

1

The Demand for a Sound Baseline in GPU Memory

Architecture Research
Hongwen Dai, Chao Li, Zhen Lin, Huiyang Zhou

North Carolina State University

Raleigh, NC

{hdai3, cli17, zlin4, hzhou}@ncsu.edu

Abstract-Modern GPUs adopt massive multithreading and

multi-level cache hierarchies to hide long operation latencies,

especially off-chip memory access latencies. However, poor

cache indexing and cache line allocation policy as well as a small

number of miss-status handling registers (MSHRs) can

exacerbate the problem of cache thrashing and cache-miss-

related resource congestion. Besides, modulo address mapping

among memory partitions may cause severe partition camping,

resulting in underutilization of DRAM bandwidth and capacity

of banked L2 cache. Furthermore, prior GPU cache bypassing

studies unrealistically assume there is no limit on the number

of in-flight bypassed requests, which may lead to pathological

experimental results in simulation.

In this work, we investigate the performance impact of the

aforementioned factors and demonstrate the necessity for a

sound baseline in GPU memory architecture research. Our

results show that advanced cache indexing functions can

greatly reduce conflict misses and improve cache efficiency; the

allocation-on-fill policy brings a better performance than

allocation-on-miss. Besides, the performance does not

consistently improve with more MSHRs. Instead, there can be

performance degradation in certain scenarios. In addition, Xor

mapping can greatly mitigate the problem of memory partition

camping. Furthermore, the fact that a limited number of in-

flight bypassed requests can be supported should be taken into

account in GPU cache bypassing studies, for more reliable

results and conclusions.

I. INTRODUCTION

General purpose computation on graphics processing units

(GPGPU) has become prevalent in high performance

computing. Modern GPUs consist of multiple Streaming

Multiprocessors (SMs), each of which containing 32 to 192

CUDA cores and 2 to 4 warp schedulers [20][21][22][24]. A

GPU kernel is launched with a grid of thread blocks (TBs).

Threads within a TB form multiple warps and all threads in

a warp execute in a lock step manner.

Besides massive multithreading, GPUs have adopted

multi-level cache hierarchies to mitigate long off-chip

memory access latencies. However, cache thrashing is

severe on GPUs due to the small cache capacity per thread

and the short cache-line lifetime. Moreover, since miss status

handling registers (MSHRs) and miss queue entries need to

be allocated for outstanding misses, massive multithreading

also causes significant memory pipeline stalls when such

resources are fully occupied. Simply enlarging cache

capacity and/or adding more cache-miss-related resources is

costly in terms of area and power. Therefore, there have been

significant research works on GPU memory architecture. In

this work, we highlight several often-overlooked aspects of

GPU cache design as well as request distribution among

memory partitions and demonstrate the necessity for a sound

baseline in GPU memory architecture research.

First, although cache indexing methods have been well

studied to reduce conflict misses in CPUs [6][11][16], no

prior works have thoroughly studied the performance impact

of various advanced cache indexing functions on GPUs.

Second, for a request sent to the L1 D-cache, if it is a hit,

the required data is returned immediately; if it is a miss,

cache-miss-related resources are allocated and the request is

forwarded to the L2 cache. Allocate-on-miss and allocate-

on-fill are two cache line allocation policies. With allocate-

on-miss, a cache line slot, a MSHR, and a miss queue entry

need to be allocated for an outstanding miss. In contrast, with

allocate-on-fill, a MSHR and a miss queue entry need to be

allocated when an outstanding miss occurs but the victim

cache line slot is chosen when the required data has returned

from lower memory levels. In both policies, if any of the

required resources is not available, a reservation failure

occurs and the memory pipeline is stalled. The allocated

MSHR is reserved until the data is fetched from the L2

cache/off-chip memory while the miss queue entry is

released once the miss request is forwarded to the L2 cache.

Since allocate-on-fill preserves the victim cache line longer

in the cache before eviction and reserves fewer resources for

an outstanding miss, it tends to enjoy more cache hits and

fewer reservation failures, and in turn better performance

than allocate-on-miss. Although allocate-on-fill requires

extra buffering and flow-control logic to fill data to the cache

in-order, the in-order execution model and the write-evict

policy make the GPU L1 D-cache friendly to allocate-on-fill

as there is no dirty data to write to L2 when a victim cache

is to be evicted at the fill time. Therefore, it is intriguing to

investigate how well allocate-on-fill performs for GPGPU

applications and whether it is cost-effective.

Third, since the allocated MSHRs are reserved until the

required data come back from lower memory levels, it is

intuitive to boost performance by deploying more MSHRs

to reduce reservation failures and thus memory pipeline

stalls, and in the meanwhile increase memory-level-

parallelism (MLP). However, more MSHRs may lead to

more warps scheduled to access the L1 D-cache in a short

interval and increase the possibility of cache thrashing. So it

2

is useful if we can better understand the performance impact

of the MSHR size.

Fourth, the memory partition mapping function plays a

critical role in distributing requests among multiple memory

partitions. Although the Modulo address mapping is simple

to implement and effective for some applications, it may

result in severe memory partition camping and requests are

disproportionately handled by one or a small subset of

memory partitions on a GPU, leading to the underutilization

of DRAM bandwidth and capacity of banked L2 cache.

Therefore, it is important to check how memory request

distribution among partitions as well as performance will be

affected if a different address mapping function is adopted.

Fifth, prior works [3][5][8][13][14][32] on GPU cache

bypassing assume there are always adequate hardware

resources to store the relevant information of bypassed

requests and thus unlimited number of in-flight bypassed

requests can be supported. However, such an assumption is

overly optimistic in practice.

MRPB [8] is one of the pioneering works on GPU cache

management, inspiring research works on GPU cache

bypassing [5][13][14][32] and mitigation of memory

pipeline stalls [27][31]. In this work, we investigate how it

performs with an altered cache indexing function, cache line

allocation policy, MSHR size and memory partition

mapping functions. Besides MRPB, we also examine the

effectiveness of the GPU cache bypassing scheme MDB[5]

with the constraint that only a finite number of in-flight

bypassed requests can be supported. Overall, we justify the

necessity for a sound baseline in GPU memory architecture

research.

Overall, this paper makes the following contributions:

 We show that cache indexing functions have
remarkable impact on the overall performance and
allocate-on-fill brings significantly higher performance
for GPGPU applications, than allocate-on-miss;

 We demonstrate that while more MSHRs can provide a
higher MLP, performance is not necessarily improved
due to the impact on L1 D-cache performance;

 We present that a well-performing memory partition
mapping function should be adopted for more balanced
request distribution among memory partitions;

 We illustrate that the effectiveness of prior schemes is
reduced with the enhanced baseline and the limitation
on the number of in-flight bypassed requests imposes
non-trivial impact on GPU cache bypassing schemes.

II. BACKGROUND

As shown in Figure 1, multiple warp schedulers can reside

in each SM of a GPU and each scheduler supervises multiple

warps. And in each SM, there are on-chip memory resources

including a L1 read-only texture cache, a L1 read-only

constant cache, a L1 data cache (D-cache), and shared

memory. A unified L2 cache is shared among multiple SMs.

Typically, the L1 D-cache uses the write-evict with either

write-allocate [1] or write-no-allocate [20][22] policies, and

the L2 cache uses the write-back write-allocate policy to

save NoC and DRAM bandwidth [28]. Moreover, requests

sent to the lower level memory hierarchy (L2 cache and

DRAM) are distributed among memory partitions based on

address mapping function.

On GPUs, global and local memory requests from threads

in a warp are coalesced into as few transactions as possible

before being sent to the memory hierarchy. The cached or

bypassed information is typically encoded in instruction

opcodes [23], indicating whether a request is sent to the L1

D-cache through the ‘L1D path’ or directly to the L2 cache

through the ‘Bypass Path’, as shown in Figure 1.

For a request sent to the L1 D-cache, the cache indexing

function is applied to determine which set to search for the

required data and to insert/evict a cache line if it is a miss.

Thus, the cache indexing function is crucial to balance

requests among cache sets.

Then, for a cache miss, the cache-miss-related resources

are allocated before sending the miss request to the L2 cache.

For allocate-on-miss, the allocated resources include a cache

line slot, a MSHR and a miss queue entry while for allocate-

on-fill, just a MSHR and a miss queue entry are allocated. If

any of the required resources is not available, a reservation

failure occurs and the memory pipeline is stalled. Since a

MSHR entry is reserved until the data is fetched from lower

memory levels, the MSHR size determines how many in-

Figure 1. Baseline GPU.
 Table 1. Baseline architecture configuration

of SMs 16, SIMD width=32, 1.4GHz

Per-SM warp schedulers 4 Greedy-Then-Oldest schedulers

Per-SM limit
3072 threads, 96 warps, thread blocks,

64 MSHRs

Per-SM L1D-cache 16KB, 128B line, 4-way associativity

Per-SM shared memory 96KB, 32 banks

Unified L2 cache
2048 KB, 128KB/partition, 128B line,

16-way associativity, 128 MSHRs

L1D/L2 policies
alloc-on-miss, LRU,

L1D:WEWN, L2: WBWA

Interconnect 16*16 crossbar, 32B flit size, 1.4GHz

DRAM
16 memory partitions, Modulo

mapping, FR-FCFS scheduler, 924MHz

3

flight outstanding misses can be supported, i.e., the upper

bound of memory-level parallelism.

Although a request sent to the L1 D-cache enjoys low

access latency if it hits in the L1 D-cache, the massive

requests on GPUs easily cause cache thrashing and cache-

miss-related resource congestion, degrading the overall

performance. GPU cache bypassing has been proposed to

effectively mitigate these problems. And similar to the fact

that MSHRs are used to record relevant information of

outstanding misses, some hardware structure should be

deployed to store information for bypassed requests, such as

which threads in which warp ask for the data as well as the

destination register.

III. EXPERIMENTAL METHODOLOGY

Simulation Environment: we use GPGPUsim V3.2.2 [2], a

cycle-accurate GPU microarchitecture simulator, to evaluate

various design choices. Table 1 shows the baseline Maxwell-

like [21] configuration that has been widely used in GPU

architecture studies. Benchmarks: we evaluate two entire

benchmark suites, Rodinia [4] and Polybench [7], including

both regular and irregular applications.

Before we start our investigation, we first examine the

impact of cache by checking the performance from a small

16KB 4-way set-associative L1 D-cache and a large 512KB

full-associative L1 D-cache. Based on the performance

improvement from the 512KB L1 D-cache, we classify

benchmarks with more than 50% improvement as High

Cache Contention (HCC) and others as Low Cache

Contention (LCC). Our study focuses on HCC benchmarks

as the is not much variance for LCC ones, the same as prior

GPU memory architecture studies [3][5][8][14][26][30].

All HCC benchmarks are shown in Table 2 and Figure 2,

where performances are normalized to that from the 16KB

L1 D-cache and the average performance from the 512 KB

L1 D-cache is 4.09x. The significant performance

improvement indicates it is crucial to optimize memory

architecture for high performance.

IV. GPU CACHE INDEXING

In this section, we illustrate the performance impact of cache

indexing functions and show that a well performing cache

indexing function should be deployed in the first place.

A. Performance impact

With limited cache capacity per thread, GPU caches suffer

from severe capacity contention. Furthermore, the capacity

may not be well utilized due to a large number of conflict

misses, which are resulted from column-majored stride

accesses in a warp of threads and thus a high number of un-

coalesced requests [30]. Besides, it has been observed that

the baseline-Modulo mapping used by default in GPGPUsim

may cause pathological performance results [12][14].

Hereby, we thoroughly study the impact of several advanced

cache indexing functions to identify the simple and effective

one to mitigate conflict misses for GPGPU applications.

Figure 3 shows performance from different GPU cache

indexing functions used upon a 16KB L1 D-cache, including

BMOD (Baseline Modulo), BXOR (Bitwise XOR[6]),

PMOD (Prime Modulo[11]), A_Prime (Another Prime

Figure 2. HCC (High Cache Contention) benchmarks

from Polybench and Rodinia.

0
2
4
6
8

10
12

Im
p

ro
ve

m
e

n
t

16KB 512KB
61.8

Table 2. Benchmarks
Abbreviation (Description) Type Source

BIC (BiCGStab linear solver subkernel) HCC [7]

MVT (Matrix-vector-product and transpose) HCC [7]

ATX (Matrix-transpose-vector multiply) HCC [7]

GMV (Scalar-vector-matrix multiply) HCC [7]

SRK (Symmetric rank-2k operations) HCC [7]

S2K (Symmetric rank-2k operations) HCC [7]

STC (StreamCluster) HCC [4]

SRD2 (Srad_v2) HCC [4]

PTL (Particle Filter) HCC [4]

KMS (K-means clustering) HCC [4]

Figure 3. Performance impact of cache indexing functions

with baseline cache management.

0

1

2

3

4

5

N
o

rm
al

iz
e

d
 I

P
C

BMOD BXOR PMOD(p=31)
A_Prime(p=37) D_prime(p=17) I_poly(p=19)

Figure 4. Performance improvement from MRPB with

cache indexing functions BMOD and BXOR.

0
2
4
6
8

10
12

Im
p

ro
ve

m
e

n
t

BMOD BXOR

4

Modulo[16]), D_Prime (Prime Displacement[11]) and I-

Poly (Irreducible Polynomial[25]). First, despite the

variations, there are significant performance improvements

from advanced cache indexing functions, and it is 1.58x,

1.95x, 1.88x, 1.75x and 2.04x for BXOR, PMOD, A_Prime,

D_Prime and I_poly, respectively. While other cache

indexing functions either lose their effectiveness in certain

cases (like D_prime for S2K and STC) or require more

complex computation (like I-poly) which may add latency

onto the critical path, BXOR is effective and simple to

implement. Therefore, BXOR is a good choice for cache set

indexing for GPUs, matching the finding in the work [17],

which identified that BXOR is used to map addresses to

cache sets on GPUs, through micro-benchmarking.

B. Effectiveness of MRPB with different cache indexings

On GPU cache management, Jia et al. proposed MRPB [8]

which deploys memory request prioritization buffers to

reduce the effective working set and bypasses L1 D-cache

when a request encounters a reservation failure. It is shown

that MRPB significantly improves the performance of HCC

benchmarks but it does not mention how cache sets are

indexed in their experiments. Thus, it remains interesting to

check the effectiveness of MRPB under BMOD and BXOR.

As shown in Figure 4, MRPB significantly improves the

performance of HCC benchmarks when BMOD is used,

matching the experimental results in the work [8]. However,

the performance improvement of MRPB over the baseline is

greatly reduced when BXOR is adopted. On average, the

normalized performance over the baseline drops from 4.35x

with BMOD to 2.32x with BXOR, respectively, confirming

that pathological result may occur when BMOD is used.

Given the remarkable impact of cache indexing on HCC

applications, we believe that a well-performing cache

indexing function should be deployed in the first place and

BXOR is good to use in terms of cost-effectiveness. Please

note: BOXR cache indexing is used in the following

discussion.

V. CACHE LINE ALLOCATION

In this section, we dissect the performance impact of the two

cache line allocation policies, namely allocate-on-miss and

allocate-on-fill.

A. Performance impact

As described in Section I, when there is an outstanding miss,

allocate-on-miss allocates a cache line in addition to a

MSHR and a miss queue entry while allocate-on-fill just

allocates a MSHR and a miss queue entry. Allocation-on-fill

brings in two performance benefits. First, since allocate-on-

fill does not evict the victim cache line until the requested

data come back from L2 cache/off-chip memory, cache lines

have longer lifetime to capture temporal reuses. This is

particularly the case for GPUs as the L2 cache latency is

much higher than that of CPU L2 caches since multiple SMs

share the L2 cache on a GPU. Besides, the in-order execution

model and the write-evict policy make the GPU L1 D-cache

friendly to allocate-on-fill as there is no dirty data to write to

L2 when a victim cache line is to be evicted at the fill time.

Furthermore, as allocate-on-fill does not reserve a cache line

slot, cache-miss-related resource congestion is lighter.

Figure 5 shows a MSHR entry on GPUs. The basic

structure is similar to the simple organization proposed by

Figure 5. A MSHR Entry on GPUs.

 (a) (b)

Figure 7. Effectiveness of MRPB with varied cache line

allocation policies: (a) normalized IPC; (b) performance

improvement over the baseline cache management.

2.1
3.6

6.47.2

11.3

13.8

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

GM
N

o
rm

al
iz

e
d

 I
P

C

2.1
2.6

2.1

1.4 1.4
1.3

0.0
0.5
1.0
1.5
2.0
2.5
3.0

GM

Im
p

ro
ve

m
e

n
t

 (a) (b) (c) (d)

Figure 6. Performance impact of cache line allocation policy with baseline cache management: (a)16KB L1 D-cache:

normalized IPC; (b) normalized IPC; (c) L1 D-cache miss rate; (d) L1 D-cache rsfail rate (reservation failures per access).

0

0.5

1

1.5

2
B

IC
M

V
T

A
TX

G
M

V
SR

K
S2

K
ST

C
SR

2
P

TL
K

M
S

G
M

N
o

rm
al

iz
e

d
 I

P
C

1.0
1.4

3.1

5.2

8.1

10.7

0.0

2.0

4.0

6.0

8.0

10.0

12.0

GM

N
o

rm
al

iz
e

d
 I

P
C

0.94
0.81

0.48
0.33

0.20
0.18

0.00

0.20

0.40

0.60

0.80

1.00

GM

l1
d

 m
is

s
ra

te

30.0

19.4

7.5
2.9 1.2

0.8
0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0
32.0

GM

l1
d

 r
sf

ai
l r

at
e

5

Tuck et al [29]. The fields of a single MSHR entry include

valid bit, block address, control/status bits (prefetch, which

subblocks have arrived, etc.). Due to the nature of gather

operation on GPUs, thread mapping in subentries tracks

which words in the requested cache line map to which

threads, as described in WarpPool [10].

Figure 6(b) shows the performance of allocate-on-miss

and allocate-on-fill on various cache capacities, normalized

to that of a 16KB L1 D-cache with allocate-on-miss.

Individual kernels’ performances are also shown for cache

capacity 16KB, in Figure 6(a). As demonstrated, allocate-

on-fill consistently outperforms allocate-on-miss. On

average, the performance from allocate-on-fill (allocate-on-

miss) is 1.4x(1.0x), 3.1x(5.2x) and 8.1x(10.7x) with a 16KB,

32KB and 64KB L1 D-cache, respectively.

As discussed, the better performance of allocate-on-fill

comes from a higher L1 D-cache efficiency and relieved

cache-miss-related resource congestion. Figure 6 (c) and (d)

show L1 D-cache miss rate and L1 D-cache rsfail rate

(reservation failures per access), respectively. And take a

32KB L1 D-cache as the example, the L1 D-cache miss rate

(rsfail rate) is reduced from 0.48(7.5) with allocate-on-miss

to 0.33(2.9) with allocate-on-fill.

B. Effectiveness of MRPB with different cache line

allocation policies

Given the significant performance impact of cache line

allocation policies, we also check the effectiveness of MRPB

when varying this factor. As shown in Figure 7(a), where

performances are normalized to that from the baseline cache

management on a 16KB L1 D-cache with allocate-on-miss,

allocate-on-fill also benefits MRPB with fewer misses and

reservation failures, outperforming allocate-on-miss. For

example, on a 32KB L1 D-cache, the performance increases

from 6.4x with allocate-on-miss to 7.2x with allocate-on-fill.

However, as the performance is already boosted for the

baseline cache management with allocate-on-fill, generally

the effectiveness of MRPB is reduced. For instance, the

performance improvement from MRPB over the baseline on

a 32KB L1 D-cache is 110% with allocate-on-miss and it is

reduced to 40% with allocate-on-fill, shown in Figure 7(b).

To summarize, considering the non-trivial performance

impact, we argue that allocate-on-fill should be examined in

the evaluation of GPU cache management schemes.

VI. MSHR SIZES

In this section, we study the impact of MSHR size. Since a

MSHR entry is reserved until the required data is returned

from lower memory hierarchies, the number of MSHRs

determines the number of outstanding misses which can be

served in parallel, i.e., the upper bound of MLP. Besides, a

scheduled warp will be stalled in the memory pipeline if all

MSHRs are reserved by previous outstanding misses and

thus TLP may be reduced with a small number of MSHRs.

A. Performance impact

First, we show that the MSHR size has a high impact on the

overall performance. Figure 8(a) shows the average

performance with different MSHR sizes, namely 32, 64, 128

and 256 MSHRs and when the optimal MSHR size is applied

to each benchmark, indicated by ‘Optimal’. First, while the

average performance increases with more MSHRs in most

scenarios, an up-then-down performance trend shows up on

a 64KB L1 D-cache with allocate-on-miss, indicating more

MSHRs do not necessarily bring a better performance,

confirming the observations in the work [31]. Second, the

best performing MSHR size varies for different benchmarks

and no single MSHR size can hold the advantage

consistently. Thus the ‘Optimal’ performance can be much

better than that from any fixed MSHR size. For example, the

normalized IPC of ‘Optimal’ is 8.94x (12.54x) while the best

performance among the fixed MSHR sizes is 8.11x (11.0x)

from 64MSHR (256MSHR) for allocate-on-miss (allocate-

on-fill) with a 64KB L1 D-cache. Fourth, as shown, allocate-

on-fill is more immune to the potential adverse effect of

more MSHRs and thus consistently obtains a better

performance with more MSHRs, on average.

B. The impact of MSHR sizes on L1 D-cache performance

To further investigate the impact of MSHR size, we use

KMS as a case study to demonstrate that more MSHRs may

hurt the overall performance.

(a) (b) (c) (d)

Figure 8. Performance impact of MSHR size: (a) average normalized IPC; (b) KMS: normalized IPC; (c) KMS: L1 D-

cache miss rate; (d) KMS: L1 D-cache rsfail rate (reservation failures per access).

0
2
4
6
8

10
12
14

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

H
C

C
: N

o
rm

al
iz

e
d

 I
P

C

0

2

4

6

8

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB
K

M
S:

 N
o

rm
al

iz
e

d
 I

P
C

0
0.2
0.4
0.6
0.8

1

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

K
M

S:
 l1

d
 m

is
s

ra
te

0
2
4
6
8

10
12

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

K
M

S:
 l1

d
 r

sf
ai

l r
at

e

6

Figure 8(b) presents the performance for KMS from

different MSHR sizes, normalized to the performance form

a 16 L1 D-cache with allocate-on-miss and 64 MSHRs. For

a small 16KB L1 D-cache, where the miss rate remains low,

more MSHRs lead to relieved cache-miss-related resource

congestion and increased MLP (memory level parallelism),

resulting in a better performance. However, for a larger

cache, especially, 64KB L1 D-cache, the performance first

increases and then decreases with more MSHRs.

Specifically, under allocate-on-miss, the performance

increases from 5.9x with 32MSHR to 7.3x with 64MSHR

because the miss rate remains low (around 0.065) and the

number of reservation failures is reduced. Then the

performance drops to 2.8x with 128MSHR and to 1.2 with

256MSHR, because both the miss rate and the number of

reservation failures significantly increase. And the same

variation can also be observed for allocate-on-fill.

To further figure out why the miss rate increases with

more MSHRs, we looked into the cycle-by-cycle L1 D-

cache accesses and found that due to the multithreading

execution model of GPUs, in which a new warp will be

scheduled if the current one is waiting for results of its

previous instructions, when there are more MSHRs, more

warps are actively scheduled to access L1 D-cache, causing

cache thrashing; on the other hand, when there are fewer

MSHRs, fewer warps can allocate a MSHR for their cache

misses and when a request is fulfilled and a reserved MSHR

is released, based on the warp scheduling policy, it is highly

possible that one of the previously scheduled warps can be

scheduled to issue a memory request again and thus has a

bigger chance to get a hit in the cache.

To summarize, on GPUs, although more MSHRs can

bring a higher MLP, they also enable more requests into

caches in a short interval and increase the probability of

cache thrashing, confirming the finding in works [17][31]

that fewer MSHRs yield better cache behavior for some

benchmarks. Nevertheless, since 128 MSHRs can bring a

good performance on average, we suggest using 128 MSHRs

in the configuration, considering the cost-effectiveness.

C. Effectiveness of MRPB with the optimal MSHR size

Given the significant performance impact of MSHRs, we

also check the effectiveness of MRPB when the optimal

MSHR size is applied for each benchmark.

 On one hand, the performance of MRPB is further

improved with the optimal MSHR size, as shown in Figure

9 (a). For instance, the average performance from MRPB is

6.4x (7.2x) on a 32KB L1 D-cache under allocate-on-miss

(allocate-on-fill) with 64MSHR (Figure 7(a)) and it is

improved to 7.3x (8.1x) when the optimal MSHR size is

applied for each benchmark. On the other hand, the

performance improvements from MRPB may decrease when

the optimal MSHR size is applied to it and the baseline cache

management. For example, while the improvement from

 (a) (b)

Figure 11. Effectiveness of MRPB with Modulo and Xor

memory partition mapping: (a) normalized IPC; (b)

improvement over the baseline cache management.

0
2
4
6
8

10
12
14
16
18

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

N
o

rm
al

iz
e

d
 I

P
C

Modulo Xor

0.0

0.5

1.0

1.5

2.0

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

N
o

rm
al

iz
e

d
 I

P
C

Modulo Xor

(a) (b) (c) (d)

Figure 10. Performance impact of memory partition mapping: (a) average normalized IPC; (b) SRK: percentage of

requests across 16 memory partitions; (c) SRK: L2 cache miss rate; (d) L1 D-cache rsfail rate (reservation failures per access).

0

4

8

12

16
o

n
-m

is
s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

H
C

C
: N

o
rm

al
iz

e
d

 I
P

C Modulo Xor

0%

2%

4%

6%

8%

Modulo Xor Modulo Xor

16KB, on-miss 16KB, on-fill
SR

K
:

P
e

rc
e

n
ta

ge

P0 P1 P2 P3 P4 P5 P6 P7
P8 P9 P10 P11 P12 P13 P14 P15

94% 77%

0.00

0.20

0.40

0.60

0.80

o
n

-m
is

s

o
n

-f
ill

16KB

SR
K

:
l2

 m
is

s
ra

te

Modulo Xor
42

9
13

3
0

10
20
30
40
50

o
n

-m
is

s

o
n

-f
ill

16KB

SR
K

:
l1

d
 r

sf
ai

l r
at

e

Modulo Xor

 (a) (b)

Figure 9. Effectiveness of MRPB with the optimal MSHR

size: (a) normalized IPC; (b) performance improvement

over the baseline cache management.

3.4
4.9

7.38.1

13.8
14.5

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

GM

N
o

rm
al

iz
e

d
 I

P
C 3.4

1.2

2.2

1.2
1.5

1.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

GM

Im
p

ro
ve

m
e

n
t

7

MRPB over the baseline cache management is 40% on a

32KB L1 D-cache with 64 MSHRs and allocate-on-fill, it is

reduced to 20% when considering the optimal performance.

VII. REQUEST DISTRIBUTION AMONG MEMORY PARTITIONS

In this section, we investigate the impact of memory request

distribution among partitions. By default, addresses are

linearly distributed among memory channels/partitions

(Modulo mapping), in GPGPUsim. However, with Modulo

mapping, column-majored stride accesses may cause severe

partition camping and requests are disproportionately

handled by a small subset of memory partitions on a GPU,

leading to performance degradation. In the meanwhile, Xor

mapping is simple to implement and can overcome the

problems with Modulo mapping.

Figure 10 demonstrates the impact from the two memory

partition mapping functions. Figure 10(a) shows that on

average, Xor mapping consistently outperforms Modulo

mapping. For example, the normalized IPC is 3.1x (6.0x) for

Modulo mapping and 5.1x (9.6x) for Xor mapping on a

32KB L1 D-cache with allocate-on-miss (allocate-on-fill).

To further investigate how Xor mapping outperforms

Modulo mapping, we use the benchmark SRK for case study

and examine memory request distribution among partitions,

L2 cache efficiency and L1 D-cache miss-related resources

congestion. First, Figure 10(b) shows that a majority of

requests are mapped to memory partition 0 with Modulo

mapping, leading to extremely low DRAM bandwidth

utilization. And Xor mapping overcomes the problem of

memory partition camping by evenly distributing requests

among all 16 partitions. The more balanced memory request

distribution not only greatly improves DRAM bandwidth

utilization, but also improves L2 cache efficiency. As shown

in Figure 10(c), L2 cache miss rate significantly decreases

with Xor mapping, due to more balanced accesses to L2

banks and thus better L2 capacity utilization. Furthermore,

the improved efficiency/performance at the lower level

memory hierarchy also benefits L1 D-cache accesses. Figure

10(d) shows that L1 D-cache rsfail rate (reservation failures

per access) drops from 42(9) to 13(2) for allocate-on-miss

(allocate-on-fill). This is because almost all requests sent to

the lower level memory hierarchy can be absorbed by L2

cache under Xor mapping (Figure 10(c)). And in turn round

trip latency for L1 D-cache misses is significantly reduced,

leading to sooner release of MSHRs occupied by those

misses and thus relieved congestion in MSHR allocation as

well as fewer reservation failures (memory pipeline stalls).

Given the significant performance impact of memory

partition mapping, we also check the effectiveness of MRPB

when Xor mapping is adopted. Figure 11(a) shows that the

performance of MRPB is also improved with Xor mapping.

For example, the normalized IPC increases from 8.6x

(13.5x) with Modulo mapping to 13.0x (16.2x) with Xor

mapping on a 64KB L1 D-cache with allocate-on-miss

(allocate-on-fill). Regarding the improvement over the

baseline (Figure 11(b)), it decreases in some scenarios and

increases in others since different benchmarks may react

differently when memory partition mapping alters.

Nevertheless, it is crucial to ensure balanced request

distribution among memory partitions and L2 banks.

VIII. MODELLING REALISTIC GPU CACHE BYPASSING

In this section, we investigate how bypassing schemes

perform when dedicated hardware structures are allocated to

record the relevant information of bypassed requests and

thus just a finite number of in-flight bypassed requests can

be supported. Works [3][5][8][12][13][14][32] on GPU

cache management have demonstrated that intelligent cache

bypassing can significantly improve the overall performance

but failed to discuss the constraint from hardware structures

used to keep the relevant information of bypassed requests.

However, it is unrealistic to assume that an unlimited

number of in-flight bypassed requests can be supported.

Similar to prior GPU cache bypassing studies, allocate-

on-miss is used and 128 MSHRs are deployed for a 16KB

L1 D-cache in this study. #_BpR is used to denote the

maximum number of in-flight bypassed requests that can be

supported. And hardware structures similar to but simpler

than regular MSHRs (Figure 5) can be used to keep the

relevant information of bypassed requests such as which

threads ask for the data and the destination register.

Figure 12 (a) shows the performance (normalized to the

baseline cache management without bypass) of MRPB [8]

and MDB [5] when different numbers of in-flight bypassed

 (a) (b) (c)

Figure 12. Effectiveness of MRPB and MDB when different numbers of in-flight bypassed requests can be supported: (a)

normalized IPC; (b)MDB: reservation failures due to the constraint of BpR_#; (c)MDB: average memory access latency.

0

1

2

3

4
B

IC
G

M
V

T

A
TA

X

G
EM

V

P
TF

L

K
M

N
S

B
IC

G

M
V

T

A
TA

X

G
EM

V

P
TF

L

K
M

N
S

N
o

rm
al

iz
e

d
 I

P
C

MRPB MDB

0
10
20
30
40
50
60
70
80
90

B
p

R
_r

sf
ai

l_
ra

te

0

500

1000

1500

2000

2500

av
g_

ac
ce

ss
_l

at
e

n
cy

8

requests can be served in parallel on a 16 KB L1 D-cache.

MDB is a model-drive approach for GPU cache bypassing

and it bypasses a certain number of warps or thread blocks

based on the combined impact of cache contention and

cache-miss-related resource congestion. Here we only show

representative benchmarks with diverse and significant

performance variance when BpR_# changes. BpR_inf is

used by default in prior GPU cache bypassing works, in

which any determined bypassing request can be sent to lower

memory levels since there is no limitation from hardware to

store the relevant information of bypassed requests. As

shown, MDB outperforms MRPB, because it can improve

L1 D-cache efficiency more effectively. Since benchmarks

show more significant performance improvement and also

more observable diversity with different values of BpR_#

with MDB, we use MDB to further investigate the impact of

BpR_# in the following discussion.

It is intuitive to think that the higher BpR_#, the better the

performance since the constraint from such a factor is

relieved. However, it is not always the case and the

examined benchmarks show diverse behaviors, as in Figure

12(a). First, as expected, the performance increases from

BpR_8 to BpR_32 for most of the examined benchmarks.

Then, from BpR_32 to BpR_128, there is significant

performance degradation for benchmarks BICG, MVT and

ATAX while the performance of benchmarks GEMV

remains relatively stables and benchmarks PTFL and KMNS

continuously obtain performance improvement. Finally,

there is not much variation between BpR_128 and BpR_inf

across all the examined benchmarks.

To better understand the impact of BpR_#, we studied the

following two metrics: L1 D-cache BpR_rsfail_rate and

average memory access latency. The former one denotes the

number of reservation failures per bypassed request due to

the constraint from BpR_# and such a reservation failure

occurs when a new request is determined to bypass the L1

D-cache but the BpR_# has already been reached by prior

bypassed requests. And the metric, average memory access

latency, represents the time interval between when a request

is sent to the memory hierarchy and when the required data

comes back to the requesting SM.

Figure 12(b) shows L1 D-cache BpR_rsfail_rate with

BpR_8, BpR_32, BpR_128 and BpR_inf. And we have the

following observations. First, with BpR_8 where only 8 in-

flight bypassed requests can be supported in maximum, there

are a large number of reservation failures due to the

constraint of BpR_# and in turn many unsuccessful bypass

attempts, resulting in severe memory pipeline stalls. In other

words, the effectiveness of GPU cache bypassing may be

undermined if just a small number of in-flight bypassed

request can be supported. Second, L1 D-cache

BpR_rsfail_rate significantly drops from BpR_8 to BpR_32

and this leads to the performance improvement from BpR_8

to BpR_32. Third, L1 D-cache BpR_rsfail_rate continues to

drop from BpR_32 to BpR_128 and BpR_inf and there is

almost no reservation failures due to the limitation of BpR_#

for BpR_128 and BpR_inf.

However, although L1 D-cache BpR_rsfail_rate is near-

zero for BpR_128 and BpR_inf, the performance is not

necessarily better compared to that when fewer inflight

bypassed requests can be supported. For instance, the

normalized IPC drops from 3.49x with BpR_32 to 2.90x

with BpR_128 for benchmarks BICG. Such performance

degradation occurs due to the lengthened memory access

latency, as shown in Figure 12(c). Specifically, the average

memory access latency increases from 793 cycles with

BpR_32 to 1051 with BpR_128 for BICG.

Despite that benchmarks BICG, MVT and ATAX show

performance degradation from BpR_32 to BpR_128,

benchmarks PTFL and KMNS obtain continuous

performance improvement with a larger BpR_#. Similar to

other benchmarks, PTFL and KMNS encounter fewer

reservation failures and lengthened memory access latency

when more inflight bypassed values of memory access

latency with a larger BpR_#, as shown in Figure 12 (b) and

(c). However, the increment of memory access latency is

minor for PTFL and KMNS. Specifically, from BpR_32 to

BpR_128, the average memory access latency just increases

from 413 to 469 for PTFL and from 405 to 507 for KMNS.

Thus although the memory access latency is lengthened for

PTFL and KMNS, it still has a relatively low value and does

not offset the benefits brought by fewer reservation failures

due to the constraint of BpR_#. In contrast, since the average

memory access latency of GEMV is more than 2200 cycles

starting from BpR_32 and the benefits from fewer

reservation failures are offset and the performance of GEMV

remains relatively stable across all examined BpR_#.

A request, which bypasses or encounters a miss at L1 D-

cache, goes through the interconnect network and then gets

served by either L2 cache or DRAM. Therefore, the access

latency of such a request has two major parts, one is to go

through the interconnect network and the other is to be

accommodated by L2 cache or DRAM.

Thus to further investigate the impact of BpR_#, we

check L2 cache miss rate and avg_BpR_in_circle, as shown

in Figure 13. L2 cache miss rate indicates the L2 cache

efficiency and the higher L2 cache miss rate, the more

(a) (b)

Figure 13. (a)L2 cache efficiency and (b) the average

number of inflight bypassed requests in MDB with

different BpR_#.

0

0.2

0.4

0.6

0.8

1
B

IC
G

M
V

T

A
TA

X

G
EM

V

P
TF

L

K
M

N
SL2

 c
ac

h
e

 m
is

s
ra

te

0

50

100

150

200

B
IC

G

M
V

T

A
TA

X

G
EM

V

P
TF

L

K
M

N
S

av
g_

B
p

R
_i

n
_c

ir
cl

e

9

requests are sent to DRAM and the larger average latency

for a request to be served. The metric avg_BpR_in_circle

denotes the average number of inflight bypassed requests

during execution and it reflects the extent of interconnect

congestion. Basically, the larger avg_BpR_in_circle, the

higher degree of interconnect congestion and the longer

latency for a request to go through the interconnect network.

First, Figure 13(a) shows that for benchmarks BICG, MVT

and ATAX, there is non-trivia L2 cache miss rate increase

from BpR_32 to BpR_128 because more warps are actively

scheduled to send requests to the memory subsystem. In the

meanwhile, since there are more inflight bypassed requests,

as shown in Figure (b), the latency to go through the

interconnect network also increases. The combined effect of

the two factors leads to the significantly lengthened memory

access latency and performance degradation for the three

benchmarks. Then for the benchmark PTFL and KMNS, L2

cache miss rate remains lower than 0.1 for various BpR_#,

indicating that more inflight bypassed requests do not thrash

L2 cache and almost all L1 D-cache misses can be absorbed

by it. On the other hand, unlike other benchmarks, PTFL and

KMNS have a large number of bypassed requests and in turn

a high degree of memory-level-parallelism (MLP). For

example, with BpR_128, the value of avg_BpR_in_circle for

BICG is 35, and it is as high as 123 for PTFL and 118 for

KMNS. Since PTFL and KMNS experience a much shorter

memory access latency and a higher MLP, they can have

more requests served and in turn execute more data-

dependent instructions per cycle, and therefore obtains

continuous performance improvement with a larger BpR_#.

As demonstrated, the number of in-flight bypassed

requests can significantly affect the performance of GPU

cache bypassing schemes. Therefore, it is not realistic to

assume there are unlimited hardware resources to store the

relevant information of bypassed requests. On the other

hand, the higher number of in-flight bypassed requests to be

supported does not necessarily brings higher performance

due to the congestion in interconnect network and conflicts

at lower memory levels. Besides, a limitation on the number

of in-flight bypassed requests can also achieve bypass

throttling, which is targeted by some prior works [3][14]. So,

we believe the fact that only a limited number of in-flight

bypassed requests can be supported should be taken into

account, to get more realistic results and conclusions in GPU

cache bypassing studies.

IX. CONCLUDED SOUND BASELINE CONFIGURATION

In this part, we give out the suggested sound baseline

configuration. Based on our study, we argue for the

following methodology to be used in GPU memory

architecture research: (1) an indexing function such as

BXOR to reduce conflict misses in the caches; (2)

allocation-on-fill policy in the GPU caches to improve cache

utilization; (3) for studies on memory-level parallelism, the

number of MSHRs needs to be explored as an important

design space parameter; (4) a memory partition mapping

function such as Xor to mitigate the problem of memory

partition camping; (5) studies on cache bypassing should not

assume unlimited number of bypasses. Instead, the bypass

slots (i.e., the maximal number of in-flight bypasses) is an

important design space parameter to be explored.

If a single baseline is desired (i.e., no design space

exploration), the sound one from our results is:

BXOR + allocate-on-fill + 128 MSHRs + 32/128

bypassing slots, with Xor mapping used to distribute

requests among memory partitions.

The sound baseline is open sourced at:

https://github.com/ShadowArray/WDDD-Sound-Baseline

Regarding the performance of the enhanced baseline, we

show the accumulated performance improvement with a

16KB L1 D-cache, in Figure 14. Without specific

description in the legend, the default configuration is

(BMOD, on-miss, 64MSHRs, Modulo) which uses BMOD

for cache set indexing and allocate-on-miss as the cache line

allocation policy, deploys 64MSHRs and distributes

requests among memory partitions with Modulo mapping.

As shown, the performance continuously increases when the

baseline is enhanced. And on average, the accumulated

performance is as high as 6.7x with (BXOR, on-fill,

128MSHRs, Xor), compared to the default configuration in

GPGPUsim.

For the indexing function, it may not be the best

performance-wise as some other hashing functions may

distribute the accesses more evenly than BXOR. But

considering the hardware complexity, our results suggest

that BXOR is good to use. For allocation-on-fill vs.

allocation-on-miss, allocation-on-fill extends the life-time of

the cached data. Therefore, it is better than allocation-on-

miss in general. And 128 MSHRs can greatly mitigate

reservation failures. Finally, as illustrated in Section VIII,

applications show diverse behaviors when more inflight

bypassed requests can be supported. Some applications show

an up-then-down performance trend, some present a

relatively stable performance and others continuously reap

performance improvement. As such, we suggest that two

points, 32 and 128 bypassing slots should be studied. On one

hand, the configuration of 32 bypassing slots can achieve

bypass throttling which is targeted by some prior works

[3][14]. On the other hand, 128 bypassing slots can achieve

performance close to that when there is no constraint on the

number of inflight bypassed requests and since it leads to a

Figure 14. Accumulated performance improvement from

an enhanced baseline with a 16KB L1 D-cache.

1.0 1.6 2.2
3.8

6.7

0.0
2.0
4.0
6.0
8.0

GMN
o

rm
al

iz
e

d
 I

P
C

BMOD BXOR
(BXOR,on-fill) (BXOR,on-fill,128MSHRs)
(BXOR,on-fill,128MSHRs,Xor)

https://github.com/ShadowArray/WDDD-Sound-Baseline

10

higher memory-level parallelism, potentially it can benefit

applications for which L2 cache has a high efficiency and

can effectively filter requests sent to it.

Although not shown here, in addition to Greedy-Then-

Oldest (GTO) used so far, we have also experimented Loose-

Round-Robin (LRR) warp scheduling policy and found that

the overall performance is also boosted with the enhanced

baseline as the memory subsystem efficiency is improved.

Thus the suggested sound baseline shall be used despite that

a different warp scheduling policy may be adopted.

X. RELATED WORK

Although cache indexing functions have been well studied

on CPUs [6][11][16], previous works on GPU cache

management did not elaborate on this issue in detail. On one

hand, some works did not mention the underlying cache

indexing function, like MRPB[8] and WarpPool[10]. On the

other hand, although some other works pointed out that the

BMOD mapping used by default in GPGPUsim might cause

pathological results [12][14][17], they did not thoroughly

study the impact of various advanced indexing functions.

Cache line allocation policy determines what cache-miss-

related resources are allocated for an outstanding miss. For

allocate-on-miss, those resources include a cache line [9], a

MSHR and miss queue entry while allocate-on-fill [2] does

not reserve a cache line. Therefore, allocate-on-fill tends to

incur fewer reservation failures and enjoy more hits.

Besides, although some works [17][27][31] have mentioned

the potential performance impact of MSHR size on GPUs,

they did not study nor examine the impact with varying other

factors. In contrast, we studied the impact of MSHR size

with different cache sizes and cache line allocation policies.

Although many prior GPU cache bypassing works have

shown significant performance improvements [3][5][8][13]

[14][32] from their schemes, they did not mention the

constraint from the hardware structures used to store the

relevant information of bypassed requests. Since only a

finite number of in-flight bypassed requests can be supported

in reality, we demonstrate that it should be taken into account

in GPU cache bypassing studies.

XI. CONCLUSIONS

As throughput oriented processors, GPUs leverage massive

multithreading to hide long operation latencies. However,

the massive memory requests in GPGPU applications lead

to fewer cache lines per thread and shorter cache line lifetime

on GPUs than CPUs. In this work, we comprehensively

investigated the performance impact of cache set indexing,

cache line allocation policy, the number of MSHRs, and

request distribution among memory partitions on GPUs as

well as more realistic GPU cache bypassing.

Our studies show that advanced cache indexing functions

should be deployed in the first place to reduce the severe

conflict misses; allocate-on-fill should be used to increase

cache hits and reduce memory pipeline stalls; the number of

MSHRs plays an important role in affecting the cache

efficiency besides supporting MLP/TLP. Furthermore, we

show that a good memory partition mapping function, such

as Xor, should be deployed to mitigate the problem of

memory camping. And while previous GPU cache bypassing

works unrealistically assume an unlimited number of in-

flight bypassed requests can be supported, we demonstrate

such a constraint can significantly affect the performance of

a GPU cache bypassing scheme and this factor should be

taken into account in GPU cache bypassing studies. Finally,

we propose the sound baseline configuration for future GPU

memory architecture studies and open source it.

REFERENCES

[1] AMD GCN Architecture White paper, 2012.

[2] A. Bakhoda et al. Analyzing CUDA workloads using a detailed GPU simulator.

In Proceedings of ISPASS, 2009.

[3] X. Chen et al. Adaptive cache management for energy-efficient GPU

computing. In Proceedings of MICRO, 2014.

[4] S. Che et al. Rodinia: A benchmark suite for heterogeneous computing. In

Proceedings of IISWC, 2009.

[5] H. Dai, et al. A Model-Driven Approach to Warp/Thread-Block Level GPU

Cache Bypassing. In Proceedings of DAC, 2016.

[6] A. González et al. Eliminating cache conflict misses through XOR-based

placement functions. In Proceedings of ICS, 1997.

[7] S. Grauer-Gray et al. Auto-tuning a high-level language targeted to GPU codes.

In Proceedings of InPar, 2012.

[8] W. Jia et al. MRPB: Memory request prioritization for massively parallel

processors. In Proceedings of HPCA, 2014.

[9] D. Kroft, et al. Lockup-free instruction fetch/prefetch cache organization. In

Proceedings of ISCA, 1981.

[10] J. Kloosterman, et al. WarpPool: sharing requests with inter-warp coalescing for

throughput processors. In Proceedings of MICRO, 2015.

[11] M. Kharbutli et al. Using prime numbers for cache indexing to eliminate conflict

misses. In Software, IEE Proceedings, 2004.

[12] A. Li et al. Adaptive and transparent cache bypassing for GPUs. In Proceedings

of SC, 2015.

[13] C. Li et al. Locality-Driven Dynamic GPU Cache Bypassing. In Proceedings of

ICS, 2015.

[14] D. Li et al. Priority-based cache allocation in throughput processors.

In Proceedings of HPCA, 2015.

[15] J. Liu, et al. SAWS: synchronization aware GPGPU warp scheduling for

multiple independent warp schedulers." In MICRO, 2015.

[16] Y. Ma, et al. Using indexing functions to reduce conflict aliasing in branch

prediction tables. IEEE Transactions on Computers 8 (2006).

[17] C. Nugteren, et al. A Detailed GPU Cache Model Based on Reuse Distance

Theory. In Proceedings of HPCA, 2014.

[18] V. Narasiman et al. Improving GPU performance via large warps and two-level

warp scheduling. In Proceedings of MICRO, 2011.

[19] NVIDIA, “CUDA C/C++ SDK code samples,”2011.

[20] NVIDIA Kepler GK110 Architecture Whitepaper, 2012.

[21] NVIDIA GeForce GTX 980 Whitepaper, 2014.

[22] NVIDIA’s CUDA compute architecture: Fermi. 2009.

[23] NVIDIA Parallel Thread Execution ISA Version 4.2.

[24] NVIDIA Pascal GP100 Architecture, GTC, 2016.

[25] B. R. Rau et al. Pseudo-randomly interleaved memory." ISCA, 1991.

[26] T. Rogers et al. Cache-conscious wavefront scheduling." In Proceedings

MICRO, 2012.

[27] A. Sethia et al. Mascar: Speeding up gpu warps by reducing memory pitstops.

In proceedings of HPCA, 2015.

[28] I. Singh et al. Cache coherence for GPU architectures. In Proceedings of HPCA,

2013.

[29] J. Tuck et al. Scalable cache miss handling for high memory-level

parallelism. In Proceedings of MICRO, 2006.

[30] B. Wang et al. Eliminating intra-warp conflict misses in GPU. In Proceedings

of DATE, 2015.

[31] B. Wang et al. "OAWS: Memory Occlusion Aware Warp Scheduling." In

Proceedings of PACT, 2016.

[32] X. Xie et al. Coordinated static and dynamic cache bypassing for GPUs. In

Proceedings of HPCA, 2015.

