
Reliability Modeling of NISQ-Era Quantum
Computers

Ji Liu
North Carolina State University

Raleigh, United States
jliu45@ncsu.edu

Huiyang Zhou
North Carolina State University

Raleigh, United States
hzhou@ncsu.edu

Abstract—Recent developments in quantum computers have
been pushing up the number of qubits. However, the state-of-the-
art Noisy Intermediate Scale Quantum (NISQ) computers still
do not have enough qubits to accommodate the error correction
circuit. Noise in quantum gates limits the reliability of quantum
circuits. To characterize the noise effects, prior methods such
as process tomography, gateset tomography and randomized
benchmarking have been proposed. However, the challenge is that
these methods do not scale well with the number of qubits. Noise
models based on the understanding of underneath physics have
also been proposed to study different kinds of noise in quantum
computers. The difficulty is that there is no widely accepted noise
model that incorporates all different kinds of errors. The real-
world errors can be very complicated and it remains an active
area of research to produce accurate noise models. In this paper,
instead of using noise models to estimate the reliability, which
is measured with success rates or inference strength, we treat
the NISQ quantum computer as a black box. We use several
quantum circuit characteristics such as the number of qubits,
circuit depth, the number of CNOT gates, and the connection
topology of the quantum computer as inputs to the black box
and derive a reliability estimation model using (1) polynomial
fitting and (2) a shallow neural network. We propose randomized
benchmarks with random numbers of qubits and basic gates
to generate a large data set for neural network training. We
show that the estimated reliability from our black-box model
outperforms the noise models from Qiskit. We also showcase
that our black-box model can be used to guide quantum circuit
optimization at compile time.

Index Terms—NISQ quantum computer, reliability model,
neural network

I. INTRODUCTION

Quantum computing has become a rapidly growing research
field in the last few decades. Quantum computers have great
potential for solving problems in quantum simulation [39],
quantum machine learning [11], and working as quantum
optimizers [9] [21] as they may provide high speedups over
classical computers by exploiting the properties of superposi-
tion and entanglement.

IBM, Intel, and Google have recently announced their quan-
tum computers with 53, 49, and 72 qubits respectively [14],
[15], [17]. The quantum computers with a number of qubits
ranging from fifty to a few hundred are termed as Noisy
Intermediate Scale Quantum (NISQ) computers. Although
NISQ computers do not have enough qubits to accommodate
the error correction circuit, they will be useful for exploring

many-body quantum physics and provides benefit for a class
of quantum applications [31].

Due to the low fidelity of NISQ computers, it is important
to measure and estimate the error rate of quantum circuits.
Methods such as process tomography [30], gateset tomogra-
phy [24], randomized benchmarking [19] are valid approaches
to measure the reliability of operations on a few qubits.
However, these approaches fail to measure the real-world
system with errors from spectator qubits [22] [34]. In this
work, instead of using noise models to estimate the reliability
of quantum circuits, we treat the NISQ computer as a black
box and present a model for estimating the reliability of any
quantum circuit.

We first propose a randomized benchmark to generate a
large data set to train our reliability estimation models. Each
circuit in the benchmark consists of random numbers of
qubits and basic gates (u1, u2, u3, id, cx). We extract a set
of features from a quantum circuit including circuit depth,
number of qubits, and number of elementary gates, as well
as the topology of the target quantum computer as the input
and use the measured reliability as the output. Then, we
use (a) polynomial fitting and (b) a shallow neural network
to build our reliability model. Based on the results from
quantum algorithm benchmarks, We find our neural network
based estimation model to be more accurate than the device
noise model from Qiskit. When estimating the Probability of
Successful Trial (PST), our model is also more accurate than
the Estimated Success Probability (ESP) analytical model from
a recent prior work [35].

After analyzing the results from our reliability model, we
discovered that the number of qubits and the number of
CNOT gates are the most important factor in determining the
reliability of a quantum circuit. In comparison, single-qubit
gates have the least impact.

As there may be multiple possible circuit implementations
for a quantum algorithm, our reliability model can be used
to guide quantum circuit design. We provide a use case
on designing the circuit for the phase estimation algorithm.
The state-of-the-art noise-adaptive compilers rely on analytical
models to compare different circuit designs at compile time.
Our experiment shows that the compiler using our model can
lead to a better circuit design than using the analytical model.
The existing research that require a reliability estimation



model can also take advantage of our work. For example, in
the previous study of improving the reliability of quantum
computers [35], the compiler finds the top K best mappings
of a logical circuit to generate an ensemble of mappings,
and then the outputs are averaged to reduce the noise effect.
During the process, an analytical model named ESP [28] is
used to estimate the reliability of each mapping. However,
the correlation between estimated reliability and observed
reliability is not perfect. In Section VIII-B and Section VIII-C,
we show that our reliability model can aid the compiler to
select the best mappings with higher accuracy.

We run our experiments on an IBM 20-qubit machine, ibmq-
boeblingen, and an IBM 53-qubit machine, ibmq-rochester.
Since our black-box model does not depend on the calibration
data and only includes the circuit characteristics, our modeling
methodology should be applicable to other quantum machines
for which they have similar basic gate sets.

The major contributions of our paper include:

• We make a case for machine learning techniques to model
noise in quantum computers. Our reliability estimation
model using quantum circuit characteristics can be more
accurate than existing analytical noise models.

• We propose a new way to extract features from the
directed acyclic graph (DAG) of a quantum circuit for
reliability models.

• We demonstrate that our model can be used to estimate
more metrics than PST. It can be trained to model
Inference Strength (IST). Furthermore, our model can
be easily extended to model additional effects such as
crosstalk noise based on the characterization of it.

• We show that our proposed reliability model can guide
the optimization of quantum circuits and aid logical-to-
physical qubit mapping. It can also be used to predict
whether a system can infer the correct answer for a
particular circuit.

II. BACKGROUND AND RELATED WORK

A. Quantum Computing Basics

Qubit is the basic element in quantum computing. Different
from a classical bit which always stays in one of the two
deterministic states 0 and 1, a qubit can stay in a superposition
of two basis states. A single-qubit state can be represented as
|ψ〉 = α |0〉 + β |1〉 where α and β are complex numbers.
After measurement, the probability of this qubit being in |0〉
state is |α|2 and |1〉 is |β|2. A qubit state can also represented
as a vector |ψ〉 =

(
α
β

)
. With this form of expression, a

quantum gate is usually represented as a unitary matrix U .
The operation of a quantum gate on the qubit is computed by
multiplying the matrix representing the gate with the vector
representing the qubit state. A generic single-qubit unitary
matrix U(θ, φ, λ) for an arbitrary single-bit quantum gate has
the form of:

U(θ, φ, λ) =

(
cos(θ/2) −eiλsin(θ/2)

eiφsin(θ/2) eiλ+iφcos(θ/2)

)
(1)

On IBM quantum machines, there are five basic gates:
u1, u2, u3, id and cx. Other qubit gates can be synthe-
sized with these five basic gates. u1, u2 and u3 are single-
qubit unitary gates where u1(λ) = U(0, 0, λ), u2(φ, λ) =
U(π/2, φ, λ), u3(θ, φ, λ) = U(θ, φ, λ). The identity gate id
does not change the state of the qubit, but it adds noise to the
real device. The CNOT gate cx is a two-qubit gate that flips
the target qubit when the control qubit is in state |1〉.

B. Errors in Quantum Computers

As the NISQ computers have low reliability, a key challenge
of quantum computing is to mitigate the error impact. The
error rate of a quantum circuit can be defined as the probability
of undesired change in the output quantum states. There are
various types of errors in quantum computers.

Decoherence errors: Real-world qubits have the problem
of losing information due to environmental noise. The time
of qubit retaining its information is called coherence time and
the process of losing information is called the decoherence
process. One type of decoherence process is energy relaxation,
where the high-energy state |1〉 decays to the low-energy state
|0〉. The coherence time T1 related to this energy relaxation
process is an important factor of merit for quantum computers.
Another decoherence process is the dephasing process. This
process only affects superposition states. The coherence time
T2 includes the effect of both dephasing and energy relaxation.
In a quantum computer, each qubit has its own coherence time,
thus different qubits may have different coherent errors. The
coherence times of publicly available IBM quantum machines
are from 10 to 100 microseconds [6].

Gate errors: Gate errors are the errors associated with qubit
operations. Single-qubit gate errors may be unitary bit flips or
phase changes. Two-qubit gate errors may also cause one or
both qubits’ state change. Two-qubit gate errors usually have
a significant impact on the overall error rate as they propagate
error from one qubit to another. For quantum computers from
IBM, the single-qubit gates’ error rates are approximately
10−3 and the two-qubit CNOT gate’s error rate is 10−2 [6].

Other errors: Crosstalk error marks the effect of the
operation on one or more qubits, which unintentionally affects
one or more other qubits. The reported crosstalk error on the
ibmqx3 quantum computer has error rates of up to 27.7% [32].
State prepare error and readout error are the errors related to
the initialization of qubits and the measurement of qubits. In
IBM quantum machines, the readout error range from 10−3

to 10−2 [6].

C. Error Models

To study the errors, various error models have been pro-
posed [12], [16], [32]. Qiskit incorporates a device noise model
[2] based on the properties of the device. It consists of the
single- and two-qubit gate depolarizing errors, single-qubit
thermal relaxation errors, and single-qubit readout errors.



Prior work [28] on noise-adaptive qubit mapping proposed
an estimated success probability(ESP) model to estimate the
probability of success trial (PST) of a circuit.

ESP =

Ngates∏
i=1

(1− gei ) ∗
Nmeas∏
j=0

(1−me
j) (2)

In the equation, gei are the gate error rates and me
i are the

measurement error rates. This estimation model is derived
based on two assumptions: 1. Each gate and measurement
either succeeds completely or cause the whole program to
fail. 2. Such failures are independent of each other and only
depend on the physical qubit under operation. The other
work [26] uses a similar analytical model since they consider
the reliability of the system as the product of the reliability of
all gates in the program.

However, the first assumption can be incorrect when there
are multiple errors but the output state is correct. For example,
when there are two bit-flip errors happen to the same qubit, the
output state will not change. The second assumption can also
be inaccurate, as the failures of qubits may not be independent
due to crosstalk errors. These simplifications in the assumption
may cause the estimation model to be inaccurate. In our
experiment, we compare our reliability estimation model with
the results form Qiskit noise model and the ESP model.

D. Randomized Benchmarking

Having a noise model is not enough for studying real-
world errors as they need characterization results of quan-
tum computers (e.g., error rates). Simultaneous Randomized
Benchmarking [19] is a widely used method for benchmarking
and calibrating individual or a pair of qubits. It measures the
average gate errors by running sequences of randomly selected
Clifford gates and followed by a reverse gate that would return
the qubits to the initial state [19]. This method is useful as it
measures the depolarization probability and does not rely on
accurate state preparation and measurement. In IBM quantum
computers, the reported gate errors are measured using this
approach. The IBM 20-qubit machine ibmq-boeblingen is
calibrated once a day, using the gate errors from simultaneous
randomized benchmarking. However, the gate errors of one or
two-qubit gates do not provide an accurate estimation of the
system error rate as they ignore crosstalk errors. In the study
of three-qubit randomized benchmarking [22], by introducing
certain coherent errors to the gates, the three-qubit error can
not be predicted using one- and two-qubit errors from simul-
taneous randomized benchmarking. Therefore, these partial
characterizations of one- and two-qubit error from randomized
benchmarking are not sufficient to predict the error rate of the
system.

E. Objectives

The real-world errors can be very complicated, and develop-
ing accurate noise models remains an active research topic. In
our work, instead of refining noise models, we treat the NISQ
computer as a black box and build a reliability estimation

model based on the correlation between the characteristics of
the quantum circuit and the reliability metric.

III. METHODOLOGY

In this section, we introduce the benchmarks and system
configuration in our experiments.

A. Benchmarks

Due to high gate error rates and low coherence time in
current IBM qubit quantum computers, we can only execute
circuits with low depth. Table I lists the characteristics of each
benchmark. The terms U1, U2, U3, CX , qubits, and M denote
the number of u1, u2, u3, CNOT gates, the number of qubits
and the number of measurement operations. Since selecting
different qubit mapping processes will generate circuit designs
with different numbers of gates, we report the gate counts
for the logical circuit rather than the physical circuit that is
mapped to the real device. We do not include the count of
id gates as they are not used in these benchmarks. Similar
benchmarks are used in prior studies [26], [36], [40].

Grover’s algorithm (Grover): Grover’s algorithm [13]
finds with high probability the inputs to a black box function
that produces particular output values. Since it returns the
correct results with high probability, the expected PST of
Grover’s algorithm is not always 100%. Two-bit Grover’s
algorithm has an expected PST of 100%, while three-bit
Grover’s algorithm has an expected PST of 96%. In our
experiment, we use the Grover’s algorithm to find |11〉 and
|111〉, based on the oracle adapted from [20].

Bernstein-Vazirani (BV): Given a black-box oracle that
implements the function fc(x) = x · c. The Bernstein-Vazirani
algorithm finds hidden string c with a single evaluation of
the function. The hidden string c can be encoded in different
ways. In our evaluation for the randomized single-qubit gate
benchmark, we use the oracle design [8] which only consists of
single-qubit gates. In our evaluation for a randomized single-
and two-qubit gate benchmark, we use the oracle design [4]
that encodes c with a set of CNOT gates.

Quantum Fourier Transform (QFT): Quantum Fourier
transform is the classical discrete Fourier transform that ap-
plied to the amplitudes of a quantum state. It is a commonly
used pattern in many important algorithms such as Shor’s
factoring algorithm and quantum phase estimation algorithm.

Hidden Shift (HS): Given a black box oracle that imple-
ments the shifted function fs(x) = f(x + s) of a Boolean
function f . The Hidden shift algorithm [37] finds the hidden
shift string s of the oracle.

Other reversible circuits: We include some reversible
circuits that will have classical states as output, including
Toffoli gates and one-bit full adder.

B. System Configuration

We perform our experiments on a 20-qubit (ibmq-
boeblingen) and a 53-qubit (ibmq-rochester) IBM Q quantum
computer. Each trial is executed with 8192 shots. The IBM Q



TABLE I
BENCHMARK CHARACTERISTICS

Name Description U1 U2 U3 CX qubits M
BV-single-n n bit BV with single-qubit gates n/2 2n 0 0 n n

Grover2 2 bit Grover’s algorithm 0 10 4 2 2 2
Grover3 3 bit Grover’s algorithm 18 15 12 24 3 3
Toffoli Toffoli gate 7 2 2 6 3 3
QFT2 2 bit quantum fourier transform 5 4 0 2 2 2
QFT4 4 bit quantum fourier transform 22 8 0 12 4 4
QFT6 6 bit quantum fourier transform 51 12 0 30 6 6
Adder 1 bit full adder 0 0 11 11 5 5
BV6 6 bit BV with CNOT gates 0 11 1 4 6 5
HSn n bit Hidden shift algorithm 0 5n n n n n

quantum computers are calibrated once a day. The measure-
ment comparison is done in the same calibration cycle as the
calibration may change the properties of the device.

IV. METRICS OF RELIABILITY

Before we describe our reliability estimation model, we
first determine the metric of reliability. In our paper, we use
a metric called Probability of Successful Trial (PST) [36]
to indicate the reliability of the quantum computer. PST is
similar to the error rate concept in classical computers and
it is commonly used in recent noise-adaptive qubit mapping
researches [26], [35] to denote the system-level reliability.
PST depends on both the error distribution and the size of
the quantum circuit. A quantum circuit’s PST should be high
enough to be considered “successful” on quantum computers.

PST = Number Of Successful Trials
Total Number Of Trials

(3)

In a recent work [35], another metric, Inference Strength
(IST) was introduced. It is defined as the ratio of the prob-
ability of the correct answer to the probability of the most
frequently occurring wrong answer. When IST exceeds 1,
the system can infer the correct answer but not otherwise.
Both PST and IST give sufficiently accurate estimation of the
performance of the quantum circuit, and we will show that
these metrics can help guide the quantum circuit design and
aid logical to physical qubit mapping.

IST = Pr(Error free output)
Pr(Most frequent erroneous output)

(4)

V. RANDOMIZED CIRCUIT GENERATION

To build an accurate model, we need a large data set to train
the model. However, we can only derive a few data points
from common quantum algorithms. To avoid having a biased
training model, we need a randomized circuit benchmark.The
widely used randomized benchmarking method requires ran-
domly selecting gates from the Clifford group. The number
of gates in the Clifford group grows exponentially [29] and
a Clifford gate should be unrolled into the basis gates to
run on real devices [1]. The resulting circuit size and depth
increase rapidly as the number of qubits increases, which
is impractical for a large number of qubits. To the best of
our knowledge, there is one study on three-qubit randomized
benchmarking [22] and none for four qubits or more.

A. Hypothesis and Factors Considered

To simplify the problem, we assume all the u1(λ) gates have
the same error rate despite the value of λ, and so do all the u2
and u3 gates. This assumption is in accordance with the prior
analytical model used in the state-of-the-art compiler [26],
[36], where the analytical models are based on the gate
error rates, thereby being independent on the parameters. As
a result, we use pauli Z gates (u1(π)), hadamard H gates
(u2(0, π)), and pauli X (u3(π, 0, π)) gates to represent u1, u2,
and u3.

Since the real-world quantum computers usually have lim-
ited connectivity among qubits, the circuit needs to be trans-
formed to fit onto the actual machine. Qiskit Terra [2] offers a
circuit-to-circuit transpiler for circuit transformation. In IBM
Q quantum computers, the transpiler may use all available
tricks to optimize the circuit. For example, it may optimize
the qubit placement by finding the best region of the device. It
may also introduce extra SWAP gates when two qubits are not
adjacent. In order to find the relationship between the actual
circuit and its PST, we need to consider the characteristics
of the circuit after the transpiling process. Since the noise-
adaptive mapping will lead to unbalanced use of the qubits,
while generating the randomized circuit, we set the transpiler
optimization-level to 1 to prevent noise-adaptive mapping.

Another factor to consider is that the daily calibration may
change the backend properties. In this case, our reliability
model is valid for the experiments in the same calibration
cycle. It needs to be retrained when the backend is re-
calibrated. As a result of this frequent training, the training
process should be fast, which limits the amount of data in
the training data set. In our experiments, we generate 1000
randomized quantum circuits to train our reliability estimation
model. The training set generation is about 20 minutes if
there are no other jobs queued for the quantum computer. But
depending on the number of jobs submitted to the machine,
it may take up to two hours. Since the IBM Q quantum
computers are calibrated once a day, plenty of time is left
for the practical use of our reliability model. Increasing the
amount of training data can increase the accuracy of our
reliability model, but will also increase the training time. Once
we generate the training data, the training time only takes a
few minutes on a PC.

Since there are many parameters to be considered for the
black box model, we start from the simplest case and gradually
expand the parameter set that are necessary for a good fitting.
The simplest case only includes single-qubit gates. Then, we
consider the benchmarks that only include two-qubit gates,
from which we find that the topology of the circuit needs to be
included in the parameters. As the benchmark becomes more
and more complex, more parameters are needed for retaining
the accuracy of the model. When the benchmark includes both
single- and two-quit gates, the parameters are sufficient to
model the actual quantum circuits.



B. Random Circuits with Single-Qubit Gates

We first start with a benchmark with random numbers of
one-qubit gates: u1, u2, u3, id. When generating this random
single-qubit benchmark, we first randomly select the number
of qubits. Then for each qubit, we select a random number
of single-qubit gates in the range of 0 and MaxGate. Each
type of single-qubit gate is randomly selected to avoid the
correlation between input variables. MaxGate is a parame-
ter determining the maximum number of gates on a qubit.
Consider a noisy circuit with a large number of random Z,
H, and X gates; as the number of random gates increases,
the output will approach equally distribution among all the
possible states. In other words, when the number of gates is
high, further increasing it will not have an observable impact
on PST and these data are unnecessary for establishing our
model. Therefore, MaxGate is set to eliminate them in our
data set. In our experiment, we tried with different MaxGate
settings and 30 gates yield the best training dataset.

In most quantum algorithms, the output state should be a
classical state or close to the desired classical state. Therefore,
after generated these randomized gates, we apply the inverse
gate at the end to inverse the quantum states back to classical
state |0〉. We run the circuits on a 20-qubit quantum computer
to collect PST for each circuit.

We propose a set of parameters to capture the characteristics
of a randomized circuit. These parameters and their description
are listed in Table II. The circuit depth describes the length of
the critical path in the circuit. Since the quantum algorithms
include some ancilla qubits and mapping logical to physical
qubits may also introduce some ancilla qubits, the number
of qubits and number of measurements are not always equal.
Therefore, we have different parameters for the number of
qubits in the circuit and the number of measurements. We will
discuss these parameters and their importance in Section VI-A.
Our experiment results show that these parameters provide a
sufficiently accurate description of the circuit property.

We establish the reliability model with two methods: poly-
nomial fitting and neural network. First, we use the parameters
listed in Table II as the input parameters of polynomial
fitting. The output of the reliability model is PST of the
circuit. The accuracy of the reliability model is evaluated
by correlation coefficient R and mean squared error MSE.
R measures the strength of a linear association between two
variables. MSE measures the averages of the squares of the
errors between two variables. Here, we calculate the R and
MSE between estimated PST and observed PST. Table III
shows the evaluation parameters with different degrees of
the polynomial model. Higher the degree, more accurate the
model. Due to the limited size of our data set, which is 1000,
the maximum degree of polynomial in the model is 4. As
we can see in Table III, the polynomial model is sufficiently
precise in modeling PST of single-qubit gates.

Second, we use a shallow neural network to model reliabil-
ity. It is a two-layer feed-forward network with ten neurons,
trained with the Levenberg-Marquardt training algorithm [18].

TABLE II
PARAMETERS TO CAPTURE QUANTUM CIRCUIT CHARACTERISTICS

Benchmark Parameter Parameter Description

Random circuits
with single-qubit
gates

num qubits Number of qubits
measure Number of measurements
depth Circuit depth

num id Number of id gates
num u1 Number of u1 gates
num u2 Number of u2 gates
num u3 Number of u3 gates

Random circuits
with two-qubit
gates

connectivity map Number of CNOTs for each connection
num qubits Number of qubits
measure Number of measurements
depth Circuit depth

num CX Number of CNOT gates

Random circuits
with single- &
two-qubit gates

connectivity map Number of CNOTs for each connection
num qubits Number of qubits
measure Number of measurements
depth Circuit depth

num id Number of id gates
num u1 Number of u1 gates
num u2 Number of u2 gates
num u3 Number of u3 gates
num CX Number of CNOT gates
SGcount Single-qubit gate count for each qubit

TABLE III
DEGREE AND EVALUATION OF THE POLYNOMIAL MODEL

Degree = 1 Degree = 2 Degree = 3 Degree = 4
Coefficients 8 36 120 330

R 0.973 0.980 0.981 0.985
MSE 1.6e−3 1.22e−3 1.09e−3 9e−4

The 1000 data in the data set are divided into three portions:
700 for training, 150 for validation, and 150 data for test-
ing. The validation set ensures the network is generalizing.
The training stops when generalization stops improving, as
indicated by an increase in MSE of the validation samples.
The test dataset is used as a completely independent test of
network generalization. Figure 1 shows the linear regression
of the predicted outputs from the neural network training to
the observed outputs. The x-axis is the actual PST and the y-
axis is the predicted PST. Ideally, the predicted value should
be the same as the actual one, therefore, all the data points
should fall on the line of equality Y = T . The closer to the
line of equality, the more accurate estimation is. The resulted
neural network model has R = 0.98 and MSE = 1.33e−3.
The reported value R and MSE are calculated for the whole
dataset. The value R and MSE for the test set are R = 0.98
and MSE = 2.41e−3.

To evaluate our polynomial model and neural network
model, we compare the estimated PST and the observed
PST of the Bernstein-Vazirani algorithm with different qubits.
Bernstein-Vazirani algorithm has different designs, here we
use the design [8] which only consists of single-qubit gates.
The comparison results are shown in Figure 2. The correlation
value R and MSE of the estimated PST compared to observed
PST are reported in Table IV. The noise model is derived
from Qiskit Aer simulator. As we can see in Table IV and
Figure 2, both the polynomial model and the neural network
model have a good prediction of PST. Different models have
correlation value R very close to each other. Among all the
different models, the ESP model has the smallest MSE which



Fig. 1. Regression of the neural network model for random circuits with
single-qubit gates

means the estimated data from this model are closest to the
expected ones.

Fig. 2. Comparing the observed PST and estimated PST using different
models for Bernstein-Vazirani algorithm with various numbers of qubits

TABLE IV
R AND MSE OF DIFFERENT MODELS COMPARED TO OBSERVED VALUE

Polynomial Neural Network Qiskit Noise Model ESP Model
R 0.987 0.982 0.983 0.989

MSE 1.2e−3 9.4e−4 8.7e−4 4.8e−4

C. Random Circuits with Two-Qubit Gates

Next, we use the random two-qubit gate benchmark to refine
our model. Since CNOT is the only two-qubit gate in the basic
gate set, for each circuit in the randomized benchmark, we
randomly set the number of qubits and introduce CNOT gates
between randomly selected qubit pairs. The total number of
CNOT gates is randomly selected within the range of 0 and
MaxGate. As the two-qubit gates may propagate errors from
one qubit to another, counting the total number of CNOT gates
cannot successfully describe the circuit. Using the parameters
described in Table II for single-gate circuits, while changing
the number of single-qubit gates to the number of CNOT gates,
the resulting polynomial model has R = 0.97 and MSE =

2.3e−3. The neural network model has R = 0.96 and MSE =
3.5e−3.

To build a more accurate model, we must consider the
topology of the circuit. A directed acyclic graph (DAG) can be
used to describe the topology completely. In the DAG, vertices
represent gates and directed edges represent dependencies
between gates. The DAG can be represented by an adjacency
matrix. However, in this representation, the size of DAG
is not fixed and neither is the size of the corresponding
adjacency matrix. When the circuit is large, it may yield too
many parameters in the model. To overcome this problem, we
propose the following method to extract the features of the
DAG-based circuit description:

Given that one quantum computer has a fixed connectivity
map and all the CNOT gates must map to one of the con-
nections, for each connection between qubits, we count the
total number of CNOT gates that maps to this connection.
The CNOT gate counts are stored in a dictionary where the
key denotes the connection between qubits and value denotes
the number of CNOTs. For example, if the total number of
CNOTs between qubit 0 and 1 is five, we store value five for
key [0,1]. The 20-qubit quantum computer has 23 connections
between qubits. Therefore, we have 23 parameters for the
connectivity map parameter in the random two-qubit gates
benchmark.

We show the R and MSE values of different models in
Table V. Due to the large number of parameters in this
benchmark, the maximum degree of the polynomial model
is two. The corresponding model has values of R = 0.812
and MSE = 0.12, which is not a good fit. Meanwhile, the
neural network model returns accurate fitting with R = 0.99
and MSE = 1.68e−3. Figure 3 shows the regression of the
neural network model. It indicates that such a method offers a
more accurate description of quantum circuit properties than
only using the total CNOT gate count of the circuit. The ESP
model and Qiskit noise model also fit for the randomized two-
qubit gate benchmark. The ESP model has the smallest MSE
of 5.8e−4.

Fig. 3. Regression of the neural network model for random circuits with
two-qubit gates



TABLE V
R AND MSE OF DIFFERENT MODELS COMPARED TO OBSERVED VALUE

Polynomial Neural Network ESP Model Qiskit Noise Model
R 0.812 0.990 0.969 0.965

MSE 0.12 1.7e−3 5.8e−4 2.2e−3

D. Random Circuits with Single- and Two-Qubit Gates

When generating circuits with single- and two-qubit gates,
we randomly set the number of qubits and introduce randomly
selected single/two-qubit gates to the qubits. The total num-
ber of gates is randomly selected from the range of 0 and
MaxGate.

To capture the characteristics of the circuits with single- and
two-qubit gates, we combine the parameters used for circuits
with single-qubit gates and for circuits with two-qubit gates,
as listed in Table II.

Due to a large number of parameters in this benchmark,
the maximum degree of the polynomial model is two. The
corresponding model have values of R = 0.91 and MSE =
6e−2.In comparison, the neural network model returns R =
0.96 and MSE = 5e−3.

The model for random circuits with two-qubit gates is more
accurate than the model for random circuits with single- and
two-qubit gates. The difference between these two benchmarks
is the latter includes parameters for single-qubit gates. We
tried to improve the accuracy by including more parameters
for single-qubit gates. Instead of counting the total number of
u1, u2, u3 and id gates, we define a single-qubit gate count
variable SGcount for each qubit. This variable is defined as:

SGcount = εid × Id + εu2
× U2 + εu3

× U3 (5)

Id, U2, and U3 are the total number of id, u2, and u3 gates
for a qubit. In IBM Q quantum computers the u1 gates are
virtual Z gates [23] which are implemented in software by
a frame change. Thus, they do not introduce any error, and
we don’t include u1 in our SGcount. εid, εu2 and εu3 are
proportional to the error rates of id, u2, and u3 gates and εu3

is normalized to 1. We calculate the error rates based on the
decoherence time T1 and T2, gate time T and gate errors. We
derive these information from the calibration data. As u3 gates
introduce two physical pulses while u2 gates only introduce
one pulse, εu3 is twice as much as εu2 . In our experiments
εid = 0.3, εu2 = 0.5, and εu3 = 1. Considering that we have
one SGcount parameter for each qubit, we will include 20
more parameters in our experiment for the 20-qubit machine.
The resulting polynomial model has R = 0.88 and MSE =
9e−2. The neural network model has R = 0.96 and MSE =
3e−3. Figure 4 shows the regression of the randomized single-
and two-qubit gate neural network model.

To evaluate different models, we examine the absolute
difference between the estimated PST and the observed PST
of different models for various benchmarks. The results are
shown in Figure 5. We also report the R and MSE between
the estimated PST and observed PST in Table VI. As shown
in Table VI, the neural network model has the highest R and

Fig. 4. Regression of the neural network model for random circuits with
single- and two-qubit gates

the smallest MSE. Therefore, it generates a more accurate
estimation of PST in most cases.

Fig. 5. Comparing estimated PST and observed PST of different models for
various benchmarks (the smaller, the better)

TABLE VI
R AND MSE OF DIFFERENT MODELS COMPARED TO OBSERVED VALUE

Polynomial Neural Network ESP Model Qiskit Noise Model
R 0.877 0.900 0.780 0.892

MSE 2.5e−2 1.9e−2 4e−2 7e−2

The IST(Inference Strength) metric determines whether a
system can infer the correct answer. We extend our model for
predicting the IST by training the model using the observed
IST of each circuit along with the same circuit characteristics.
We present the comparison of observed IST, the estimated IST
from our neural network model (NN IST), and the estimated
IST based on the noise simulator from Qiskit (Qiskit IST)
in Table VII. As can be seen in Table VII, our estimated
IST differs from the observed IST of circuits, but there is
a correlation between the estimated IST and observed IST.
If our goal is to predict whether the system can infer the
correct answer, we only need to compare IST with one. If
IST ≤ 1, the system cannot infer the correct answer. In our
experiment, QFT4 and QFT6 benchmark have IST ≤ 1. Our



neural network model successfully predicts all the benchmarks
except for QFT4. Little difference exists between estimated
IST and observed IST for QFT4 benchmark. For the purpose
of predicting whether the system can infer the correct answer,
we can set a parameter K. If the estimated IST is greater than
K, the system is likely to infer the correct answer. We set
parameter K = 2 in our experiment. The resulting reliability
model successfully predicts whether the system can infer the
correct answer. We also find that the noise simulator from
Qiskit underestimates the system noise and can not predict
whether IST is less or equals to one. Besides IST, we trained
the neural network model with a binary output to predict
whether the correct answer can be inferred. The output is True
when IST > 1; it is False when IST ≤ 1. The results are
listed in Table VIII. We can find that our reliability model
successfully predicts whether the system can infer the correct
answer.

TABLE VII
ESTIMATED AND OBSERVED IST OF DIFFERENT BENCHMARKS

Grover3 Toffoli QFT2 QFT4 QFT6 adder BV6 HS6 HS8
Observed IST 2.04 11.51 21.46 1.00 0.59 2.52 2.88 11.54 11.29

NN IST 3.62 6.72 6.72 1.33 0.58 2.79 6.50 6.81 7.72
Qiskit IST 6.50 14.16 40.99 6.67 6.96 5.12 8.87 10.49 10.65

TABLE VIII
PREDICTION OF INFERRING CORRECT ANSWER

Grover3 Toffoli QFT2 QFT4 QFT6 adder BV6 HS6 HS8
Observed True True True False False True True True True

NN prediction True True True False False True True True True
Qiskit prediction True True True True True True True True True

E. Experiments on a 53-qubit machine

Since the Hilbert space grows exponentially with the num-
ber of qubits, the classical simulators quickly run out of
memory to simulate quantum circuits. The maximum number
of qubits that the Qiskit simulator supports is 32-qubits. For
the purpose of demonstrating the scalability advantage of
our model, we tested the 35-qubit BV algorithm on a 53-
qubit machine. We trained the model with 750 data points.
The actual PST of the 35-qubit BV algorithm is 0.9%, the
estimated PST of the ESP model and our neural network
model are 0.5% and 0.7% respectively. Moreover, our model
estimates the IST to be 2.23 whereas the actual IST is 1.57.
The ESP model is not capable of estimating the most frequent
erroneous output, thus it can not estimate the IST of the circuit.
This result shows that while both the ESP model and Qiskit
model are unable to predict the IST of the circuit, our model
provides a relatively accurate prediction.

VI. TRAINING MODEL DISCUSSION

A. Importance of Different Inputs

We can identify the importance of different parameters by
looking at the coefficients in the polynomial model and the
change of MSE (COM) [33] by deleting each input from
the neural network model. Here we select the polynomial
model with degree one. We train the polynomial model and
neural network model with the parameters listed in Table IX.
The corresponding coefficients and change of MSE (COM)

are listed in Table IX. We can find that the number of
measurements has the highest impact on the output of the
model. And the coefficients of num qubits, measure, depth,
and CNOT are greater than the coefficients of single-qubit
gates. This is consistent with our understanding as the number
of measurements is related to the level of readout error and
the CNOT gates have more errors than single-qubit gates.
When there are more measurements, the circuit tends to have
more qubits as there is a correlation between num qubits and
measurement. The COM of the neural network model shows
that CNOT gates and number qubits are the most important
factors in predicting PST. Which is in accordance with the
findings from the polynomial model.

B. Limitation

We found that our model can distinguish PST of two circuits
when there is a difference in the circuit structure or number
of gates. Due to the limitation of our circuit characterization
parameters, when two circuits have the same circuit structure
and gate count, our model will always predict them to have
the same PST. However, in the real world, circuits that have
the same type of quantum gates(u1(λ), u2(φ, λ), etc) but only
differ in the gate parameters(λ, φ, etc) can have noteworthy
PST difference. We are considering to include more parameters
for distinguishing gates with different parameters in our future
work.

VII. COMPARING DIFFERENT MODELS

A. Overhead and Scalability

There are two types of overhead of our reliability model: (1)
the overhead of deriving training data set and neural network
training overhead; and (2) the inference overhead when using
the neural network to generate the estimated output based
on circuit characteristics. As reported in Section V-A, the
training overhead varies from tens of minutes to two hours.
It is positively correlated with the size of the design space.
When we include more parameters, the model will be more
accurate but the design space also increases. Considering
the parameters used in our experiments, for each additional
qubit, the design space is increased by 5MaxGate times. Here
five is the number of basic gate types and MaxGate is the
parameter determining the maximum number of gates on a
qubit. Therefore, for an n-qubit circuit, the size of the design
space is O(5MaxGate×n). However, there are ways to reduce
the size of the design space. One is reducing the number
of parameters in the model. For example, if we exclude the
parameters associated with locality (connectivity map and
SGcount) the design space size will be O(n). Another is
providing certain limitations on the circuit size. When the
circuit size is beyond a certain value, the system cannot infer
the correct answer due to noise anyway.

The inference overhead is minor since the number of
parameters in our model is small. We compared the execution
overhead of our model with that of Qiksit model. The exe-
cution overhead of predicting PST of a 20-qubit BV circuit
is 7.7ms for our neural network model. In comparison, the



TABLE IX
COEFFICIENTS AND COM OF DIFFERENT PARAMETERS IN POLYNOMIAL MODEL AND NEURAL NETWORK MODEL

num qubits measure depth id u1 u2 u3 CNOT const
Coefficients -9.3e−3 -1.57e−2 -2.5e−3 -2.4e−4 2.3e−4 -2.0e−4 -8.5e−4 -1.02e−3 0.895

COM 5.8e−4 1.3e−4 2.5e−4 2.5e−4 1.8e−4 2e−4 5e−5 6.9e−4 N.A.

Qiskit noisy simulation takes 8 minutes to simulate the same
circuit. Therefore, our model is compiler-friendly and can be
used at compile time to guide compiler optimization as shown
in Section VIII.

B. Model Comparison

Here we compared three different models: 1. Analytical
model (e.g. ESP model), 2. Simulation model (e.g. Qiskit
simulator) 3. Our polynomial or neural network model. The
analytical model is calculated based on the system calibration
information. This kind of model has fast execution time and
good scalability. They are widely used in the state-of-the-art
noise adaptive compilers [26], [36]. The drawback is that
since the crosstalk errors are not included in the calibration
data, the analytical models are not very accurate.

The simulation model simulates the underlying physical
process. It is the most time-consuming model. The accuracy
of the simulation model is dependent on the understanding of
the noise resources of the system. Given that the compilers are
time-sensitive and there are many mappings to be compared,
it is not practical to use the simulators at compile time.
The simulator model has poor scalability as well due to the
exponential growth of Hilbert space. For example, the Qiskit
simulator only supports simulation for up to 32 qubits and
such simulation could take up to several hours.

Our model is based on the circuit characteristics and it is
adjustable. We can include more parameters to generate a more
accurate model and we can also exclude some of them to
reduce the training overhead.

We compare these models in three aspects of accuracy,
execution overhead, and scalability. In terms of Accuracy, as
shown in Section V-D, our model has the highest accuracy
when predicting PST. The accuracy of the ESP model is
comparable to the Qiskit model and it is more accurate than the
Qiskit model when predicting the QFT benchmark. In terms of
Execution overhead, we collect the execution time of three
different models when predicting PST of a 20-qubit BV circuit.
The execution times of the ESP model, our neural network
model, and the Qiskit model are 1.6ms, 7.7ms, and 8 minutes
respectively. Therefore, the ESP model and our model are
compiler-friendly and can be be used at compile time to guide
compiler optimizations. We will discuss such optimizations in
the next section. In contrast, the Qiskit model is not practical to
be used at compile time. In terms of Scalability, as discussed
in Section VII-A, both the analytical model and our model are
scalable to model the 53-qubit machine, while the simulation
model is unable to do so.

VIII. USE CASES

In this section, we present four use cases of our model. In
the experiments, we use our neural network model which is

trained using the random circuits with single- and two-qubit
gates.

A. Use Case 1: Evaluate different circuit designs

There can be different circuit designs for the same quantum
algorithm. As the number of gates varies in different designs,
it is important to judge which design is more reliable at
compile time. Here, we use the Lloyd QPE gate [3] and the
modified Lloyd QPE gate [25] for the four-bit QPE algorithm
in our experiment. The modified QPE algorithm reduces the
number of CNOT gates in the benchmark and tends to be
more reliable than the original algorithm. Table X shows the
estimated PST and IST of different models and the observed
PST and IST. The estimated values of our model are much
closer to the observed ones. From the estimated values we can
infer that the modified Lloyd QPE algorithm is more reliable
than the original algorithm on the 20-qubit computer. Since the
estimated IST of four qubit Lloyd QPE gate is smaller than the
parameter K (estimated IST = 1.233 < 2), we can predict
that 20-qubit computer cannot infer the correct answer for this
algorithm, which matches the observation of experiments on
actual machines (IST = 0.495 < 1).

TABLE X
ESTIMATED AND OBSERVED PST AND IST OF QPE ALGORITHM

NN PST ESP Qiskit PST PST NN IST Qiksit IST IST
Lloyd QPE 0.245 0.516 0.588 0.127 1.233 8.71 0.495

Modified Lloyd QPE 0.519 0.631 0.704 0.421 6.052 8.431 3.338

B. Use Case 2: Improve transpiler mapping pass

Qiskit includes a noise-adaptive transpiler for logical to
physical qubit mapping. The mapping process has the fol-
lowing steps. First, based on the logical quantum circuit, the
transpiler finds an adjacent logical qubit pair that has most
CNOT gates in between. In step two, the transpiler selects
the best adjacent physical qubit pair according to the backend
properties and map the logical qubit pair to the physical qubit
pair. In the third step, the transpiler selects an adjacent logical
qubit and map it to the best adjacent physical qubit. This step
is repeated until all the logical qubits are mapped to physical
qubits. Nevertheless, selecting the best adjacent physical qubit
pair in step two cannot guarantee that the adjacent physical
qubits selected in step three also have a low error rate. The
transpiler may map the circuit into a region where there are
two qubits with low error rates and all other qubits have high
error rates.

To overcome this problem, we can generate different circuit
mapping at compile time by selecting different initial mapping.
First, we find an adjacent logical qubit pair that has most
CNOT gates in between, then we map this logical qubit
pair to all the possible adjacent qubit pairs on the quantum
computer to generate different circuit mappings. Our reliability
model can be used to compare these circuit mappings at



compile time and select the top K mapping. The compiler
returns these mappings and expects that the best mapping is
included. The number of connections between qubits is 23
on ibmq-boeblingen, therefore, we will generate 23 designs
with different initial mappings. In Figure 6, we show the
experiments with the BV5 algorithm. We compared PST of
the top 8 mappings selected by different models. The top
8 mappings selected by our neural network model include
the mapping with the highest PST which is 0.65. The naive
qubit mapping has PST equals to 0.48. As a result, our
transpiler optimization approach finds the qubit mapping with
an increment of 35.4% in PST. Comparing with the results
from other models, the best mapping from the ESP model has
PST of 0.62 and the best mapping from the Qiskit noise model
has PST of 0.61. Comparing to these two models, our model
finds the mapping with 5% improvement in PST.

Fig. 6. Observed PST of different models with top 8 estimated PST

C. Use Case 3: Finding ensemble of different mappings

In the prior work of ensemble of different mappings [35],
researchers find top K best mappings of a logical circuit and
merge the outputs to get an ensemble of diverse mappings.
They use ESP to predict PST and select the top K mappings
with the highest ESP that are deemed to be the mappings that
have top K PST. The diverse mappings are the isomorphic sub-
graphs of the initial best mapping. They run their experiment
on fourteen qubits ibmq-16-melbourne machine and avoid
using two noisy qubits, which puts constraints on finding
diverse mappings. In our case study, we run the BV5 algorithm
on twenty qubits ibmq-boeblingen machine. As our experiment
includes more qubits and a larger search space of different
mappings, we noticed that the top K mappings with high ESP
do not have good coverage of top K PST.

In order to find the best mapping with the highest PST, we
use our neural network model to estimate PST of different
mappings. As shown in Figure 7, when selecting the top
4 designs, our estimation model includes the mapping with
the highest PST. After generating the ensemble of the top
4 mappings, the PST of our ensemble is 0.34, which is
1.62x and 1.03x greater than the PST of ensemble generated
from the ESP model (PST = 0.21) and the Qiskit model
(PST = 0.33). Taking the ensemble of different mappings
(EDM) should improve the resulting IST. The IST of our
ensemble is 5.2, which is 2.3x and 1.2x greater than the IST
of ensemble generated from the ESP model (IST = 2.3) and
the Qiskit model (IST = 4.3)

Fig. 7. Observed PST of different models with top 4 estimated PST

D. Use Case 4: Reliability modeling for crosstalk errors

When multiple quantum gates are executed in parallel,
crosstalk between the quantum gates can corrupt the quantum
state and lead to incorrect results. A recent work [41] on
crosstalk error mitigation has proposed software techniques by
inserting barriers to avoid the parallel execution of susceptible
quantum gates. In this section, we will demonstrate the ex-
tensibility of our model. By including the parameters that are
associated with the crosstalk error, our model can successfully
estimate the effect of crosstalk error mitigation.

We introduce a new parameter P (i, j)‖(k, l) which rep-
resents the number of parallel gates on connection pair (i,j)
and (k,l).(For example, when a CNOT gate on qubit 3 and
qubit 4 is executed in parallel with a CNOT gate on qubit 6
and qubit 7, P (3, 4)‖(6, 7) is incremented by 1.) Since the
number of connection pairs is large, we only consider the
connection pairs between which high crosstalk errors occur.
On the 20-qubit IBM Q quantum computer, we include six new
parameters for six such pairs. By including these new param-
eters, our reliability estimation model successfully estimates
the crosstalk errors. In our experiment, we first run quantum
circuits. Then, we mitigate the crosstalk errors by inserting
barriers to avoid the parallel execution of quantum gates.
The results of different models are shown in Figure 8. The
neural network model is our previous model without additional
parameters. The re-trained neural network model is our model
with new parameters P (i, j)‖(k, l). The y-axis is the ∆PST ,
which is the change in PST after crosstalk mitigation. Since the
ESP model and the neural network model without additional
parameters do not consider the execution order of the quantum
gates, they will provide the same estimation for the circuit
with and without crosstalk error mitigation, i.e., ∆PST = 0.
The Qiskit noise model does not consider crosstalk errors.
Inserting barriers increases the circuit execution time, which
leads to higher decoherence errors. Therefore, the estimated
PST of Qiskit noise model will become lower after inserting
the barriers. In other words, based on the Qiskit model, ∆PST
are negative for all the benchmarks. In contrast, our retrained
model successfully estimates the improvement in PST after
mitigating the crosstalk error.

IX. CONCLUSIONS

In this paper, we propose a reliability estimation model
based on the characteristics of quantum circuits and the
topology of the target quantum computer. We show that our
reliability model outperforms the noise model from the Qiskit



Fig. 8. The improvement of PST from a software mitigation scheme estimated
using different models for various benchmarks

and the ESP model from previous work. Our model can be
used for guiding the quantum circuit design. As a result of
the low execution overhead, our model can aid the compiler
to select the mappings with higher accuracy at compile time.
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