free
physical registers for their destination registers. However,
those new names will not update the rename table. The
instructions A, B, and C repeat the same process, except
that their destination operands will update the rename
table. This example also shows why it is important that the
redundant copy needs to be processed before the original
instruction. If we exchange the positions of A0 and A, then
the source operand ðr1Þ of A0 would be incorrect, as it
would have been already renamed by the instruction A.

After renaming, the redundant instructions are pro-
cessed in the same way as any other instructions. At the
retire stage, they provide a redundancy check for their
original correspondents (the instruction immediately fol-
lowing it in the reorder buffer (ROB)). Compared to the
renaming scheme proposed in [41], which treats the
redundant copies as a separate thread and requires an
additional rename table to maintain the correct dependency
information, our scheme needs just one rename table,
simplifies the register deallocation mechanism, and frees
the destination registers of the redundant instructions more
promptly (that is, no waiting for redefinition). Dual
execution in the back-core lead to the extra pressure on
the physical register file, the ROB, and the issue queue.
Therefore, such an early release of physical registers is
beneficial for register-hungry applications, as it enables
younger instructions to be dispatched more promptly and
results in higher performance, as seen in Fig. 4.

Fig. 4 shows the normalized execution time of a single
baseline processor, DCE, DCE_R, DCE_FR, and DCE_FR
with the renaming scheme proposed in [41] (labeled as
“DCE_FR_t”). Each cycle is categorized as a pipeline stall
with an empty ROB, a stall with a full ROB due to cache
misses, a stall with a full ROB due to other factors such as
long-latency floating-point operations, or a cycle in unstalled
execution. For DCE-based schemes, such cycle time distribu-
tion is collected from the back processor. Since DCE_FR
provides full coverage of the instruction stream, we do not
inject errors in our experiments. Considering the rare
occurrence of transient errors, their performance impacts
are negligible.

Several important observations can be made based on
Fig. 4. First, both DCE_R and DCE_FR achieve a significant

performance improvement, 35.7 percent and 23.5 percent on
average, respectively, over the single baseline processor
because of the large instruction window formed with DCE.
Slight performance degradations observed in parser, twolf,
and vpr are due to their relatively high number of branch
mispredictions dependent on cache-missing loads. Second,
compared to DCE, DCE_R has a negligible performance
impact, since the number of additional recoveries due to
redundancy checking is extremely small. Third, for gap, mcf,
ammp, art, and swim, DCE_FR results in many more nonstall
execution cycles than DCE_R, since many instructions are
invalidated by the front processor for those benchmarks,
slowing down the progress of the back processor. Fourth,
the new renaming scheme proposed in this paper performs
slightly better than the one in [41], with an improvement of
up to 6 percent in the benchmark ammp and 1 percent on
average, due to its more efficient register deallocation
mechanism. Overall, DCE_FR achieves a 23.5 percent
performance improvement with redundancy checking for
all retired instructions, which is a significant improvement
over the prior work on thread-level redundancy. Even
excluding the outlier benchmark, swim, which features high
memory-level parallelism that can be exploited with a large
instruction window, DCE_FR improves the performance by
17.3 percent on the average over the single core.

5 POWER-EFFICIENT FAULT-TOLERANT DCE

5.1 Energy Consumption of DCE-Based Paradigms

To analyze the power/energy efficiency of the DCE-based
schemes, both WATTCH [6] and HotLeakage [39] are
ported into our simulator to account for dynamic and static
energy consumption. In our experiments, we use the 70-nm
technology with a clock frequency of 5.6 GHz and assume
linear clock gating [6]. The normalized energy consumption
of DCE_R and DCE_FR relative to a single baseline
processor without redundancy checking is shown in
Fig. 5. For comparison, a CMP-based thread-level redun-
dancy scheme CRTR [15] is also included. In the CRTR
model, a 32-entry store buffer is included in the leading
processor, and the interprocessor communication latency is
assumed as 16 cycles, same as in DCE. The execution time
of CRTR is very close to the single baseline processor,
except the benchmark gcc, for which it incurs a 43 percent

MA ET AL.: OPTIMIZING DUAL-CORE EXECUTION FOR POWER EFFICIENCY AND TRANSIENT-FAULT RECOVERY 1085

Fig. 5. Energy consumption of DCE_R, DCE_FR, and CRTR normalized to a single core without redundancy checking.



slowdown even with the 32-entry store buffer (it is fully
54 percent of time for gcc, and a further increase to the 64-
entry effectively recovers the lost performance). The energy
consumption in Fig. 5 is broken down to the dynamic
energy consumed by the front/leading processor (including
the dynamic energy of the shared L2 cache), the back/
trailing processor, the result queue, and the leakage for all
components.

In Fig. 5, it can be seen that both DCE_R and DCE_FR
incur significant energy overhead. The back core in
DCE_FR needs to dual-execute the invalidated instructions
to provide full redundancy coverage, thereby consuming
more energy than DCE_R. Compared to CRTR, DCE_R has
more energy overhead for all integer benchmarks except
bzip2 and less energy overhead for floating-point bench-
marks. DCE_FR, on the other hand, consumes more energy
than CRTR: up to 98 percent in mcf and 33 percent on
average.

The main sources of the energy overhead associated with
the DCE-based schemes are identified as follows:

1. Wrong-path instructions executed in the front
processor following the branch mispredictions are
resolved in the front processor, which also account
for the wasted energy in the baseline single core and
the CRTR scheme.

2. Wrong-path instructions executed in both front and
back processors following the branch mispredictions
are resolved in the back processor. Given the large
instruction window formed with DCE, one such
branch misprediction can potentially result in
thousands of wrong-path instructions being fetched
and executed before the misprediction is detected,
and this is the main reason that DCE_R and DCE_FR
incur much more energy overhead for the bench-
marks mcf, parser, twolf, and vpr. Here, note that, with
the nonuniform branch handling in DCE, that is,
mispredictions dependent on short-latency opera-
tions are resolved promptly in the front core and
only those dependent on long-latency cache misses
are resolved in the back processor, the branch
misprediction rate at the back processor is actually
quite low: 0.65 per 1,000 retired instructions on
average. However, with the very large instruction
window, such mispredictions still present a major
source of power/energy inefficiency. CRTR, in
contrast, does not have such a drawback, as all the
mispredictions are resolved in the leading processor.

3. The instructions with invalidated source operands,
although producing no useful results, still need to
access structures including the issue queue, ROB,
register file, rename table, and so forth for INV
propagation.

4. As a result of such invalidation, the back processor
in DCE_FR has to dual-execute those invalidated
instructions to achieve full redundancy coverage,
thereby consuming more energy.

The advantages or potential energy savings of the DCE-
based schemes are through the reduced execution time,
especially when the leakage energy becomes dominant in
deep-submicron technologies. Here, note that the inclusion

of the back core does not increase static energy too much,
since the 1-Mbyte L2 cache is the main source of leakage
energy consumption. Based on the energy overhead
analysis, we next propose simple optimizations to improve
the power/energy efficiency of DCE-based schemes in
Sections 5.2 to 5.4 and examine their results in Section 5.5.
Although the proposed optimizations are applicable to both
DCE_R and DCE_FR, we focus our discussion on DCE_FR
in this section due to the space limitation.

5.2 Adapting Instruction Window Sizes

As discussed in Section 5.1, the energy overhead of DCE_FR
mainly comes from the high cost of branch mispredictions
that are dependent on long-latency cache misses. For
brevity, we refer to those branch mispredictions as
“important mispredictions” in the rest of the paper. To reduce
the energy overhead associated with important mispredic-
tions, we can either improve the branch prediction accuracy
or reduce the impact of each misprediction. The first option
is out of the scope of this paper and is left as future work.
For the second option, since the cost of each important
misprediction is directly related to the instruction window
size, if the window size can be adaptively adjusted based on
workload characteristics, then we can improve the power/
energy efficiency while retaining the performance benefits
of large instruction windows.

Unlike other large instruction window designs, the
instruction window in the DCE-based schemes is mainly
formed with the result queue, which enables very simple
ways to change the window size (that is, no involvement of
other structures). As the result queue is a circular first-in,
first-out (FIFO) structure, in order to change the logical
queue size, we only need to change the hardware to
determine how its head pointer and tail pointer will be
updated. In other words, rather than the pointer advance-
ment logic head=tail ¼ ðhead=tailþ 1Þ mod queue_size, we
add a register to maintain the current queue size (cur_
queue_size) and change the pointer advancement logic to
head=tail ¼ ðhead=tailþ 1Þ mod cur_queue_size. As the
current queue size will always be configured as a
2’s power, the logic is simply an addition followed by a
shift operation. With the hardware support, we propose an
algorithm to periodically adjust the instruction window
size, as shown in Fig. 6.

The key idea behind the algorithm in Fig. 6 is to reduce
the window size for those workloads/execution phases that
feature a high important-misprediction rate and to fully
exploit large-window benefits for others. Once a new queue
size is determined, the actual change takes effect when the
queue is squashed at the next important-misprediction
recovery. The parameters in the algorithm, that is, those
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threshold misprediction rates, are determined empirically,
and our experiments indicate that the algorithm is quite
robust for changes in those thresholds.

5.3 Selective Invalidation of Cache-Missing Loads

Using the terminology defined in [21], a load instruction can
be distinguished between an address load and a data load. An
address load can be further classified as a traversal address
load, that is, a static load that produces an address to be
consumed by itself or another address load, or a leaf address
load, that is, a static load that produces an address to be
consumed by a data load. In DCE-based schemes, invalidat-
ing a traversal address load can lead to a large portion of
instructions being invalidated through the INV propagation
if subsequent iterations depend on its loaded result, which, in
turn, increases the chances of important mispredictions and
the number of instructions to be dual-executed in the back
processor. Therefore, we propose to not invalidate such
traversal address loads, even if they miss in the L2 cache.
Besides potential energy savings from a more accurate
instruction stream and fewer invalidated instructions, such
uninvalidation can also improve the effectiveness of DCE
when there are other cache-missing loads dependent on a
traversal address load. Not invalidating this particular load
enables the front processor to execute the dependent loads
and prefetch the data for the back processor.

Accurate identification of all traversal address loads
requires code analysis and potential compiler support.
Therefore, in this paper, we only focus on a special type of
traversal address loads, that is, “load ra, x(ra),” that can be
easily detected at the decode stage. Then, those detected
traversal address loads are prevented from being invali-
dated, even when they miss in the L2 cache.

5.4 Adaptively Enable/Disable the Invalidation in
the Front Processor

As pointed out in [40], DCE is proposed to hide memory-
access latencies for memory-intensive workloads and it is not
suitable for computation-intensive applications as there are
not many cache-missing loads to be invalidated for the front
processor to make faster progress. In addition, even if an
application is relatively memory intensive, DCE can still hurt
the performance if the workload has a high important-
misprediction rate due to the high cost of misprediction
recovery. Furthermore, in DCE_FR, the invalidation also
increases burden to the back processor as it needs to dual-
execute those invalidated instructions. To address this
problem, we propose an algorithm to adaptively enable/
disable the invalidation of cache-missing loads based on a
workload’s dynamic behavior, as shown in Fig. 7.

The algorithm in Fig. 7 lists three scenarios where
invalidating cache-missing loads is beneficial. The first (that
is, condition A) is for heavily memory-intensive workloads/
phases with a moderate important-misprediction rate. As we
still want to take advantage of the fast preprocessing of the
front core, we choose to allow the invalidation and resort to
the window-size adaptation to control the energy overhead.
The second (that is, condition B) is memory-intensive
applications/phases with a low important-misprediction
rate, which is the typical case for DCE to fully utilize its large
instruction window. The third one (that is, condition C)
represents programs/phases with moderate memory inten-
siveness and extremely low important-misprediction rate for
which the large instruction window also helps to improve the
performance. If any of these three conditions is true, then the
invalidation should be enabled. Otherwise, it will be
disabled. Here, note that even if the invalidation is disabled,
the front processor results are still speculative, as stores
commit to the run-ahead cache instead of the L1 D-cache, and
instructions retire without waiting for the redundancy
checking from the back processor. When the invalidation is
enabled, it does not necessarily mean that all cache-missing
loads will be invalidated, since some of them may be detected
as traversal address loads and are not allowed to be
invalidated using the criterion in Section 5.3.

The important-misprediction rate is easy to obtain if the
invalidation is enabled, as it is simply the misprediction rate
in the back processor. If the invalidation is disabled, however,
then all mispredictions are resolved in the front processor. To
differentiate important mispredictions from the rest, we add
a time stamp to each shadow map and set it when the shadow
map is allocated for a branch. When a misprediction is
resolved, the difference between the current time stamp and
the one in its shadow map tells the latency to resolve this
branch. If such latency is greater than 100 cycles, then an
important misprediction is detected.

5.5 Experimental Results

We first examine the performance impact of the optimiza-
tions proposed in Sections 5.2 to 5.4. The normalized
execution time of these schemes relative to a single baseline
processor is shown in Fig. 8, where “FR_rs” represents
DCE_FR with an adaptive-sized result queue, “FR_rs_tl” is
“FR_rs” augmented with the noninvalidation of traversal
address loads, and “FR_rs_tl_in” is “FR_rs_al” combined
with the adaptive control of invalidation in the front
processor. In Fig. 8, it can be seen that the overall
performance impacts of the proposed optimizations are
limited compared to the original DCE_FR. Using an
adaptive-sized instruction window introduces minor per-
formance degradation for the benchmarks bzip2, mcf, parser,
twolf, and vpr, whereas it benefits art slightly. Noninvalida-
tion of traversal address loads improves the performance
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for mcf, parser, and twolf, as many important mispredictions
are eliminated. The additional capability to dynamically
control the invalidation at the front processor improves the
performance for parser, twolf, and vpr, as the invalidation is
always disabled for those benchmarks due to their high
important-misprediction rates. For gcc, mcf, ammp, art,
equake, and swim, in contrast, the invalidation is enabled
most of the time, as they are either heavily memory
intensive (for example, mcf) or memory intensive with low
important-misprediction rates (for example, equake). For
computation-intensive workloads bzip2 and gap, the invali-
dation is disabled most of the time and only enabled for few
phases with relatively more memory operations, resulting
in slight performance improvement for gap.

The impacts of the proposed optimizations on energy
consumption and power/energy efficiency, both normal-
ized to the single-core processor, are shown in Figs. 9 and
10, respectively. In Fig. 9, it can be seen that the proposed
optimizations significantly reduce the energy overhead

associated with DCE_FR: from 110 percent over a single
core down to 87 percent on the average. The energy savings
mainly come from the front processor, as it executes much
fewer instructions when the window size is reduced (for
example, mcf), or the number of important mispredictions is
reduced (for example, parser, twolf, and vpr). Compared to
CRTR, the optimized DCE_FR only incurs a small energy
overhead (87 percent versus 77 percent over a single core)
while achieving significant performance improvements (a
24.9 percent speedup versus a 2.7 percent slowdown on the
average).

Using normalized EDP [13] relative to a single core
processor as a power/energy-efficiency metric, Fig. 10
shows that the proposed optimizations effectively improve
the power/energy efficiency for DCE_FR (from 1.71 to 1.51).
Compared to CRTR, the optimized DCE_FR achieves better
power/energy efficiency on average (1.51 versus 1.83) and
for all individual benchmarks except gap, twolf, and ammp.
With a metric emphasizing more on performance, for
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Fig. 8. The normalized execution time of DCE_FR, optimized DCE_FR, and CRTR.

Fig. 9. The normalized energy consumption of DCE_FR, optimized DCE_FR, and CRTR.

Fig. 10. The normalized energy-delay products (EDPs) of DCE_FR, optimized DCE_FR, and CRTR.



example, energy� delay2 product ðED2PÞ [7], gap and ammp
also report higher efficiency than CRTR, given their
performance advantage. Eliminating the outlier benchmark
gcc improves the average EDP of CRTR from 1.83 to 1.78,
but it is still not as efficient as the optimized DCE_FR. Note
that, in Fig. 10, the average EDP is computed using
ð� DelayÞ�ð� EnergyÞ, as suggested in [29].

6 POWER/ENERGY-EFFICIENT DCE

As addressed in Section 5.1, the energy overhead of DCE is
mainly due to two sources: wrong-path instructions and
redundant execution. The optimizations proposed in Sec-
tions 5.2 and 5.3 aim to reduce the energy overhead
associated with wrong-path instructions. In this section,
we focus on reducing unnecessary redundant execution for
systems without a strong reliability requirement.

6.1 Reducing Redundant Execution in DCE

In DCE, instructions are reexecuted in the back processor
after having been preprocessed by the front processor. Such
reexecution serves two purposes: 1) ensuring execution
correctness as the front processor executes instructions in a
speculative way and 2) providing redundancy checking, if
necessary. With the relief of the reliability requirement, the
only objective left is to ensure the correctness of program
execution, as the reexecution corrects any wrongful spec-
ulation made by the front processor.

As highlighted in Section 2.1, apart from the invalidated
instructions, the execution results from the front processor
are actually highly accurate, and the only reason for a
wrong result is due to incorrect memory processing. For
example, a store with an INV address will make all the
subsequent loads speculative, as a stale value may be
loaded if the same “unknown” address is accessed. The
replacement of an INV value from the run-ahead cache is
another reason for a load to fetch a stale value. Branch
mispredictions due to an invalidated operand, however, do
not present a correctness issue, as all the invalidated
instructions will be reexecuted in the back processor
anyway. Since load instructions are the only source to
produce potentially incorrect but still valid results in the
front processor, the back processor does not need to
reexecute every instruction to ensure the correctness.
Instead, it only needs to reexecute all the loads and all the
invalidated instructions. For other valid instruction results,
the back processor can simply incorporate them into the
register file and let those instructions bypass the execution
engine. For valid load instructions, the back processor
checks whether the reloaded values match with the
previously loaded data. If not, the back processor simply

incurs a branch misprediction recovery to restart from the
current architectural state. This way, power/energy con-
sumption can be saved in the back processor if a significant
number of instruction reexecutions can be avoided.

6.2 Switching between DCE and Single-Core
Execution

As addressed in Section 5.4, DCE is not an efficient
paradigm for certain types of workloads/execution phases
such as computation-intensive applications or those with
high important-misprediction rates. For those workloads/
phases, it would be more energy efficient to completely
disable DCE and use a single core to execute them.

The switch from the dual-core mode (or called the single-
threaded mode in [40]) to the singe-core mode (called the
multithreaded mode in [40]) is similar to a branch
misprediction recovery in the back processor: The archi-
tectural state at the back processor is copied to the front
processor, the front processor fetches, processes, and retires
instructions in its normal way with its invalidation and the
run-ahead cache being disabled, and the back processor
either becomes idle or starts executing a new thread by
fetching instructions from its own I-cache. To switch from
the single-core mode back to the dual-core mode, the
architectural state at the front processor is copied to the
back processor, the invalidation is enabled at the front
processor, and the back processor starts fetching instruc-
tions from the result queue.

The algorithm to determine whether/when the single-core
or dual-core mode should be used is similar to the one to
control invalidation in Fig. 7, as they are essentially exploiting
the same workload behavior. The only difference is replacing
“enabling invalidation” with “switching to the dual-core
mode” and “disabling invalidation” with “switching to the
single-core mode.”

6.3 Experimental Results

The effectiveness of the approach proposed in Section 6.1 is
shown in Fig. 11, which reports the ratio of the number of
executed instructions over the number of retired instruc-
tions in the back processor for each benchmark. As Fig. 11
shows, the back processor only needs to reexecute a small
portion of all instructions: 41 percent on average, with a
minimum of 24 percent for bzip2 and a maximum of
63 percent for ammp, to ensure the correctness. The
performance cost due to load value mismatch in the back
processor is very limited, as there are only 0.12 mismatches
per 1,000 retired instructions on average.

The impacts of the proposed optimizations on perfor-
mance and energy consumption are shown in Figs. 12 and
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13, respectively. Among the results, those labeled as
“DCE_wp” are based on the optimizations proposed in
Sections 5.2 and 5.3, since those optimizations target at
wrong-path instructions and are also effective in improving
the power/energy efficiency for DCE without the reliability
requirement. As seen in Figs. 12 and 13, with the
optimizations proposed in Section 5.2 and 5.3, the energy
overhead of DCE is reduced from 93 percent to 77 percent
on the average, and the execution time is increased up to
5 percent for mcf and 2 percent on the average. Therefore, in
the remaining experiments, we always include those
optimizations and evaluate additional energy savings
achieved by reducing redundant execution. To highlight
the energy overhead of redundant execution, we use an
ideal branch predictor to model the impact of accurate
control flow. The results show that, by eliminating wrong-
path instructions, the average energy overhead can be
further reduced to 61 percent, and the average execution
time can be reduced by 42 percent, which indicates that a
better branch predictor will be an efficient way to improve
the energy efficiency of DCE.

With the significant reduction of instruction reexecution,
the selective reexecution optimization proposed in Section 6.1
reduces the energy overhead from 77 percent to 59 percent on
average at very little performance cost, as seen in Figs. 12 and
13 (labeled “DCE_sr”). The additional capability to adap-
tively switch between the single-core and dual-core modes
enables DCE to be used more efficiently. For those bench-
marks that are either computation intensive (for example,
gap) or feature a high important-misprediction rate (for
example, parser, twolf, and vpr), the front core operates in the
single-core mode most of the time, and the back core simply
remains idle. This way, the adverse impacts of DCE on both
performance and energy consumption are eliminated, as seen

from the results labeled “DCE_sr_mode” in Figs. 12 and 13.
For the remaining benchmarks, for example, equake and swim,
their phase behavior is exploited for more aggressive energy
reduction. Overall, the mode switching reduces the energy
overhead from 59 percent to 31 percent on average and still
achieves 34 percent of performance improvement over a
singe core.

The power/energy efficiency results measured in EDP,
as reported in Fig. 14, show that the proposed optimizations
significantly improve the power/energy efficiency of DCE.
Compared to the single-core baseline processor, the
optimized DCE achieves much better power/energy effi-
ciency for art, equake, and swim and equivalent efficiency for
bzip2, gap, parser, twolf, and vpr. For the remaining bench-
marks gcc, mcf, and ammp, their substantial performance
gains (20 percent, 30 percent, and 38 percent speedups,
respectively) can be desirable for systems emphasizing
more on performance. In addition, the mode switching
algorithm in Section 6.2 offers the flexibility to explore
different performance-energy trade-offs by adjusting the
parameters in the algorithm. For example, by simply
increasing the required L2 miss rate in “condition B” from
25 to 30 per 1,000 instructions in Fig. 7, the single-core mode
will be used most of the time for gcc.

When using ED2P as the energy-efficiency metric, the
optimized DCE reports an average of 26.7 percent of
improvement over the single-core processor. The implication
of such improvement is that, if the system is equipped with
dynamic voltage and frequency scaling capabilities, then
additional opportunities exist for energy-efficiency enhance-
ment by exploiting the superlinear effect of the operating
voltage on dynamic power/energy consumption [7]. For
example, based on the same assumptions as in [30] that the
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Fig. 12. The normalized execution time of DCE and optimized DCE.

Fig. 13. The normalized energy consumption of DCE and optimized DCE.



full frequency range is twice the full voltage range, and there
is a linear relationship between frequency and voltage, the
frequency-voltage pair is scaled down from (5.6 GHz, 1.0 v) to
(4.48 GHz, 0.9 v), that is, a 20 percent frequency reduction
along with a 10 percent voltage drop. Then, our simulation
results show that the optimized DCE achieves an average of
16.5 percent of performance improvement with a 9.3 percent
energy overhead compared to the single-core processor. If the
voltage can be scaled down more aggressively for the same
frequency change, for example, from (5.6 GHz, 1.0 v) to
(4.48 GHz, 0.85 v), then a 3.6 percent energy reduction can be
achieved, along with the 16.5 percent performance improve-
ment. The voltage and frequency scaling results above are
obtained using the same scaling for both the front processor
and the back processor. The decoupled structure in DCE also
enables opportunities for more aggressive energy savings by
applying frequency-voltage scaling to the front processor and
the back processor separately. Since the front processor
generally can reach a high IPC due to its virtually ideal
L2 cache, its operating voltage and frequency can be further
reduced compared to the back processor. The detailed
evaluation is left for future work.

7 CONCLUSIONS

DCE is an approach recently proposed to improve the
performance of single-threaded applications using CMPs.
In this paper, we propose simple extensions to DCE to
exploit its inherent redundant execution, and the extended
DCE achieves both performance enhancement and transi-
ent-fault tolerance simultaneously while incurring only
minor hardware cost.

Then, we perform a detailed analysis of energy
overhead associated with DCE-based paradigms, and we
identify that a main cause for their energy inefficiency is
the high number of wrong-path instructions executed in
the large instruction window formed with DCE. To negate
such an adverse impact while retaining the benefits of
large instruction windows, we propose simple schemes to
adaptively adjust the instruction window size and selec-
tively invalidate cache-missing loads based on the runtime
behavior of workloads. For systems without a strong
reliability requirement, an interesting way is proposed to
further improve their power/energy efficiency by redu-
cing the redundant execution in DCE. As shared by other
large instruction window designs, DCE works best with
memory-intensive workloads with a low important-mis-
prediction (that is, branch mispredictions dependent on

long-latency cache-missing loads) rate. For other applica-
tions/execution phases, the limited performance gains
usually do not justify the energy overhead associated with
DCE. To solve this problem, we develop a dynamic
scheme which enables DCE only when it is beneficial and
falls back to the single-core execution otherwise.

Our experimental results show that the proposed simple
optimizations effectively improve the power/energy effi-
ciency. The optimized DCE with full redundancy checking
achieves a 24.9 percent speedup over a single core without
fault tolerance at a cost of 87 percent of energy overhead
over the single core and is a much more power/energy-
efficient scheme than a previously proposed transient-fault
tolerance approach for CMPs [15]. Without the reliability
requirement, the optimized DCE further improves the
performance to a 34 percent speedup and lowers the energy
overhead to 31 percent and, therefore, becomes even more
power/energy efficient than the single-core processor.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

insightful and valuable comments.

REFERENCES

[1] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint Processing
and Recovery: Towards Scalable Large Instruction Window
Processors,” Proc. 36th Int’l Symp. Microarchitecture (MICRO-36),
2003.

[2] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. 32nd Int’l Symp. Microarchitecture
(MICRO-32), 1999.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynami-
cally Allocating Processor Resources between Nearby and Distant
ILP,” Proc. 28th Int’l Symp. Computer Architecture (ISCA-28), 2001.

[4] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W. Hwu,
“Beating In-Order Stalls with Flea-Flicker Two-Pass Pipelining,”
Proc. 36th Int’l Symp. Microarchitecture (MICRO-36), 2003.

[5] R. Barnes, S. Ryoo, and W. Hwu, “Flea-Ficker Multipass
Pipelining: An Alternative to the High-Power Out-of-Order
Offense,” Proc. 38th Int’l Symp. Microarchitecture (MICRO-38), 2005.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimization,” Proc.
27th Int’l Symp. Computer Architecture (ISCA ’00), 2000.

[7] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A.
Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta, and P. Cook,
“Power-Aware Microarchitecture: Design and Modeling Chal-
lenges for Next-Generation Microprocessors,” IEEE Micro, vol. 20,
no. 6, 2000.

[8] D. Burger and T. Austin, “The SimpleScalar Tool Set v2.0,”
Computer Architecture News, vol. 25, June 1997.

MA ET AL.: OPTIMIZING DUAL-CORE EXECUTION FOR POWER EFFICIENCY AND TRANSIENT-FAULT RECOVERY 1091

Fig. 14. The normalized EDPs of DCE and optimized DCE.



[9] H. Cain and M. Lipasti, “Memory Ordering: A Value-Based
Approach,” Proc. 31st Int’l Symp. Computer Architecture (ISCA ’04),
2004.

[10] J.D. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J.P. Shen, “Speculative Precomputation: Long-Range Pre-
fetching of Delinquent Loads,” Proc. 28th Int’l Symp. Computer
Architecture (ISCA ’01), 2001.

[11] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-Order
Commit Processors,” Proc. 10th Int’l Symp. High Performance
Computer Architecture (HPCA-10), 2004.

[12] J. Dundas and T. Mudge, “Improving Data Cache Performance by
Pre-Executing Instructions under a Cache Miss,” Proc. ACM Int’l
Conf. Supercomputing (ICS ’97), 1997.

[13] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low Power Digital
Design,” Proc. Int’l Symp. Low Power Electronics, 1994.

[14] I. Ganusov and M. Burtscher, “Future Execution: A Hardware
Prefetching Technique for Chip Multiprocessors,” Proc. Int’l Conf.
Parallel Architecture and Compilation Techniques (PACT ’05), 2005.

[15] M. Gomma, C. Scarbrough, T. Vijaykumar, and I. Pomeranz,
“Transient-Fault Recovery for Chip Multiprocessors,” Proc. 30th
Int’l Symp. Computer Architecture (ISCA ’03), 2003.

[16] A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg,
“A Large, Fast Instruction Window for Tolerating Cache Misses,”
Proc. 29th Int’l Symp. Computer Architecture (ISCA ’02), 2002.

[17] C.K. Luk, “Tolerating Memory Latency through Soft-Ware-
Controlled Pre-Execution in Simultaneous Multithreading Pro-
cessors,” Proc. 28th Int’l Symp. Computer Architecture (ISCA ’01),
2001.

[18] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz,
“Smart Memories: A Modular Reconfigurable Architecture,” Proc.
27th Int’l Symp. Computer Architecture (ISCA ’00), 2000.

[19] S. Mukherjee, J. Emer, and S. Reinhardt, “The Soft Error Problem,
An Architectural Perspective,” Proc. 11th Int’l Symp. High
Performance Computer Architecture (HPCA-11), 2005.

[20] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed Design and
Evaluation of Redundant Multithreading Alternatives,” Proc. 29th
Int’l Symp. Computer Architecture (ISCA ’02), 2002.

[21] O. Mutlu, H. Kim, and Y. Patt, “Address-Value Delta (AVD)
Prediction: Increasing the Effectiveness of Runahead Execution by
Exploiting Regular Memory Allocation Patterns,” Proc. 38th Int’l
Symp. Microarchitecture (MICRO-38), 2005.

[22] O. Mutlu, H. Kim, and Y. Patt, “Techniques for Efficient
Processing in Runahead Execution Engines,” Proc. 32nd Int’l
Symp. Computer Architecture (ISCA ’05), 2005.

[23] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-Order Processors,” Proc. Ninth Int’l Symp. High
Performance Computer Architecture (HPCA-9), 2003.

[24] M. Pericas, A. Cristal, R. Gonzalez, D. Jimenez, and M. Valero, “A
Decoupled KILO-Instruction Processor,” Proc. 12th Int’l Symp.
High Performance Computer Architecture (HPCA-12), 2006.

[25] T. Ray, J. Hoe, and B. Falsafi, “Dual Use of Superscalar Datapath
for Transient-Fault Detection and Recovery,” Proc. 34th Int’l Symp.
Microarchitecture (MICRO-34), 2001.

[26] S. Reinhardt and S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. 27th Int’l Symp. Computer
Architecture (ISCA ’00), 2000.

[27] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors,” Proc. 29th Int’l Fault-Tolerant
Computing Symp. (FTCS-29), 1999.

[28] A. Roth and G. Sohi, “Speculative Data Driven Multithreading,”
Proc. Seventh Int’l Symp. High Performance Computer Architecture
(HPCA-7), 2001.

[29] Y. Sazeides, R. Kumar, D. Tullsen, and T. Constantinou, “The
Danger of Interval-Based Power Efficiency Metrics: When Worst
Is Best,” Computer Architecture Letters, Jan. 2005.

[30] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S.
Dwarkadas, and M. Scott, “Energy-Efficient Processor Design
Using Multiple Clock Domains with Dynamic Voltage and
Frequency Scaling,” Proc. Eighth Int’l Symp. High Performance
Computer Architecture (HPCA-8), 2002.

[31] J. Smolens, J. Kim, J. Hoe, and B. Falsafi, “Efficient Resource
Sharing in Concurrent Error Detecting Superscalar Microarchi-
tecture,” Proc. 37th Int’l Symp. Microarchitecture (MICRO-37), 2004.

[32] G. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar Proces-
sors,” Proc. 22nd Int’l Symp. Computer Architecture (ISCA ’95), 1995.

[33] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual Flow Pipelines,” Proc. 11th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS-11), 2004.

[34] S.T. Srinivasan, H. Akkary, T. Holman, and K. Lai, “A Minimum
Dual-Core Speculative Multi-Threading Architecture,” Proc. 22nd
IEEE Int’l Conf. Computer Design (ICCD), 2004.

[35] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream
Processors: Improving Both Performance and Fault Tolerance,”
Proc. Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-9), 2000.

[36] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-Fault
Recovery Using Simultaneous Multithreading,” Proc. 29th Int’l
Symp. Computer Architecture (ISCA ’02), 2002.

[37] P.H. Wang, H. Wang, J.D. Collins, E. Grochowski, R.M. Kling, and
J.P. Shen, “Memory Latency-Tolerance Approaches for Itanium
Processors: Out-of-Order Execution vs. Speculative Precomputa-
tion,” Proc. Eighth Int’l Symp. High-Performance Computer Archi-
tecture (HPCA-8), 2002.

[38] M. Wasiur-Rashid, E. Tan, M. Huang, and D. Albonesi, “Exploit-
ing Coarse-Grain Verification Parallelism for Power-Efficient Fault
Tolerance,” Proc. 14th Int’l Conf. Parallel Architectures and Compila-
tion Techniques (PACT ’05), 2005.

[39] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M.
Stan, “Hotleakage: A Temperature-Aware Model of Sub-Thresh-
old and Gate Leakage for Architects,” Technical Report CS-2003-
05, Dept. of Computer Science, Univ. of Virginia, 2003.

[40] H. Zhou, “Dual-Core Execution: Building a Highly Scalable
Single-Thread Instruction Window,” Proc. 14th Int’l Conf. Parallel
Architectures and Compilation Techniques (PACT ’05), 2005.

[41] H. Zhou, “A Case for Fault-Tolerance and Performance Enhance-
ment Using Chip Multiprocessors,” Computer Architecture Letters,
Sept. 2005.

[42] C. Zilles and G. Sohi, “Execution-Based Prediction Using
Speculative Slices,” Proc. 28th Int’l Symp. Computer Architecture
(ISCA ’01), 2001.

[43] C. Zilles and G. Sohi, “Master/Slave Speculative Parallelization,”
Proc. 35th Int’l Symp. Microarchitecture (MICRO-35), 2002.

Yi Ma received the BE degree in computer
science and technology from Zhejiang Univer-
sity, Hangzhou, China. She is currently working
toward the PhD degree in the Department of
Computer Science, University of Central Florida.
Her current research focuses on high-perfor-
mance, low-power multithreaded, and multicore
architectures.

Hongliang Gao received the BE degree in
computer science and technology from Beihang
University, Beijing, in 2001. He is currently a
PhD student in the School of Electrical En-
gineering and Computer Science, University of
Central Florida. His research interests include
novel techniques for control flow speculation,
fault tolerance, and power efficiency in modern
processors.

1092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007



Martin Dimitrov received the BS degree from
Bethune-Cookman University and the MS de-
gree from University of Central Florida, both in
computer science. He is a doctoral student at
the University of Central Florida. His research
interests include high-performance and reliable
microarchitectures.

Huiyang Zhou (S ’98, M ’03) received the
bachelor’s degree in electrical engineering from
Xian Jiaotong University, China, in 1992 and the
PhD degree in computer engineering from North
Carolina State University in 2003. He is currently
an assistant professor in the School of Electrical
Engineering and Computer Science, University
of Central Florida. His research focuses on high-
performance microarchitecture, low-power de-
sign, architecture support for system reliability,

and backend compiler optimization. He is a member of the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MA ET AL.: OPTIMIZING DUAL-CORE EXECUTION FOR POWER EFFICIENCY AND TRANSIENT-FAULT RECOVERY 1093



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


