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Abstract—GPUs applications, including many scientific and
machine learning applications, increasingly demand larger mem-
ory capacity. NVM is promising higher density compared to
DRAM and better future scaling potentials. Long running GPU
applications can benefit from NVM by exploiting its persistency,
allowing crash recovery of data in memory.

In this paper, we propose mapping Lazy Persistency (LP) to
GPUs and identify the design space of such mapping. We then
characterize LP performance on GPUs, varying the checksum
type, reduction method, use of locking, and hash table designs.
Armed with insights into the performance bottlenecks, we pro-
pose a hash table-less method that performs well on hundreds and
thousands of threads, achieving persistency with nearly negligible
(2.1%) slowdown for a variety of representative benchmarks. We
also propose a directive-based programming language support to
simplify programming effort for adding LP to GPU applications.

I. INTRODUCTION

Graphics Processing Units (GPU) is increasingly used in
high-performance computing (HPC) which requires a large
memory capacity. Cutting edge machine learning (ML) ap-
plications, such as multi-camera activity recognition [1], also
requires much larger memory capacity than provided in current
GPU systems. As DRAM scaling is facing difficulties, non-
volatile memory (NVM), such as Intel Optane DC persistent
memory [2], has stepped in to provide the higher density and
better scaling potential for future main memory. Furthermore,
NVM offers additional benefits such as byte addressability,
low leakage power, and non-volatility, while providing read
latency that is closer to DRAM than to SSD. As an increasing
number of GPU applications demand larger memory capacity,
NVM becomes more attractive in future GPUs. A challenge
of current NVM is the bandwidth (especially write bandwidth)
that is lower than what GPUs demand. Hence, it is likely that
DRAM will be used either as a front end buffer for the NVM,
or needed pages may be brought to DRAM on demand from
NVM [3].

NVM provides a unique opportunity to store data persis-
tently in memory data structures instead of in files, bypassing
the substantial overheads of interacting with the file system.
To achieve that, data must be crash recoverable to a consistent
state upon crash recovery, and computation must be able to
recompute or resume execution from when crash occurs. To
aid programmers in reasoning about crash recovery, a typical
system provides a persistency model that provides primitives

to push data into the persistency domain, and to specify
the relative ordering of such pushes. In the Intel PMEM,
the former is provided through cache write back and flush
instructions (clwb, clflush/clflushopt), while the latter is pro-
vided through persist barrier instruction (sfence). Similarly,
other persistency models in literature include strict persistency,
epoch persistency, and buffered epoch persistency [4]–[8]. To
use them, the programmer must actively orchestrate these
instructions to maintain a redo or undo log and specify atomic
durable regions, hence these approaches are referred to as
Eager Persistency (EP).

More recently, another approach referred to as Lazy Persis-
tency (LP) was proposed [9]. Utilizing LP does not require
the programmer to insert any persistency instructions at all.
Instead, the programmer defines regions in code, and protect
each region with a checksum that can detect persistency failure
of the region. Upon a crash, the checksum of each region is
validated, and any regions for which the checksum validation
fails must be re-executed as part of crash recovery. There are
trade offs between EP vs. LP. EP incurs a large overhead
during normal execution, including maintenance of logs, loss
of locality due to cache line flushing, and processor stalls due
to persist barriers. 20-40% slowdowns are typical for EP. LP,
on the other hand, has none of such overheads, hence LP
on CPUs have been reported to have negligible performance
overheads of only 1% [9]. As a trade off, crash recovery is
slower in LP, and its applicability is limited to associative code
regions.

In contrast to CPUs, persistency on GPU systems is only
just beginning, and only EP and logging has been explored
in GPUs [10], [11]. A class of emerging GPU applications
require crash recovery to run correctly or efficiently. Examples
include GPU-accelerated memory databases, such as Mega-
KV [12], GPU B-Tree [13], Kinetica [14], etc. In addition,
many emerging GPU applications are also long-running, in-
cluding training deep neural networks, computing proof of
work in blockchain applications, scientific computation using
iterative approaches, etc. Finally, supporting crash recovery
also improves checkpointing performance by relegating system
checkpointing for more serious faults, hence the checkpointing
frequency can be reduced [15].

On the surface, LP is a promising technique to apply
on GPUs for several reasons. First, it was demonstrated to



achieve nearly negligible performance overheads on CPUs;
if this translates equally well to GPUs, it will be the first
technique that achieves persistency at very low overheads.
Second, considering NVM has limited write endurance and
EP techniques rely on logging and cache line flushing that
incur substantial write amplification, LP is attractive as it
was demonstrated to produce very small write amplification
in CPUs. However, GPUs involve thousands of threads to do
the computation, orders of magnitude higher than in CPUs,
hence it is unclear if the performance and write amplification
characteristics of LP shown in CPUs will be preserved in
GPUs, especially with GPU high thread counts.

In this paper, we characterize the performance and scalabil-
ity of Lazy Persistency (LP) on GPUs. The central questions
we would like to answer are: what regions can be used as LP
regions in the context of GPUs? What performance overheads
will LP incur on GPUs? What scalability bottlenecks may
present a challenge to LP on GPUs? Based on the characteri-
zations, we identify aspects of LP that need to be redesigned
on GPUs. Then, we present a design for LP on GPUs that
avoids the bottlenecks, utilizing GPU-specific optimizations.
Finally, we present a directive-based programming language
support that can express LP in GPUs well.

To summarize, this paper makes the following contributions:

• To our knowledge, this paper is the first to propose Lazy
Persistency for GPUs. We identify the design space for
mapping LP on GPUs.

• We present characterization of LP performance on GPUs,
looking into the design space explorations based on (1)
hash table choices, (2) the use of locks vs. lock-free,
and the use of (3) sequential vs. parallel reduction. The
characterization leads to insights into the performance
bottlenecks of LP on GPUs.

• Based on the insights of performance bottlenecks, we
present a new hash-table-less design that produces very
low performance overheads.

• Finally, we propose and show that a directive-based
programming language support can express LP in GPUs
well, allowing the programmer to achieve LP with low
programming complexity. Such a support has not been
demonstrated, even in CPUs.

The remainder of the paper is organized as follows. Sec-
tion II discusses background and related work. Section III dis-
cusses the evaluation testbed. Section IV describes LP design
space exploration on GPUs and performance characterization
results. Section V shows our hash table-less LP design on
GPUs. Section VI discusses our directive-based programming
language support. Section VII discusses evaluation results of
the new design. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Lazy Persistency on CPU

Lazy Persistency (LP) requires that programmers organize
their algorithm into LP regions, where each region is a unit
of recovery. LP regions must be associative, meaning that the
order in which the regions are persisted must not affect the
correctness of the output. For example, iterations of a loop
that perform reduction, such as a loop that finds the maximum
value element in an array, is associative because whatever the
order the iterations is, the maximum value will be the same.
Associativity is important for LP regions because with LP,
there is no guarantee which iterations will be persisted before
others; any regions that were found not fully persisted will
be recovered through crash recovery code, while other regions
that have persisted fully are left alone. The crash recovery code
is specific to the code structure in the region. A specific special
case is when an LP region is idempotent. An idempotent region
is one that can be executed multiple times without changing
the result. An idempotent LP region makes crash recovery
simple as the region can simply be re-executed upon a crash.
However, idempotency is a small subset of what LP regions
can be.

An LP region is protected by a checksum, which is selected
to enable detection of whether all stores in the region persisted
successfully. Example checksums may be parity, modular
checksum, and Adler-32 [9]. With any checksum, there is a
small probability of false positive, i.e. the checksum indicates
no persistency failure when in fact there is a failure. To avoid
this, more than one checksum can be used simultaneously to
protect each region.

With LP, none of stores in a region, including the checksum
store itself, need to be flushed from the cache to memory. They
will be naturally evicted and written back from the cache,
possibly long after the stores were performed.

Listing 1 shows an example CPU LP code for tiled matrix
multiplication. In the example, the LP region is an ii itera-
tion. In each ii iteration, a checksum is initialized (typically
assigned NaN value). Each store in the region that needs to
be persistent updates the checksum (line 12). At the end of
the LP region, a hash table is accessed and the checksum is
inserted (lines 16-17).

Listing 1: CPU Lazy Persistency code for tiled matrix multi-
plication [9].

1 for (kk=starting_kk; kk<n; kk+=bsize) {
2 for (ii=starting_ii; ii<n; ii+=bsize) {
3 // Each ii iteration is an LP region
4 ResetCheckSum();
5 for (jj=0; jj<n; jj+=bsize) {
6 for (i=ii; i<(ii+bsize); i++) {
7 for(j=jj; j<(jj+bsize); j++) {
8 sum = c[i][j];
9 for(k=kk; k<(kk+bsize); k++)

10 sum += a[i][k]*b[k][j];
11 c[i][j] = sum;
12 UpdateCheckSum(c[i][j]);



13 }
14 }
15 } // for jj
16 hashIndex = GetHashIndex(ii,kk);
17 HashTable[hashIndex] = GetCheckSum();
18 }
19 }

The programmer needs to determine the LP region in the
code. Since LP regions must be associative, there should
not be data dependencies between regions. Another aspect of
choosing the LP region is the granularity. A smaller LP region
incurs a higher relative overhead in computing the checksum
and keeping a larger hash table for checksums. A larger LP
region, on the other hand, incurs a longer recovery time since
more work is lost upon a crash, but reduces the overheads of
checksum computation and hash table maintenance. Thus, the
programmer needs to carefully consider this trade-off when
choosing the LP region.

After determining the LP region, checksum needs to be
computed (line 12 in the figure). Since multiple threads will
compute a value that is aggregated into the checksum, in
the LP on CPUs, the checksum update must be protected
by a lock. Hence, not only the LP checksum calculation is
done sequentially for each LP region assigned to a thread, the
checksum update also incurs critical section overheads. Such
an approach is feasible for a low thread count in CPUs, but
not for GPUs with thousands of threads.

LP on CPUs also rely on using a hash table to organize
the checksums (lines 16-17) [9]. Each checksum for an LP
region is computed, it inserts the checksum into the hash
table. A hash table works by hashing a value to a hash table
index, and the value is then inserted into the indexed entry.
The insertion is protected by a lock due to possible multiple
concurrent insertions by multiple threads. The insertion also
may result in a hash table collision. To handle a collision,
different strategies may be adopted. With CPU, chaining is
a feasible approach, where each hash table entry points to a
linked list, and collision is handled by adding the new value
into the linked list. Since CPUs only having a small number
of cores compared to GPUs, hash table insertion and chaining
for handling collision are a feasible strategy. For GPUs with
thousands of threads, a more scalable alternative is needed.

The recovery process after a failure is dependent on the
code. The recovery is needed to restore the program to the
consistent state upon recovering from a failure. There are two
strategies for recovery in LP. The first type is eager recovery,
which ensures forward progress on recovery. Alternatively,
lazy recovery may be used, but increases the risk of not making
forward progress if a crash occurs during recovery. The eager
recovery is more appropriate since although it is expensive,
since it guarantees forward progress and we only use it in on
occasional time where recovery from failure is needed.

B. GPU Architecture and Programming

A GPU uses hundreds or thousands of cores to compute.
The cores are organized into a hierarchical structure, starting
from a single core packed together with dozens of other cores
to form a Streaming Multiprocessor (SM). A GPU consists
of multiple SMs. In Volta architecture, a single GPU contains
84 Volta SMs, each SM contains 64 FP32 cores, 64 INT32
cores, 32 FP64 cores, 8 tensor cores, and 4 texture units
[16]. A Single Instruction Multiple Thread (SIMT) paradigm
is used in GPUs to perform massively parallel execution of
threads on many cores. A group of 32 threads form a warp.
The threads within a warp will execute the same instruction.
Multiple warps will be organized into a thread block. An SM
will execute several thread blocks. Threads within a thread
block share memory resources including the L1 cache and
shared memory. The L1 cache is managed by the hardware and
is transparent to the program. Shared memory is visible to the
program and is extensively used to optimize GPU applications.
Moreover, starting from Kepler Architecture [17], threads
within a warp could communicate directly with one another at
the register level without going down to shared memory. We
will exploit this feature to minimize the performance overhead
of LP in our proposed design.

On the Kepler Architecture, NVIDIA introduces instruction
support for parallel reduction. Prior to the Kepler architecture,
parallel reduction is done using shared memory. In order to
perform reduction, data is stored to shared memory, then after
synchronization with another thread, it is fetched back into
the register from shared memory. The new shuffle instruction
will efficiently achieve parallel reduction by exchanging data
between threads in the same warp.

The presence of shared memory enables GPU application
developers to exploit data locality explicitly. On a GPU
application, threads within a thread block will work together
while communicating with each other through shared memory.
The typical usage of shared memory has the following pattern.
First, each thread fetches data from the (slow) global memory
to the (fast) shared memory. Then, during computation, threads
in a thread block read from and write to data in shared memory
instead of going to global memory. At the end of computation,
the computation results from each thread block are then stored
back to global memory.

III. EVALUATION TESTBED

A. System configuration

We evaluate our characterization on an NVIDIA Tesla V100
GPU system. The GPU runs CentOS Linux release 7.4.1708
with NVIDIA driver version 440.33.01. For compilation we
use the CUDA version 10.1. and GCC version 6.2.0. The
system is DRAM based since there is no available commercial
NVM-based GPU. Therefore, the results that we obtain should
not be interpreted as absolute performance overheads that
measure persistency on NVM as the read and write latencies



will not be the same with using an actual NVM. Rather, our
results can be interpreted for relative performance overheads
between various schemes that allow us to reason about which
scheme performs better than others and the reasons behind it.
Furthermore, the results of LP are more closely aligned to the
real NVM than Eager Persistency (EP) because with LP, we
do not rely on any persistency instructions such as cache line
flushes and store fences.

B. Benchmarks

We use tiled matrix multiplication [18], benchmarks from
Parboil suite [19], and a real world key-value store applica-
tion MEGA-KV [12]. From the Parboil suite, we selected
benchmarks with differing performance bottlenecks: Two-
Point Angular Correlation Function (TPACF), MRI Cartesian
Gridding (MRI-Gridding), and Sparse Matrix-Dense Vector
Multiplication (SpMV), Sum of Absolute Differences (SAD),
Saturating Histogram (HISTO), Distance-Cutoff Coulombic
Potential (CUTCP) and Magnetic Resonance Imaging - Q
(MRI-Q). Table I describes these benchmarks along with their
performance bottlenecks identified by a prior study [19]. We
use the biggest input provided in the parboil data sets.

TABLE I: Benchmarks

Name Input Suite Bottleneck
TMM 4096x4096 [18] Inst throughput
TPACF Biggest Input Parboil [19] Inst throughput
MRI-GRIDDING Biggest Input Parboil Inst throughput
SPMV Biggest Input Parboil Bandwidth
SAD Biggest Input Parboil Bandwidth
HISTO Biggest Input Parboil Bandwidth
CUTCP Biggest Input Parboil Inst throughput
MRI-Q Biggest Input Parboil Inst throughput
MEGA-KV insert, search, & [12] Unkown

delete 16K recs.

IV. GPU LAZY PERSISTENCY EXPLORATION

LP on CPUs provides an alternative to EP in achieving
crash recoverability, with fast normal execution (the common
case) but more complex crash recovery (the rare case). In
this section we will explore the design space for mapping LP
to GPUs, and explore whether the benefits of LP in CPUs
also apply in GPUs. A further benefit of LP is that it is
implementable in current GPUs right away because no new
instructions are required. In contrast, EP requires cache line
flush and durable barrier instructions which are not supported
in current GPUs [10].

To map LP to GPUs, we identify the following design space
aspects: (a) LP region selection; (b) checksum computation
method; (c) checksum table organization; and (d) using locks
or using lock-free design. These aspects must take into account
that GPU applications tend to stress on interconnect and/or
memory bandwidth, employ thousands of threads, and the
hierarchical parallel nature of GPU programming model. We
will discuss each aspect subsequently.

A. LP Region Selection

LP regions are units of crash recovery and must be associa-
tive. LP region selection must consider (a) a good balance
between checksum overhead and recovery granularity and
(b) simplicity of recovery code construction. We observe
that the the thread hierarchy in GPU programming model
actually provides a natural fit to this problem, for several
reasons. First, thread blocks are naturally associative as GPU
hardware provides no guarantee on the execution order of
thread blocks. No additional manual or compiler analysis
is needed to identify them, in contrast to code for CPUs.
Second, they usually present a good amount of work such
that the checksum computation will likely not become a
major overhead. Third, they can be enlarged if needed, e.g.
through thread block fusion [20]. Fourth, threads within each
thread block can synchronize and communicate through on-
chip shared memory, thereby providing the efficient support
for checksum computation. Fifth (and finally), using thread
block as the LP region also simplifies the recovery code.

The recovery code contains two parts: validation and re-
covery function. After a crash, the recovery kernel, which
has the same thread dimension as the original kernel, first
validates the checksum for each thread block by fetching the
corresponding data from memory, computing their checksums,
and then comparing them with the ones stored in the checksum
table. For the failed thread blocks, the recovery function is
then invoked. Usually a thread block is idempotent, hence the
recovery function is trivially identical to the original kernel
function. Such idempotency can be statically identified using
compiler. For non-idempotent thread blocks, the recovery
function is application dependent.

One issue with LP is that the validation and recovery may
affect arbitrarily old regions due to the lack of guarantee
that old regions persisted successfully. To avoid this, we can
combine periodic checkpointing [21]–[23] or periodic whole-
cache flushing [9]. With such mechanisms, only regions newer
than the checkpoint or flushing point need to be validated and
possibly recovered. The interval period can be selected based
on probability of crashes and recovery time to achieve a certain
MTBF or availability target.

The natural associativity and ease of crash recovery code
construction make GPUs a better fit for LP than CPUs, and
lend itself to a directive-based programming support, which
allows the programmer to insert a small number of pragma’s
(discussed in Section VI).

B. Checksum Computation Methods

The next design aspect to consider is the checksum compu-
tation method. For a thread block LP region, all threads in the
thread block will perform their own checksum computation
and then generate combined/reduced checksums collectively.
Two factors must be considered: type of checksums and
whether or not checksum computation should be parallel.



To enable the detection of persistency failure, the checksum
is computed over all store values that must persist in an LP
region. Hence, if any store (including the checksum store)
did not persist, at crash recovery the checksum validation
fails, i.e. the recomputed checksum value mismatches with
the stored checksum. An ideal checksum has a low execution
time overhead yet has very low false negative rate (matching
checksum despite some store not persisted). In CPUs, three
checksums were considered: parity checksum (store values
are XORed together), modular checksum (store values are
added), and Adler-32 [24], [25] (used in compression li-
braries). Through random error injection, modular and Adler-
32 checksums both provide false negative rates of less than one
in two billion (2×10−9) [9]. However, Adler-32 is significantly
more expensive than modular checksum. Considering these,
we select two simultaneous checksums: modular and parity
checksums. The false negative rate using these two checksums
simultaneously falls to less than one in a trillion (10−12),
which is more than good enough for our purpose.

We illustrate our LP GPU support with a matrix multipli-
cation example shown in Listing 2. Lines 21-30 show the LP
support: lines 21-24 compute the checksum and lines 26-30
store the checksum in the checksum hash table.

Listing 2: Matrix multiplication kernel with LP code.
1 __global__ void tiledMatrixMul(int *a, int *b, int

*c, int n,
2 int tile_size) {
3 __shared__ int A[SHMEM_SIZE];
4 __shared__ int B[SHMEM_SIZE];
5 int row = by * tile_size + ty;
6 int col = bx * tile_size + tx;
7 int temp_val = 0;
8

9 // Sweep tiles over entire matrix
10 for (int i = 0; i < (n / tile_size); i++) {
11 A[(ty * tile_size) + tx] = a[row * n + (i *

tile_size + tx)];
12 B[(ty * tile_size) + tx] = b[(i * tile_size *

n + ty * n) + col];
13 __syncthreads();
14 for (int j = 0; j < tile_size; j++) {
15 temp_val += A[(ty * tile_size) + j] * B[(j *

tile_size) + tx];
16 }
17 __syncthreads();
18 }
19 c[(row * n) + col] = temp_val;
20

21 int lane = ((ty * tile_size) + tx) % warpSize;
22 int warpId = ((ty * tile_size) + tx) / warpSize;
23

24 int* reduced_vals = blockReduceSum(temp_val, n,
tile_size, lane, warpId);

25

26 if (lane == 0 && warpId == 0) {
27 int key = by*gridDim.y + bx + 1; //blockId+1
28 int key2 = by*gridDim.y + bx + gridDim.x *

gridDim.y + 1;
29 cuckooSingleInsert(_tableState, key,

reduced_vals[0]);
30 cuckooSingleInsert(_tableState, key2,

reduced_vals[1]);
31 }

A second factor to consider is how to compute the check-
sum: sequentially or in parallel. In CPU, it is computed
sequentially. In GPUs, we can leverage parallel reduction
through the shuffle down instruction. Parallel reduction low-
ers the number of iterations vs. sequential from O(N) to
O(logN), where N is the number of checksums to be
combined/reduced. Listing 3 shows the two steps. First, each
warp performs a reduction for all the threads within each warp
(warpReduceSum function on line 5) and the reduction results
are stored in shared memory with an array indexed by the
warp id. Second, after all the warps in the thread block finish
their checksum computation, which is ensured with a barrier
on line 9, the items in the array are reduced by warp 0 using
the same warpReduceSum function (line 12).

Listing 3: Parallel reduction at the thread block level.
1 __inline__ __device__
2 int blockReduceSum(int val, int lane, int warpId,

unsigned mask) {
3 int ix=blockIdx.x*blockDim.x+threadIdx.x;
4 static __shared__ int shared[32]; //32 part sums
5 val = warpReduceSum(val, mask); //part reduce
6 if (lane == 0) {
7 shared[warpId] = val; //write reduced value
8 }
9 __syncthreads(); //wait for all part reduce

10 val = (ix < blockDim.x / warpSize) ? shared[lane
] : 0;

11 if (warpId == 0) {
12 val = warpReduceSum(val, mask); //final reduce
13 }
14 return val;
15 }

The warp-level reduction, warpReduceSum, is accelerated
using the shuffle down instruction, as shown in Listing 4 and
illustrated in Figure 1. As discussed earlier, to keep the false
negative rate low, multiple checksums are computed in the
warpReduceSum function.

Listing 4: Parallel reduction at the warp level with two
checksums.

1 __device__ int* warpReduce(int val, int val2,
unsigned mask, int *results)

2 {
3 int offset;
4 for (offset=warpSize/2; offset>0; offset/=2) {
5 val += __shfl_down_sync(mask, val, offset);
6 val2 ˆ= __shfl_down_sync(mask, val2, offset);
7 }
8 results[0] = val;
9 results[1] = val2;

10 return results;
11 }

XOR cannot be applied to floating point data in CUDA.
Hence, to compute the checksums, all floating point numbers
that are the elements of the matrices are converted into ordered
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v ^= __shfl_down(v, 4);

v ^= __shfl_down(v, 2);

v ^= __shfl_down(v, 1);

Modular Checksum Parity Checksum

Fig. 1: An example of two checksum calculations using the
shfl_down instruction, with 8 warps. For parity checksum,
the 4-bit binary representation of each number is used, e.g.
0010 (2) XOR 1001 (9) = 1011 (11).

integer prior to applying bitwise XOR. The conversion in-
cludes both the exponent and mantissa, allowing the detection
of persistency failure for either of them. Figure 2 illustrates an
example binary representation of a floating point data with a
value of 3.5, with a single sign bit, 8-bit exponent, and 23-bit
mantissa. The conversion concatenates all the bits, resulting
in an integer value of 1080033280.

0 10000000 1100000 00000000 00000000 = 3.5

01000000011000000000000000000000     = 1080033280

sign exponent mantissa

concatenate sign + exponent + matissa bits

Fig. 2: floating point data to integer conversion

C. Hash Table Organizations

After a checksum is calculated, a thread block stores it into
the modified data structure or a hash table. In the former, the
main data structure of the original benchmark is modified to
embed the checksums. In the latter, a separate data structure
(i.e., a hash table) keeps the checksums. The former approach
requires a substantial change to the original program and
increases the complexity of the programming. It is also not
compatible with a directive based programming language
support. Hence, the latter is more attractive.

In CPUs, hash table data structures can be more sophis-
ticated when handling collisions, e.g. collision by chaining
(Figure 3 (left)). In the example, if a key is hashed into a
non-empty index, the key is inserted into a linked list chained
to the entry. With chaining, the hash table never fills up and
the performance is less sensitive to the load factor, i.e., the
ratio of number of keys hashed to number of hash table entries.
However, it requires pointer chasing and lock synchronization
on the shared entry.

B
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H(x)
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Fig. 3: Illustration of the hash table with chaining for LP
implementation on CPU (left) and quadratic probing hash table
(right)

In GPU, we need a more scalable hash table even if it is
less flexible. A GPU hash table ideally does not use pointers,
is lock free, generates few collisions, scales well with large
thread counts, has low average insertion latencies and limited
worst-case insertion latencies. The key insertion latency is
in the critical path of execution time when the system is
running normally, hence a slow insertion can be a performance
bottleneck for the system. However, the lookup time is not in
the critical path, as it is performed only on crash recovery,
which is the rare case. Furthermore, we know the number of
unique keys in advance, since the number of thread blocks
is known. So we can size the hash table in a way to avoid
the hash table becoming full and keep the load factor in
the range that produces low probability of collisions. This
makes chaining unnecessary and unattractive. Finally, in order
to avoid use of pointers, we consider only open addressing,
where all keys are placed in the hash table itself.

Considering the characteristics, we use two hash tables:
quadratic probing and cuckoo hash tables. The quadratic
probing hash table uses a simple mechanism when dealing
with collision, as illustrated in Figure 3 (right). It first checks
the entry the hash produces. If the entry is full, it calculates the
next index by adding the successive value of the power of two
to the original hash function result, i.e. adding i2 to the original
index in the ith iteration. This process is repeated until an
empty entry is found. In the figure, key X initially collides in
the entry occupied by A, hence the second index is calculated
by adding 12 = 1 to the first index. Unfortunately, the second
entry is occupied by key B, so 22 = 4 is added to calculate for
the third index, which also collides with E. Finally, 32 = 9

is added to calculate the fourth index and the empty entry
is found. Quadratic probing is simple to implement, and has
been shown to produce superior performance to linear probing.
However, it has two disadvantages: high worst case insertion
time due to possibly high number of collisions, and it works
well only if the load factor is 70% or less.

The next hash table that we consider is Cuckoo hash table.
Compared to quadratic probing, the cuckoo hash table theo-
retically provides an amortized constant worst case insertion
time [26], [27]. The standard cuckoo hash table uses two tables
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Fig. 4: Illustration of key insertion with collision on Cuckoo
hashing.

and two hash functions to index the table. Let us denote the
two tables as T1 and T2 and their hash functions H1 and H2,
respectively. Figure 4 illustrates an example insertion step.
Initially there are three keys A, B, and C in table T1 and
there are two keys D and E in table T2. Suppose now a
key X needs to be inserted into the hash table. In Step (1),
H1(X) is computed to index T1. Because the entry is not
empty, X is inserted into the table, evicting key C. In Step
(2), a new place for key C is calculated using H2 to index
T2, i.e., T2(H2(C)). Unfortunately, the entry in table T2 is
occupied by key D, hence C is inserted and D is evicted. In
Step (3), we find a new place for key D in table T1, which
results in inserting key D to table T1 and evicting key B.
Finally, in Step (4) key B is inserted into an empty entry in
table T2. An unlikely but possible case is when successive
evictions end up with a cycle. When a cycle is detected, the
cuckoo hash table performs hash tables rehashing with new
tables and new functions. The lookup process of a Cuckoo
hash table is to simply find all possible indices pointed by
all hashing functions. For example, to lookup key X , we will
find on indices T1(H1(X)) and T2(H2(X)). Cuckoo hashing
was theoretically proven to have constant-time worst-case
insertion time, constant-time worst-case lookup, and constant-
time worst-case deletion time, which is attractive for our LP
GPU use case. There are drawbacks, however. First, there are
always as many lookups as the number of tables. Fortunately,
lookups are not in the critical path of execution time, as
they are only needed for crash recovery. Second, the load
factor should be kept at less than 50% [28], beyond that the
performance dramatically degrades.

1) Using or not Using Locks: In any of the hash table, we
can avoid using locks by relying on atomic instructions. The
atomic instruction is required for inserting a checksum into the
hash table in order to make sure there is no race condition.

The atomic instruction that we use is atomic compare and
swap (atomicCAS()) for quadratic probing, which allows the
table to make sure that the hash table entry is empty, before
inserting a new key.

For cuckoo hashing, we use atomic exchange
(atomicExch()) for exchanging a key to be inserted with a
key that may already be present in the hash table entry. The
atomicExch() instruction allows a lock-free implementation
to guard against race condition due to simultaneous insertions
into the same hash table entry. In this implementation, we do
not use atomic compare and swap since in cuckoo hashing
we will always insert the entry to a hash table entry no matter
whether it is occupied or empty.

D. Performance Characterization Results

To evaluate the design space for LP on GPUs, we charac-
terize the performance over the design space.

1) Performance Overhead for Naive LP Implementation:
We compare the performance from the two different hash
tables: Cuckoo hash table (Cuckoo) and quadratic probing
(Quad). Figure 5 shows the execution time overheads for all of
the benchmarks and their geometric mean. All hash tables use
parallel reduction. The figure shows that in general, Cuckoo is
slower (31.7% mean overhead), compared to Quad (29.4%).
For MRI-GRIDDING, Quad’s overhead is truncated because
it is larger than the y axes scale (218.6%) and for SAD,
Cuckoo’s overhead is truncated (232.79%). The reason is that
MRI-GRIDDING and SAD uses a lot of thread blocks, thus
there is a high amount of contention while inserting checksums
into to the hash table. For TMM, TPACF, and SPMV, HISTO,
CUTCP, and MRI-Q the difference of the overheads between
the two mechanisms are much smaller. The reason behind this
is that the number of the thread blocks used is much smaller.
Since the number of the thread blocks is small, the degree
of memory contention is smaller during insertion process. We
hypothesize that big performance overhead is primarily due to
the huge number of collision in the table.
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Fig. 5: Overhead compared to baseline for different hash table



2) Impact of hash table collisions: To test the hypothesis,
we collect the number of hash table collisions for Quad
and Cuckoo (Table II). The table confirms a large number
of collisions for TMM, MRI-GRIDDING, and SAD, with
Cuckoo achieving lower number of collisions for TMM and
MRI-GRIDDING that correlate with its lower performance
overheads, especially for MRI-GRIDDING. While for SAD,
Quad achieving lower number of collision that leads to lower
performance overhead. We further look at MRI-GRIDDING
using the quadratic probing and cuckoo hashing, and modify
the code to remove collision by making sure that the entry
lookup for the first time during insertion is always empty. We
evaluate this and the result confirmed the hypothesis, with the
overheads dropping dramatically to only 0.1% and 0.8% for
cuckoo hashing and quadratic probing, respectively. Therefore,
much of the slowdown comes from hash table collision.

TABLE II: Number of hash table collisions.

Name Quadratic Probing Cuckoo Hashing
TMM 60443 38951
TPACF 532 483
MRI-GRIDDING 172978 26351
SPMV 57 39
SAD 31971 44566
HISTO 26 54
CUTCP 550 562
MRI-Q 120 112

3) Impact of atomic instruction: Another aspect we try
to investigate is the usage of atomicExch() instruction in
Cuckoo hashing and atomicCAS() instruction is Quadratic
probing. For Cuckoo hashing we replace the atomicExch()
with the code to do swap between two variable using a
temporary variable. For Quadratic probing, we remove the
atomicCAS() and replace it with if condition to comparison
and swap. It turns out that without using atomic instructions,
the overheads increase to 41.9% and more than 16× for
Cuckoo hashing and Quadratic probing, respectively. Thus,
using atomic instructions do not degrade performance. Instead,
it improves performance.

4) Impact of using or not using locks: We investigate
two hash table implementations based on whether locks are
used or not. We anticipate that this aspect is more important
in GPUs due to high thread counts. Table III shows the
overhead results of lock-based and lock-free implementations.
The last column shows the number of total thread blocks used.
From the table, we can observe that the lock-free version
always performs better than the lock-based one: the lock-
based version performs 32− 37× worse on average for Quad
and Cuckoo respectively compared to the baseline. For MRI-
GRIDDING and SAD, the overhead difference between lock-
based and lock-free implementation is extremely high. This
is correlated to the huge number of threads blocks: 65,536 in
MRI-GRIDDING and 128,640 in SAD. From this, we learn
that lock-free implementation is crucial for LP design and

implementation on GPUs.
5) Impact of parallel reduction: In contrast to CPUs,

GPUs provide parallel reduction (shfl_down instruction)
to exchange data directly from register to register between
threads inside the same warp. We compare all benchmarks
with and without the sfhl down instruction. To implement a
version without parallel reduction, we rely on shared memory
and global memory to calculate the checksum. We store
data to these memories and calculate checksums sequentially.
Table IV shows the performance overheads of the two hash
tables (Quad and Cuckoo) with and without parallel reduction.
The table shows substantial increase in overheads when shuffle
down is not used: from 29.4% to 63.3% (Quad) and from
31.7% to 65.8% (Cuckoo). All bandwidth bound benchmarks
e.g. SPMV, SAD, and HISTO (Table I) suffer to a larger
degree. The overheads for SPMV go from just 22.1% to
437.6% (Quad) and from 11.78% to 431.18% (Cuckoo).
Without parallel reduction, the reduction must go through
memory and this increases memory bandwidth pressure.

V. SCALABLE LP ON GPU

From the previous section, it is clear that the hash table is
the last performance bottleneck, after using parallel reduction
and removing the use of locks. Even though Quad and Cuckoo
hash tables perform reasonably well, the hash tables must still
deal with collisions.

After rethinking the LP design on GPUs, we observe that
because our LP region consists of a thread block, and each
thread block has its own unique ID, we can completely avoid
collisions in hash table by utilizing thread block IDs. Here, we
propose a global array to replace the hash tables. Every thread
block produces a single checksum and we use the thread block
ID to index this table, and store the checksum in the entry.
With this, we remove collisions completely and we can also
keep a 100% load factor, reducing the memory overheads.
Moreover, this mechanism will eliminate the race condition
since each thread block will access different memory address
to store the checksum. We refer to this solution as checksum
global array. The global array scales well, achieves minimum
required space, and is both collision and race free.

VI. DIRECTIVE-BASED PROGRAMMING SUPPORT

Due to the fit of GPU programming model to lazy per-
sistency (LP), LP can be integrated into an existing program
without much programming complexity. At the heart of this
is the use of directives that the programmer can annotate their
code. The compiler uses the directives to insert appropriate
code to implement LP. Older compilers that do not support
these directives simply ignore them. For the rest of the section,
we assume that the directives are used in conjunction with
CUDA.

The directives that we propose are:
• #pragma nvm lpcuda_init(checksum_tab_id,
nelems, selem)



TABLE III: Slowdown performance comparison between lock-based and lock-free implementation

Name quad lock-free quad lock-based cuckoo lock-free cuckoo lock-based no. of blocks
TMM 1.07× 4.70× 1.07× 4.04× 16384
TPACF 1.01× 1.02× 1.01× 0.02× 512
MRI-GRIDDING 3.19× 6, 332× 1.46× 1, 868.09× 65536
SPMV 1.22× 23.78× 1.12× 18.85× 1536
SAD 1.51× 4, 491.87× 3.33× 9, 162.23× 128640
HISTO 1.05× 1.30× 1.28× 1.48× 42
CUTCP 1.08× 32.31× 1.13× 50.73× 128
MRI-Q 1.08× 5.50× 1.06× 4.88× 1024
Geo Mean 1.33× 36.62× 1.35× 31.73× -

TABLE IV: Performance overheads of Quad with parallel reduction (Quad+shfl) vs. without parallel reduction (Quad+no), as
well as Cuckoo with and without parallel reduction.

Name Quad+shfl Quad+no Cuckoo+shfl Cuckoo+no
TMM 8.1% 15.4% 7.25% 13.65%
TPACF 1.5% 2.6% 1.33% 1.89%
MRI-GRIDDING 218.6% 224.1% 45.67% 50.32%
SPMV 22.1% 437.6% 11.78% 431.18%
SAD 51.23% 86.34% 232.79% 242.13%
HISTO 4.54% 9.70% 27.73% 45.81%
CUTCP 7.96% 9.01% 13.16% 14.78%
MRI-Q 8.01% 9.78% 6.06% 8.03%
Geo Mean 29.4% 63.3% 31.7% 65.8%

• #pragma nvm lpcuda_checksum(checksum_type,
chechsum_tab_id, key1, ...)

The first directive is for initializing a checksum table before
calling a kernel function that contains an LP region. The
directive takes three parameters: checksum_tab_id, nelems,
and selem. The first specifies the name of checksum table, the
second specifies the number of elements in the table, and the
third specifies the number of checksums in an element in the
table. The directive is called once for each LP region.

The second directive specifies a statement in an LP region
that calculates the value to be used for checksum calculation.
The directive takes at least three parameters. The first param-
eter specifies the types of checksums to be used, for example
“+” for modular checksum (addition of values) and “ˆ” for
parity checksum (XOR of values). The second parameter spec-
ifies the checksum table ID that was initialized earlier using
the lpcuda_init directive. The third parameter specifies a
variable that is used as a key for indexing the checksum (hash)
table. This directive can take more parameters as key variables
after key1. The value calculated at the right-hand side of the
statement specified by this directive is stored in the checksum
table by using key1.

Listing 5 and Listing 6 show example codes that utilize the
proposed directives at the host (host code) and at the kernel
(kernel code), respectively. In Listing 5, the lpcuda_init

directive is inserted before the kernel function invocation.
The directive will be replaced by a runtime function call
that initializes a checksum table named checksumMM with
grid.x*grid.y number of elements. The number of check-
sums is 1 in this example.

Listing 5: Pragma directive sample for the host code.

1 #pragma nvm lpcuda_init(checksumMM, grid.x*grid.y,
1)

2 MatrixMulCUDA<<<grid, threads, 0, stream>>>
3 (d_C, d_A, d_B, dimsA.x, dimsB.x);

In Listing 6, the thread block consisting of the body of
the function MatrixMulCUDA that calculates matrix C as the
multiplication result of matrices A and B is implicitly defined
as the LP region. Inside the LP region, the second directive
“lpcuda_checksum” is placed right before the statement that
stores the calculated value in matrix C. Here, the value of
“Csub” on the right-hand side of the statement is stored in the
checksum table by adding it to the current checksum value.

Listing 6: Pragma directive sample for the kernel code.
1 __global__ void MatrixMulCUDA(float *C,
2 float *A, float *B, int wA, int wB) {
3 int bx = blockIdx.x;
4 int by = blockIdx.y;
5 int tx = threadIdx.x;
6 int ty = threadIdx.y;
7 ...
8 int c = wB*BLOCK_SIZE*by+BLOCK_SIZE*bx;
9 #pragma nvm lpcuda_checksum("+", checksumMM, \\

10 blockIdx.x, blockIdx.y)
11 C[c+wB*ty+tx] = Csub;

An important role of lpcuda_checksum is to generate a
check-and-recovery code that is executed at crash recovery
as well as inserting a runtime function call for calculating
the checksum. In the check-and-recovery code, a checksum
is calculated from the data values fetched from the NVM,
and then it is compared against the value fetched from the
checksum table. At this time, the elements in the NVM for
calculating the checksum and their corresponding value in



the checksum table with its key(s) must be specified. The
relationship between the location of those elements and the
key(s) depends on the source code. Therefore, a compiler has
a responsibility of generating a check-and-recovery code from
the source code and embedded lpcuda_checksum directive.

The compiler exploits the locations, or pointers, of the
elements from the left-hand side of the statement specified by
the lpcuda_checksum directive. From the source kernel
code, the compiler exploits a program slice [29] that is used
for the pointer calculation, then it generates a comparison code
of the calculated checksum and the value in the checksum table
with the checksum type and key(s) specified in the directive
parameters. Similarly, it also generates the recovery code from
the body of the kernel code that is defined as the LP region
code.

Listing 7 shows a sample of generated check-and-recovery
code for the matrix multiply program. In this sample,
the statements to calculate the pointer of the element
“C[c+wB*ty+tx]” is exploited from the source program, then
the element is passed to the validate() function as well as
the checksum table (checksumMM) and the keys (blockIdx.x
and blockIdx.y) to calculate the checksum and compare it
with the value in the table. If this check result represents a
failure, the recovery() function generated from the source
kernel code is invoked.

Listing 7: Check-and-recovery code for Matrix Multiply
1 __global__ void crMatrixMulCUDA(float *C,
2 float *A, float *B, int wA, int wB)
3 {
4 int bx = blockIdx.x;
5 int by = blockIdx.y;
6 int tx = threadIdx.x;
7 int ty = threadIdx.y;
8

9 int c = wB*BLOCK_SIZE*by+BLOCK_SIZE*bx;
10 if (!validate(C[c+wB*ty+tx], checksumMM,
11 blockIdx.x, blockIdx.y))
12 recovery(C, A, B, wA, wB);
13 }

Though the introduced directives are explained with CUDA
sample programs, they have no CUDA related specifications.
Therefore, they can be also applicable to OpenCL programs.

VII. EVALUATION RESULTS

1) Performance of scalable LP (the global array method):
The best performance that we obtain is when we use a combi-
nation of: parallel reduction with shfl_down instruction and
global array (denoted as array+shuffle). To make false negative
rates as low as possible, we recommend the simultaneous
use of both modular and parity checksums. Table V shows
the execution time overheads of this scheme compared to the
original version of the benchmarks, which supports no crash
recovery. The geometric mean is only 2.1% overhead, with
individual overheads ranging from 0.6 − 6.2%. Compared to
LP on CPUs with reported 1% slowdown [9], the slowdown of

our LP on GPU is nearly as low, even when considering we use
thousands of threads on GPUs vs. only 16 threads on CPUs.
While geometric mean of the space overhead introduced by
this scheme the is only 1.63%.

TABLE V: Execution time overheads for array+shuffle over
the original benchmarks and its space overhead

Benchmark array+shuffle Space overhead
TMM 6.2% 0.2%
TPACF 1.0% 0.02%
MRI-GRIDDING 2.5% 0.82%
SPMV 1.6% 0.02%
SAD 0.6% 12.27%
HISTO 0.6% 0.01%
CUTCP 2.1% 0.02%
MRI-Q 2.7% 0.25%
Geo Mean 2.1% 1.63%

2) Impact of multiple checksum: We also investigate using
multiple checksum calculation in the same block, combining
together the calculation for modular and parity checksums. For
the latter, the overheads include converting floating point data
to ordered integer. We found that simultaneously using both
checksums only adds minor additional overheads compared
to using just one checksum. For example, for TMM with
quadratic probing, parity and modular checksums individually
cause 7.6% and 7.7% overheads, respectively. When both are
calculated simultaneously, the overhead increases to 8.1%,
due to additional data exchange through direct register to
register communication. Hence, combining modular and parity
checksums with lower false negative rates is worth the small
bump in performance overheads. However, we hope that
GPU architects will consider adding support for other parallel
reduction operators beyond just addition and XOR.

3) Write amplification results: We measure the number
of writes to the main memory of our final LP design with
global array, lock-free, and two checksum methods. For this,
we use GPGPU-sim to model the Volta Titan V architecture.
To simulate NVM, we lowered the memory bandwidth to
326.4GB/s, and set the NVM read and write latency to 160ns
and 480ns, respectively. We then run the model on SPMV,
MM, and SAD. Applications run until completion to measure
the overhead of checksum calculation and insertion into the
global array at the end of kernel execution. The number of
writes increase by between 0.5% (SPMV) to 2.2% (MM).
Unlike EP, LP relies on natural cache evictions without any
flushing, hence the increase in writes is due to stores of
checksums.

4) Evaluation on real world application: We also evaluate
a real application MEGA-KV [12], an in-memory key-value
store, on our final LP design. The search, delete, and insert
operations incur performance overheads of 3.4%, 5.2%, and
2.1%, respectively, indicating our LP’s low performance over-
heads.



VIII. CONCLUSION

In this work, we showed how lazy persistency (LP) can be
mapped to GPUs and characterized its performance over their
design space (LP region selection, checksum type, reduction
method, use of locking, and hash table design). We identified
the performance bottleneck sources, and based on those, we
proposed a hash table-less design. This is the first work
that shows we can provide persistency at nearly negligible
performance overheads on GPUs (2.1%) and negligible write
amplification. We discussed that GPU programming lends
naturally to the LP model, allowing programmers to rely
on a small number of directives to integrate LP into their
applications.
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