SecPB: Architectures for Secure Non-Volatile
Memory with Battery-Backed Persist Buffers

Alexander Frejj
North Carolina State University
North Carolina, USA
atfreij@ncsu.edu

Abstract—The durability of data stored in persistent memory
(PM) exposes data to potentially data leakage attacks. Recent
research has identified the requirements for crash recoverable
secure PM, but do not consider recent trends of the persistency
domain extending on-chip to include cache hierarchies. In this
paper, we explore this design space and identify performance and
energy optimization opportunities.

We propose secure persistent buffers (SecPB), a battery-backed
persistent structure that moves the point of secure data persis-
tency from the memory controller closer to the core. We revisit
the fundamentals of how data in PM is secured and show how
various subsets of security metadata can be generated lazily while
still guaranteeing crash recoverability and integrity verification.
We analyze the metadata dependency chain required in securing
PM and expose optimization opportunities that allow for SecPB
to reduce performance overheads by up to 32.8x, with average
performance overheads as low as 1.3% observed for reasonable
battery capacities.

I. INTRODUCTION

Persistent memory (PM) or non-volatile memory (NVM) is
increasingly integrated into modern systems, with technologies
such as Intel Pmem' [25] being widely available. With its
high density and byte addressability, PM is being adopted to
augment or substitute DRAM as main memory. PM’s non-
volatility allows data to remain across system boots and power
cycles, exposing it to potential data leakage or unauthorized
modifications. Recognizing these threats, proposals for mem-
ory encryption and integrity protection for persistent data in
PM have been proposed [5]-[7], [18], [19], [23], [68], [74].

A key requirement for hosting persistent data on secure
memory is the crash consistency between data and its meta-
data, which determines whether post-crash recovery yields
correct data plaintext and/or whether integrity verification
succeeds [18]. It has been pointed out that the memory
tuple, consisting of data, counter, message authentication code
(MAC), and Merkle Tree root update, must be updated and
persisted atomically in the order specified by the persistency
model. This previous work, along with others [5]-[7], [19],
[23], [68], [74], assume that the point of persistency is at the
memory controller.

Recently, there have been significant interests in expanding
the persistency domain to the entire memory hierarchy. We
refer to it as the persistent hierarchy approach. With persistent

IRenamed from Optane DC persistent memory.

Huiyang Zhou
North Carolina State University
North Carolina, USA
hzhou@ncsu.edu

Yan Solihin
University of Central Florida
Florida, USA
yan.solihin@ucf.edu

hierarchy, strict persistency is achieved automatically, cache
line flushes are no longer needed for achieving persistence,
and fences are only needed for persistency models that do
not guarantee total store ordering. The elimination of flushes
and fences not only improves persistency performance sub-
stantially, but it also simplifies programming and reduces
chances of bugs. Persistent hierarchy can be accomplished
using non-volatile caches [30], [44], [62], Intel eADR [51],
or battery-backed buffer (BBB) [4]. Non-volatile caches rely
on using technologies such as STT-RAM [31], PCM [42],
or ReRAM [29], for caches. eADR relies on battery or
supercapacitors to back the SRAM caches such that on power
loss, cache content is flushed to the PM. BBB introduced a
battery-backed SRAM persist buffer (PB) at the same level as
the L1D cache, which is drained to PM on power loss. Due
to PB’s small size relative to caches, BBB requires a much
smaller battery than eADR [4].

Recoverability Gap

persistent $ PLP
2N\ his Paper
PoP SPoP SPoP

PoV & PoP PoV & PoP

i i i i
i i i i
i i i i
1 = I 1 i :
i | i |
| i | i
i i i |
i i ‘

@ ()

Fig. 1. Tllustrating the context of prior works (a) and the goal of this paper
(b), which covers a new recoverability gap problem.

Figure 1(a) shows the context of the works discussed above.
It shows a core, three levels of caches, the memory controller
with a write pending queue (WPQ), and PM. Point of Visibility
(PoV) is the point in which a store becomes visible to other
cores. Point of Persistency (PoP) is the point in which a store
becomes persistent. Security Point of Persistency (SPoP) is the
point in which changes to security metadata become persistent.
The figure illustrates a traditional system, with PoV, PoP, and
SPoP, differing from one another. Authors of PLP [18] pointed
out that the memory tuple has to be atomically updated, hence
the SPoP is moved up to match the PoP. On the other hand,
persistent hierarchy moves up PoP to match the PoV to close
the visibility and persistency gap.

While improving performance and programmability, persis-
tent hierarchy creates a new recoverability gap as illustrated
in Figure 1(b). The figure assumes the state-of-the-art BBB
approach that only adds PB to the persistency domain. As
PoP is moved up to near the core, a new gap between PoP and
SPoP is created. This gap affects crash recoverability of data
since data and its security metadata no longer get atomically
persisted. With the gap, post-crash recovery may yield wrong
plaintext or fail integrity verification. Hence, the goal of this
paper is to remove the gap by moving the SPoP up to match
the PoP.

Closing PoP/SPoP gap should not be done naively as it will
substantially slow down persistence. For example, if every
time a store enters the PB, security metadata is updated,
i.e. counter incremented, MAC calculated, BMT root updated
from leaf to root, then it becomes the new performance
bottleneck. Not only the latency of metadata persistence slows
down data persistence, but the volume of metadata persistence
increases substantially due to the lack of filtering by caches.

In this paper, we propose secure persistent buffers (SecPB)
and explore designs and optimizations that remove the per-
formance bottleneck. The optimizations are enabled by a key
observation: the crash recovery observer does not need to see
the cache/memory state at the time of a crash, only at the
time of recovery. Thus, there exists a time gap between a
crash and recovery where data and metadata can be made
consistent. This observation creates a performance/battery cost
trade off spectrum, where we can use an early strategy (update
all metadata as soon as data is persisted by a store), to a late
strategy (update all metadata only after a crash occurs). We
explore different design points along this spectrum and report
our findings and insights.

To summarize, the contributions of this work are:

o We propose to close the PoP/SPoP gap by using persistent
on-chip secure persistent buffers (SecPB) approach and
specify the architectural requirements to secure PM with
on-chip persistent hierarchy.

o We explore a design spectrum consisting of six secure
persistency schemes that expose the performance/battery
cost trade-offs for securing persistent hierarchies.

o We evaluate the performance of various designs and the
battery capacity required for each design, and discuss our
key findings.

The rest of the paper is organized as follows: Section II
presents the background and related work. Section III details
the security challenges and opportunities exposed with secure
persistent hierarchy implementations. Section IV discusses the
different secure hierarchy schemes and details the validity of
the schemes and the hardware architecture design. Section V
presents our evaluation methodology. Section VI evaluates our
proposed schemes, and Section VII concludes our work.

II. BACKGROUND AND RELATED WORK
A. Threat Model

Similar to prior work, we assume that adversaries have phys-
ical access to the system [12], [43], [52], [57], [73] to perform

attacks on the memory system, such as snooping [60], tam-
pering with data stored in PM [32], [55], or replay attacks [9],
[66], [74], [75]. Non-volatility of data is a much stronger
concern in PM than in DRAM-based systems as well [21],
[22], [38], as data can remain in memory for long periods
of time without power. Similar to prior work [7], [33], [35],
[74], we assume that attackers cannot directly access on-chip
resources such as caches and registers, therefore establishing
the physical boundary of the CPU as the trusted computing
base (TCB). Specifically, we assume that data moved off chip
needs to be protected, while data on chip can be read and
updated in plaintext.

B. Memory Encryption & Integrity Verification

Memory encryption provides data confidentiality for values
written in off-chip memory [8], [26], [28], [56], [69] or sent
to other processing units within the system [70]. Various
implementations, such as XTS [27] and counter mode en-
cryption [67] have been proposed and utilized in commercial
products. Counter mode encryption involves generating a one-
time pad (OTP) by encrypting a nonce counter and XOR’ing
the OTP with the plaintext value to create the ciphertext [13],
[15], [68], [76]. Since encrypted values may be susceptible to
tampering, integrity verification is required to ensure splicing
or spoofing attacks are detectable [59]. Furthermore, data,
counter, and MAC can be rolled back to their older versions,
hence the freshness of at least one of them has to be ensured,
typically by relying on an integrity tree. Data fetched from off-
chip memory must have its integrity verified when brought
onto the TCB [47], [48]. Integrity verification is commonly
provided by message authentication codes (MACs) and in-
tegrity trees, such as Bonsai Merkle Trees (BMT) [46], TEC
trees [17], [61], Merkle Trees [20], or SGX Counter Trees [5],
[15]. In this work, we use split counter-mode encryption [65]
and BMT & MAC for integrity verification.

C. Store Ordering for Persistent Hierarchies

Memory persistency models have been defined in prior
research to provide a store ordering framework to reason the
order in which data written to PM becomes durable with
respect to other stores [3], [11], [14], [16], [40]. These models
allow for programmers to reason about the correctness of
the persistent memory state with respect to a crash recovery
observer. The most conservative, intuitive, but slow is strict
persistency (SP) which requires persistency order to follow
the program order. Other more relaxed persistency models,
such as epoch persistency or buffered epoch persistency [36],
[49], [53], [54], [71] allow for a more relaxed persistency
model where stores within an epoch may persist in any order,
but are ordered across epochs. SP is often considered as
too performance restrictive. However, persistent hierarchy is
a game changer for SP as a store persists instantly as it enters
the L1D cache or persist buffer. Therefore, in this work, we
focus on optimizing for a SP model.

D. Related Work

Prior works in PM either do not consider persistent hierar-
chy or do not consider security. In the secure PM category,
many works investigated how data should be updated in a
crash consistent manner. Prior research pointed out that data
and its counter [9], [76] or data and MAC [50], [58] need
to be persisted atomically. Freij et al. [18] formally discussed
invariants required for correct crash recoverability of data. The
invariants require that a memory tuple, consisting of data,
counter, MAC, and BMT root, to be updated atomically in
the order that the persistency model specifies for data. The
work identified the BMT root update as a key performance
bottleneck. Han et. al [23] proposed methods to reduce the
performance overheads by securing data in the write pending
queue (WPQ) that resides in the MC, while other research [19]
utilized small, on-chip non-volatile caches to reduce the height
of the integrity tree. None of the works discussed above
consider a system with persistent hierarchy, which is the focus
of this paper.

In the persistent hierarchy category, prior works discussed
expanding the on-chip persistency domain to the entire cache
hierarchy, which reduces programming complexity and perfor-
mance overheads of persistency models, especially SP. Intel
eADR [51] adds all caches into the persistent domain, thus
allowing all stores to persist as soon as they access the caches.
Alshboul et. al [4] proposed battery-backed persistent buffers
(PB) to provide a low-cost method for achieving persistent
hierarchy with a much smaller battery. When applied to a
system with memory encryption and integrity verification,
persistent hierarchy creates a new recoverability gap. Closing
this new gap efficiently is the focus of this paper.

Finally, some recent research has analyzed adding security
to on-chip PM [21]. Rathi et. al [45] proposed architectures to
obfuscate or erase data stored in on-chip non-volatile cache.
These works differ from ours in their threat model and goal,
and did not address persistency and crash recovery.

III. SECPB DESIGN SPACE

In this section, we will discuss the design rationale and
design space of SecPB, our proposed architecture that ensures
secure persistent memory where SPoP is aligned with PoP,
allowing nearly-negligible strict persistency overheads while
guaranteeing crash consistency of persistent system state.

Before commencing on the discussion, we will limit the
scope of the discussion. In the persistent hierarchy approach,
the PoP and PoV are aligned right after the core, at the L1D
level. Because non-volatile caches are not mainstream yet, and
eADR requires a large battery/supercapacitor, we limit our
discussion to the battery-backed buffer (BBB) technique [4].
However, our approach is adaptable to other techniques as
well.

Figure 2(a) illustrates the BBB system, with non-volatile or
battery-backed components shown in grey. BBB adds a persist
buffer (PB) to each core. Each PB entry stores a block of data.
When a core performs a store, the store is exposed to the L1D
cache and PB simultaneously. If the block is found in the PB,

the store updates the appropriate byte/word. Otherwise, the
block is fetched and allocated in the PB and the store updates
the affected byte/word in the block. Multiple stores to the same
word or different words in the same block are coalesced at
the PB. PB is drained when it reaches a high watermark, until
sufficient entries have been drained to reach a low watermark.
If a crash is detected, all PB entries are drained to PM. PB is
considered memory-side, hence as soon as a block is updated
by a store in PB, it can be considered to have updated the
PM and persisted. Cache replacement and coherence protocol
are modified to ensure coherence between multiple PBs in
multiple cores [4].

PoV & PoP

CTR$
[BMTS |

m
Root

Fig. 2. Redesigning BBB (a) to achieve secure persistent hierarchy with our
secure persist buffer or SecPB (b).

PoV, PoP, SPoP

When SPoP is not aligned with PoP, i.e., it is at the memory
controller, the result is a recovery gap. Recovery gap prevents
crash consistency between data and security metadata because
they may be persisted at different times and may be reordered
with respect to other data persists. Therefore, our goal is
to align SPoP with PoP. Figure 2(b) illustrates our system,
which aligns SPoP with PoP. With the alignment, as soon as
a store enters the persist buffer, which makes it persistent, its
security metadata is updated and persisted. The system has
metadata caches in the memory controller (MC), e.g. counter
cache, BMT cache, and MAC cache, which may be physically
separate or unified. The BMT root is kept in a non-volatile
register in MC. The SecPB is modified from PB by adding
multiple new fields (more details later) in each entry. SecPB’s
controller co-ordinates the persistence of security metadata
with respect to data, to ensure crash recovery correctness.

A. Crash Recovery Correctness Requirements

The primary obstacle to aligning SPoP with PoP is satisfy-
ing the two correctness invariants required by crash recovery
of secure persistent memory, specified in PLP [18]. We will
briefly summarize them to provide context for our subsequent
discussion. The PLP paper defines a memory tuple as con-
sisting of data and all security metadata. For split counter
and BMT schemes, the tuple consists of (C,~, M, R) where
C representing data ciphertext, v the counter for the block,
M the MAC, and R BMT root. Two invariants are required
for correct crash recoverability of a secure persistent memory.

The first invariant requires that the entire tuple updated and
persisted in order to consider data to be persisted. That is,
counter must have been incremented (and persisted), MAC
must have been recomputed (and persisted), and BMT root
updated (and persisted), for data to be considered to have
persisted. If any of the tuple is not updated and persisted, crash
recovery may fail, either the correct plaintext is not recovered
and/or integrity verification fails during recovery.

The second invariant (persist order invariant) deals with
the persist ordering as defined by the persistency model. If
the persistency model specifies that two stores a; and ao are
ordered with respect to persistency, i.e. oy — a2, then all
their memory tuple components must be persisted in the same
order, i.e. (Clv Y1, Ml, Rl) — (CQ, Y2, MQ, Rz) If the persist
ordering of any component is not followed, crash recovery
may not be able to recover to a consistent state between the
two stores.

These two invariants make it very challenging for aligning
SPoP with PoP. Consider two stores a; and ao that go out
from the core’s store buffer to the persist buffer. Without
considering SPoP, they can persist instantly as they enter the
persist buffer. However, with SPoP aligning with PoP, all
security metadata relevant to the two stores must be updated
and persisted as well, in the same order as the persisting of
the two stores. To follow the two crash recovery invariants,
this means that as «; is persisted, we must update and persist
its counter, MAC, and BMT root, before we can persist as.
This means that high-latency operations, especially BMT root
update which may take hundreds of clock cycles, have now
become a part of the critical path of data persist. Therefore, a
naive SecPB design incurs a very formidable new performance
bottleneck.

B. Opportunity for Optimizations

Building on BBB, our naive strategy would be to straight-
forwardly align SPoP with PoP, as illustrated in Figure 3a. The
figure shows six stores sorted from oldest (St A) to youngest
(St F). At this point, St A through St E have been allocated
in the persist buffer (PB), hence they have reached PoV and
PoP. Furthermore, all memory tuples, including counter, MAC,
and BMT root, have been updated, hence SPoP has also been
reached. The PB is about to drain block A to the PM. We
refer to the gap between stores that have been drained and
PoV/PoP as the draining gap. It is this gap that has to be
covered by the battery or supercap. Suppose now there is a
crash, and the execution stops. The battery drains the PB and
as a result, draining catches up to the PoV/PoP, as illustrated
in Figure 3b. The state seen by the crash observer includes the
persistent memory values that result from St A through St E.
We refer to this strategy as the early strategy, where SPoP is
achieved instantly without any delay as each store enters the
PB. We have discussed that the strategy may be prohibitively
expensive, but draining is as simple as with a regular PB.

We make an observation that in this architecture, the crash
observer is only allowed to see the persistent state as defined
by the PoV/PoP, and not as defined by the execution status of

stores or the draining status of stores from PB. In Figure 3a,
stores that have reached the PB are considered to have
persisted and their effect is reflected in the persistent state,
while stores that have not reached the PB are not considered to
have persisted hence their effect on the persistent state should
not be visible to the crash observer. With this observation,
if the battery is enlarged, we may be able to let SPoP run
behind the PoV/PoP, and even behind draining. We refer to
this as late strategy, which is the foundation of our approach.
The late strategy is illustrated in Figure 3c. In addition to
the draining gap, the late strategy has another gap that we
refer to as security synchronization (sec-sync) gap, which is
the gap between draining and security metadata update and
persistence. In the figure, blocks D and E have not been
drained, but blocks A, B, and C have been drained. As blocks
A, B, and C are drained, they reach the memory controller
(MC), at which time the memory tuple is updated, e.g.
the blocks are encrypted, their counters incremented, MACs
generated, and BMT updated from their leaves to the root.
Therefore, SPoP is lagging behind draining, creating the sec-
sync gap. When a crash occurs, now the battery needs to cover
both the draining gap as well as the sec-sync gap. It now takes
more time until draining of PB is completed, and any blocks
drained to have their memory tuples updated and persisted.
After sufficient time, though, the resulting observable state is
the same as before (Figure 3b).

Observable state
StE StD StC StB StA

pov’fpop Observable state
& SPoP

@ (b)

SecPB - naive/early strategy
StF StE StD StC StB StA StF

’>T t

<amdraining

t

T(draining gap
PoV, PoP
& SPoP

SecPB - hybrid strategy
StE StD StC StB StA

SecPB - late strategy

StF StE StD StC StB StA StF
t

t

T draining gap T sec-sync gap T
<mSPoP/2

T draining gap T sec-sync gap I

<amSPoP PoV, PoP <Juidraining

& SPoP/1

PoV, PoP <~udraining

(©

Fig. 3. Contrasting the early, late, and hybrid security metadata persistence
strategies.

While the gaps are being closed, one question is what the
crash observer should be allowed to see. Since the persistent
memory state is not consistent until the gaps are closed, the
system must either employ a blocking policy (it prevents the
crash observer to see the system state), or a warning policy
(it warns the crash observer to wait until the persistent system
state reaches crash consistency).

Both the blocking and warning policies assume that a crash
can be detected, which applies to loss of power, hardware
failures, or some system software failures. A natural question
that arises is how an application crash should be handled.
First, an application crash can also be detected if it incurs
exceptions such as segmentation fault, divide by zero, single-
stepped debugging, etc. Once detected, we can handle the

crash in two ways. The first choice is drain-process policy,
where the PB only drains and sec-sync PB entries for data
belonging to the application process. If another process runs
in a different thread context in the same core, it may have
entries in the same PB. Its PB entries are not drained. The
drain-process policy requires the PB to be tagged with address
space identifier (ASID) for each process, which increases the
PB size and complexity slightly. A second choice is drain-all
policy, where the PB drains and sec-sync all entries regardless
of which process the entries belong to. This policy may
unnecessarily drain and reduce coalescing opportunities for
other processes, but removes the need to tag PB entries with
ASID. Furthermore, the lack of behavior isolation may open
up a side channel opportunity that the attacker can exploit.
However, addressing side channel is beyond the scope of
this work. Furthermore, a secure application should not run
in the same core as a non-secure application to begin with,
otherwise many other side channels exist beyond the PB.
Considering that application crashes are rare events, we choose
the drain-all policy. As with system crashes, to ensure that the
crash observer only sees consistent state, we can handle the
application crash in the same way, i.e. blocking or warning.
Delaying observation is feasible in this case considering that
PB is expected to have a small number of entries, e.g. 64
entries, and can be high- and low-watermark thresholds can
be selected to provide an upperbound of the number of entries
to drain.

One final observation that we make is that Figure 3a and
Figure 3c show two opposite ends of the spectrum of early
and late security metadata persistence. A question arises of
what can be designed in between them. In other words,
some security metadata update and persistence can be done
early while others late. This hybrid strategy is illustrated in
Figure 3d, where SPoP is split into the early part done prior
to crash (SPoP/1) and the late part done post crash (SPoP/2).
The implication for the hybrid design is that it can occupy the
space between early/late in terms of critical path delay to data
persistence and battery size, allowing us to fine tune the design
in the trade off space. The more work done prior to crash, the
higher the performance overhead during normal execution but
the smaller the battery needs to be.

IV. SECPB ARCHITECTURE DESIGN

In Section III, we discussed the eager, late, and hybrid
strategies for updating and persisting security metadata, which
define the design space that we can explore. In this section,
we identify the design points that exist in the space, and
analyze each point’s implications on the performance and
energy requirements.

Figure 4 shows the steps for security metadata update for a
given store, showing both event trigger and data dependence
relations. After a store is committed, it is released into the L1D
cache and PB in the order specified by the memory consistency
model. This event triggers a counter to be incremented (and
persisted in the SecPB). Afterward, the counter is used to
generate a one-time pad (OTP), and updates the BMT from

committed IE arly (E)
; COBCM
counter iLate (8]
incremented IE
OBCM
oTP IL
enerated IE
BCM
BMT IL
updated IE
CcM Legend

Data
dependence

ciphertext IL
enerated IE
M
MAC IL
generated IE
IL

Fig. 4. Security metadata dependency graph within a secure environment
which demonstrates the design space for SecPB showing early (NoGap), late
(COBCM), and hybrid strategies (all others).

Event
trigger

NoGap

leaf to root. The OTP is XOR’ed to generate the ciphertext,
which is used to generate MAC. Any combination of these
steps can be performed early (at store persist time) or late
(post crash).

The most eager design is NoGap, which eliminates the
sec-sync gap entirely by updating all security metadata and
persisting them early. NoGap adheres with the persist order
invariant constraint strictly. Other schemes are represented by
letters indicating which components are performed at post-
crash time, so the longer the name, the more it performs late.
The next one up is M design, which performs everything early
at store persist time, except for computing the MAC. This
improves over NoGap in two ways. First, it reduces the time
to persist a store by the latency of MAC generation. However,
the reduction may not be much if the latency is already hidden.
Second, it reduces work (and hence power consumption) by
generating a MAC once for a dirty block. For example, if a
word is written multiple times or multiple words in a block
are written by different stores, while the block resides in PB,
the MAC is only generated once when the block is drained.
In contrast, with NoGap, each store requires the MAC to be
generated while the block is in SecPB.

Design CM performs the actual encryption and MAC gener-
ation at post crash time. Note that in counter mode encryption,
ciphertext generation is performed through bitwise XORing
the plaintext and the OTP, hence it only takes one clock cycle.
Thus, we expect CM to perform similarly to M in terms of
performance. However, it still benefits from less work due to
avoiding ciphertext generation until the block is drained from
PB.

The next model is BCM. It moves BMT root update to
post crash. Updating the BMT root from leaf incurs high
latency commensurate with the number of tree levels, even
if accessing each level in the tree hits in the metadata cache.
Moving it to the post-crash time would substantially remove
the bottleneck for data persist, while the benefit of coalescing
reduces the total number of BMT root updates, and avoids

collisions between two stores updating common ancestors in
the BMT. We expect BCM to substantially outperform CM.

The next model is OBCM, which adds OTP generation into
the post-crash time. Due to its latency lower than BMT update
and that it can be performed in parallel with BMT update, we
do not expect much performance benefit from it, but we expect
a reduction in the number of times OTP is generated for each
block.

The final model is COBCM, which delays everything, even
counter increment, to the post crash time. Over OBCM, we
expect COBCM to be superior in eliminating all runtime
metadata performance overheads from the critical path.

All the designs above incur trade offs in performance over-
heads, coalescing opportunities for security metadata update,
energy, and battery cost requirements. This requires detailed
evaluation that we will present in Section VL.

A. Optimization for NoGap, M, and CM

We note that NoGap, M, and CM, all recalculate security
metadata as soon as a store enters the PB, hence they perform
many security metadata generations for a single block due
to multiple stores to it. The higher the degree of temporal
and within-block spatial locality, the worse NoGap, M, and
CM perform with respect to lazier schemes. Here, we identify
one optimization based on the different ways various security
metadata types are computed.

For split counter and BMT scheme, security metadata can
be divided into data value dependent ones (data ciphertext
and MAC) that are computed based on the value of data
plaintext, versus data value independent ones (counters, OTPs,
and BMT) that are computed without relying on the value
of data plaintext. Data value dependent metadata must reflect
each change to the plaintext by a store, but this is not the case
for data value independent metadata.

Consider that for counter-mode encryption, a counter only
needs to be incremented when a data block is written back
to memory to provide counter freshness. In our earlier de-
scription, suppose two stores «; and cvg affect the same block
and require persistency ordering, i.e. a3 — «o, then all their
memory tuple components must be persisted in the same order,
ie. (C1,m,Mi,R1) — (Cq,72, Ma, Ry). However, this is
assuming that the crash recovery observer is allowed to see
the persistent state between the two stores. If, however, both
stores are accepted by the SecPB, the crash recovery observer
is only permitted to see the state after the second store, and
not between the two stores. Hence, work related to updating
and persisting security metadata can be combined between the
two stores. Note that this is also the case when there are writes
to other blocks between these two stores, e.g., St A (counter
& BMT update) — St B (counter & BMT update) — St A
(no update), as the observer only sees the state after SecPB is
drained.

In particular, the counter for the block can be incremented
once (instead of once per store) when the block first becomes
dirty. That is, on the first store (ay), we could increment
its counter in the SecPB, but not increment it further in

subsequent stores (including the second store «s). Further-
more, since OTP and BMT root are updated only when the
counter is incremented, this observation can extend to them
as well, hence the OTP can be generated once and BMT root
updated once. This optimization is especially beneficial for
the high-latency BMT root update operation. Furthermore, this
optimization avoids incrementing the counter frequently for a
single dirty block frequently, delaying counter overflow which
requires page re-encryption [46].

The optimization above can be applied to all the models
except COBCM, which already performs all metadata up-
dates late. But we expect it to be especially impactful for
NoGap/M/CM, which without the optimization, would update
BMT root often.

B. SecPB Architecture Design

SecPB architecture depends on which design we choose
from the design space spectrum. They differ in the amount of
information that need to be tracked; designs with late strategies
require tracking less information, resulting in a simpler design.

Our baseline architecture assumes separate metadata caches
(e.g. counter cache, BMT cache, and MAC cache), and
Asynchronous DRAM Refresh (ADR) write pending queue
(WPQ) [34]. This architecture enables baseline strict persis-
tency (SP) model discussed in [18]. Our architecture assumes
that SecPB as the sole battery-backed structure in the memory
hierarchy.

Figure 5 shows the SecPB architecture. SecPB connects
directly to the core, accepting stores released from the core
store buffer, and to the memory controller, which contains the
cryptographic engine that performs encryption, MAC compu-
tation, integrity verification, and caches security metadata. The
SecPB has a controller that relies on a finite state machine
(FSM) to track the status of security metadata persistence,
and a table where data and security metadata are tracked for
persistence purpose. Each entry contains the plaintext of data
block (Dp, 64B). Many things need to be tracked, hence each
entry further contains the pre-computed OTP (O, 64B), data
ciphertext (Dc, 64B), counter (C, 8 bits), BMT root update
acknowledgement (B, 1 bit), and MAC (M, 512 bits). Each of
the fields has a valid bit to indicate whether the field contains
valid updated value or not, except for the BMT field which
only indicates whether BMT root (kept in the MC) has been
updated. Different designs need to track different information,
hence not all the fields are needed for all designs. The table
in the figure shows which fields are kept for different designs.

The mechanism works as follows. After a store retires, it
accesses the L1D cache @. In parallel, the store also accesses
the SecPB @. If both hit, the store updates the value in both
the SecPB and L1D cache. If both miss, the block is fetched
and allocated in both the PB and L1D cache. If one hits and
the other misses, the block is copied to the other, and then
the case is handled in the same way as both hit. If the block
is found in the L1D without sufficient state to write (e.g. S
in MESI), then the store stalls until invalidation is posted and
acknowledgments from other cores are received.

Design
NoGap
M
CcM
BCM
OBCM
COBCM

AN ES

Dp O Dc C B M

SN g
SIS S S S|o

ANENEN =Y

SISNIS[K|o

SISSSNNIE

SecPB..~"

9 089% 4___,. Crypto Engine

© | vo o |
O Thvrs @

LiDH L2 HiLc HWPQ

6
AES

BMT
Root

Fig. 5. Architectural design with per-core SecPB. The top left segment shows
the SecPB fields which are populated eagerly for each store based on the
scheme, and top right shows a detailed view of the SecPB. The bottom
segment shows the dataflow of a persisted datum.

If the security metadata is not found, it is fetched from
metadata caches in the MC @. Then, depending on the design,
the block counter may be incremented, OTP, ciphertext, MAC,
may be computed, and BMT root may be updated @. Valid
bits are used to track which metadata has been updated in
the PB. When all valid bits are set, then the persist of the
security metadata is considered complete, after which the entry
is drainable. For the NoGap design, at the completion of
persist, the PB issues an unblocking signal to the store buffer
to indicate that it can then accept a new store. For COBCM, as
soon as a store updates a plaintext block in the PB, the PB can
accept a new store. For other designs, the unblocking signal
is raised after any “early” memory tuples have been updated.
If an entry is drained from the PB, either due to eviction or
due to a crash, the MC completes the update of all memory
tuples in the metadata caches @. Then, they are flushed to the
PM @.

C. Cache Coherence and Inclusion

a) Data and Metadata Cache Inclusion: Since dirty
blocks are guaranteed to be drained from SecPB to reach the
PM, they no longer need to be written back when evicted
from the last level cache (LLC). Thus, a dirty block from
the persistent memory region is allocated in the cache with
a special dirty state; its eviction from the LLC is silently
discarded similar to a clean cache block. Similarly, some
designs allow security metadata to reside in two locations
(SecPB and metadata caches). We handle this case similarly
with data, a special state or flag indicates a dirty block in
the metadata cache should be silently discarded if evicted.
Furthermore, if a security metadata is drained from the SecPB,
the block containing the metadata in the metadata cache is
updated and or invalidated for coherence, ensuring that a future
metadata cache miss will fetch the updated metadata value.

b) Memory Consistency: If strict persistency is enforced
for relaxed memory consistency models, the core store buffer

also needs to be battery backed, as encountered in [4]. Such a
case may arise if the visibility order of the stores to other
threads is not important, but the persist order of stores is
important for crash consistency. In this case, stores may reach
the SecPB out of the program order due to relaxed memory
consistency models. The program order of stores is only kept
in the store buffer. The implication is unique to our SecPB in
that security metadata needs to be updated in the SecPB in
program order. A simpler solution, however, is to use a lazier
approach, such as the COBCM design. In that case, security
metadata update can be performed out of the program order of
stores, removing the need to coordinate with the store buffer.

c) Cache Coherence Issues: Metadata caches are usually
not involved in coherence because they are beyond the caches
and exist on the memory side, where no replication across
cores is allowed. However, with some of our early schemes,
metadata may also be kept in the SecPB, and each core
has its own SecPB. Thus, care must be taken not to allow
the replication of metadata across cores, otherwise coherence
issues arise. To avoid that, the metadata caches are tagged with
a directory that indicate which SecPB the metadata may also
reside in. If there is a SecPB miss on another core, the entry
is migrated from the current SecPB to the missing SecPB and
the directory is updated.

Since SecPB writes occur in parallel with L1 data cache
writes, data is located in both the data cache and the SecPB.
Therefore, there are two situations to consider for data coher-
ence. First, if a requesting core issues a read request on an ad-
dress that is located in another core’s SecPB, the datum is sent
from the owner’s cache and set to a shared state. The SecPB
entry would then be flushed to PM and the request is serviced
in parallel, persisting both the most recent versions of the data
and metadata while sending the latest data to the requesting
core. Second, if the requesting core issues a write request, the
SecPB entry would be migrated to the requesting core. The
overheads of the write rely on the metadata generation scheme
assumed. Eager schemes (M, NoGap) would incur overheads
to generate the ciphertext and MAC but the migration incurs
minimal additional security overheads. The reason is that
the requesting core would not require a counter, OTP, or
BMT root update as the data-independent security metadata
has already been updated. When the migration is executed,
the directory is updated to indicate where the entries reside.
Therefore, migration avoids replication and avoids having to
keep coherence state for blocks in SecPB.

V. EVALUATION METHODOLOGY
A. Simulation Configuration

We evaluate our secure persistency schemes and the SecPB
using a cycle-accurate simulation model with Gem5 [10] with
the system parameters shown in Table 1. The baseline and
schemes evaluated are listed in Table II. We assume battery-
backed SRAM for SecPB and the WPQ and that they are
the only battery-backed persistent structures in the persistent
hierarchy. The BMT root is securely stored and persisted in
a special-purpose on-chip register and never leaves the TCB.

We assume speculative integrity verification in all our models,
similar to [33]. In our simulation, we assume separate volatile
metadata caches for counter, BMT nodes, and MACs.

We study the performance overheads and battery require-
ments of the design spectrum discussed in Section IV. To
better understand the source of overheads, we conduct a study
that varies the SecPB capacity to identify the impact on
performance and the energy source. To explore the impact of
the full BMT height on the SecPB schemes, we compare &
augment the SecPB implementation with the state-of-the-art
BMF [19] and analyze the source of performance overheads.

To evaluate the performance of our proposed schemes
and SecPB, we use 18 representative benchmarks from
SPEC2006 [24]. All models are fast-forwarded to repre-
sentative regions and the next 250 million instructions are
simulated.

TABLE 1
SIMULATION CONFIGURATION
Processor

CPU 1 core, OO0, x86_64, 4.00GHz
L1 Cache 64KB, 8-way, 64B block, access: 2 cycles
L2 Cache 512KB, 16-way, 64B block, access: 20

cycles
L3 Cache 4MB, 32-way, 64B block, access: 30 cycles
WPQ 32 entries

Volatile Metadata Caches
Ctr Cache 128KB, 8-way, 64B block, access: 2 cycles
MAC Cache 128KB, 8-way, 64B block, access: 2 cycles
BMT Cache 128KB, 8-way, 64B block, access: 2 cycles
SecPB

Size {8,16,32,64,128,512} entries (default 32)
Entry size 260B
Access latency 2 cycles
Drain threshold: 75%

Security Mechanisms
BMT 8 levels
MAC Latency 40 processor cycles [18], [33], [55]

NVM

Memory 8 GB PCM, 1200MHz

Write queue: 128 entries, Read queue: 64

entries

Read: 55ns, Write: 150ns [18], [19], [34]

B. Methodology for Battery Capacity Estimation

To assess the battery capacity cost to support SecPB, we
apply the values from Table III which were derived from [4].
We first estimate the draining cost of our various strategies
and then estimate the battery capacity required to support all
the strategies discussed thus far. To understand the energy
overheads of our schemes, we compare our architecture to
BBB and secure eADR (s_eADR), which we assume is an
eADR-enabled system with data encryption and BMT integrity
protection.

There needs to be enough energy provisioned to securely
persist all dirty cacheblocks and SecPB entries in s_eADR
and SecPB, respectively. Therefore, we conduct our analysis

TABLE II
EVALUATED SCHEMES
Name Scheme
bbb (baseline) | Battery-backed buffer from [4] with no
security mechanisms implemented
SP SP scheme from [18] with SPoP in MC
COBCM Only data write to SecPB
OBCM Update counter
BCM Update counter, OTP
CM Update counter, OTP, BMT root
M Update counter, OTP, BMT root, ci-
phertext
NoGap Eagerly update all metadata

assuming that all cachelines in the hierarchy are dirty and a full
SecPB and the remaining metadata needs to be generated and
persisted in PM. This is important because missing any mem-
ory tuple update to even one dirty cacheline/entry may results
in integrity verification failures during recovery. To ensure that
all memory tuples are updated correctly, we assume the worst-
case situation for each datum that needs to be persisted. For
s_eADR and COBCM, the following assumptions are made:

1) All persisted data blocks are considered dirty and need
their security metadata updated.

2) No two data blocks share a counter encryption page (EP)
and all counter cache accesses miss.

3) There are no overlaps in BMT update paths between
updates and all BMT cache accesses miss. Every update
must fetch missing nodes from PM and compute the
hash.

4) MACs are updated in the MAC cache during runtime.
If a crash occurs, the MAC does not need to be fetched
from PM but must be computed.

5) OTPs for ciphertext must be generated.

6) The ciphertext XOR and counter increment are single-
cycle logical operations and the energy required is
negligible.

We chose the smallest battery capacity that is capable of
providing the energy required to follow all the assumptions
listed. Assumptions (1) and (2) are very conservative, as the
metadata caches (MDC) would contain a subset of the counters
and BMT nodes. Data access patterns complicate estimating
the probability of overlapping BMT updates, especially as
the probability increases closer to the root. However, this
represents an extreme scenario that needs to be considered.
For both SecPb and s_eADR, we estimate that the energy
required to move data from MC to PM is similar to moving
data from PM to MC. This is We look into two battery
technologies, super capacitors (SuperCap) [72], and lithium
thin-film batteries (Li-Thin) [39], which have energy densities
of 10~*Wh and 10~2Wh respectively.

(11, [2]
SecPB Energy Draining Estimation The draining cost of
securely persisting SecPB entries depends on the strategy
implemented. We compute the draining cost of SecPB entries
and security mechanisms from Table III. The estimated cost

TABLE III
ESTIMATED ENERGY COSTS OF DATA MOVEMENT AND SECURITY
METADATA GENERATION.

Data Movement Operation Energy Cost / byte

Accessing data from SRAM 1pJ [37]
Moving data from SecPB to PM 11.839nJ
Moving data from L1D to PM 11.839n]
Moving data from L2 to PM 11.228n]
Moving data from L3 to PM 11.228nJ
Moving data from MC to PM 11.228nJ)

Metadata Generation Operation
SHA-512 for BMT node computation
AES-192 for data encryption
SHA-512 for MAC computation

Energy Cost / byte
79.29n] [63]

30nJ [41]

79.29n]) [63]

of accessing and draining data from the SecPB to the MC
is assumed to be equal to the energy required to move data
from the L1 cache to the MC. We also assume the energy to
access cachelines in the metadata caches (MDC) to be equal to
accessing data in the L3 cache. This is a conservative estimate
since the MDC are smaller than the L3 cache, however, this
assumption affects both the analysis for SecPB and s_eADR
and so does not significantly impact our final analysis. For
the NoGap, M, and CM schemes, we do not pipeline MAC
or BMT root updates to more accurately study the overheads
imposed by SecPB and the various schemes.

As more metadata is eagerly fetched and updated for each
scheme, the draining energy cost is reduced. The energy
required to support COBCM must be sufficient to move
all SecPB entries (64B) to the WPQ, fetch and increment
counters, generate the OTP, fetch and update BMT nodes,
and generate the ciphertext and MAC. As metadata is eagerly
generated, the draining cost is reduced. For example, for CM,
we remove the energy costs incurred by the counter fetch,
OTP generation, and BMT updates. The battery must be large
enough to not only drain entries from the SecPB to the MC
but also to complete the current SecPB write and metadata
generation in the event a crash occurs during a pending update.

Secure eADR Energy Draining Estimation The draining
energy required for s_eADR depends on the level of cache
that a block needs to be drained from. As stated in assump-
tion (1), all persisted data blocks must be considered dirty
and have their security metadata updated. This means that
the memory tuple for all cachelines in s_eADR’s persistent
hierarchy must have it’s metadata generated according to the
assumptions stated. This is a conservative estimate, as cache
clusivity and store coalescing may reduce the total number
of cachelines that need to be updated. Furthermore, we do
not assume any watermarking scheme or optimized security
metadata generation schemes for s_eADR, which could reduce
the battery capacity as well.

VI. EVALUATION & RESULTS

A. Performance Summary

The overall performance results are shown in Table IV
(more detailed results will be discussed later), which shows

the slowdown ratios of our different models compared to
the insecure BBB baseline. The performance overheads of
each model coincided with the eagerness of security metadata
updates for each write. The best performing model, COBCM,
removes all security metadata updates from the critical write
path and incurs an average overhead of nearly-negligible 1.3%
compared to BBB without any security mechanisms. This is an
impressive result as it means that crash consistency, memory
encryption, and integrity verification, can all be achieved
simultaneously with very small overheads. COBCM incurs
the occasional backflow that stalls the core when SecPB is
full. OBCM demonstrates a slightly higher overhead of 1.5%.
It needs to fetch counters early and hence suffers from the
occasional counter cache misses. BCM shows much higher
overheads averaging 14.8%, as it adds OTP generation latency
to each new SecPB entry allocation.

TABLE IV
PERFORMANCE OVERHEADS FOR ALL MODELS WITH 32-ENTRY SECPB.

[Model [Slowdown(%) |

COBCM 1.3%
OBCM 1.5%
BCM 14.8%
CM 71.3%
M 73.8%
NoGap 118.4%

The most significant performance difference is going from
BCM to CM (71.3%), where BMT root update latency is
exposed to the critical path of allocating a new SecPB entry for
a new store (subsequent stores do not incur root updates). The
next model M performs slightly worse, with average overheads
of 73.8%. The NoGap model suffers the highest performance
degradation with 118.4% average slowdown.

B. SecPB Performance

To understand the source of the performance overheads
of our models, we measured the number of SecPB persists
per thousand instructions (PPTI) and the average number of
writes per SecPB entry (NWPE). We will now discuss them,
followed by analyzing the impact of the data value independent
coalescing optimizations on BMT updates compared to prior
art.

Figure 6 shows per-benchmark performance overheads for
all our models with a 32-entry SecPB, normalized to the
insecure BBB baseline.

With NoGap, we observed a high correlation between
the PPTI and SecPB write locality of workloads and the
performance overheads. For example, gamess has a PPTI of
47.4 and NWPE of 2.1, which indicates that for every 2.1
SecPB writes, the 8-level BMT is updated from leaf to root
(8 x40 = 320 cycles.) A MAC for each SecPB write would be
generated, also consuming 40 compute cycles. The estimated
IPC is 320x(47.4}g.010)+4()x47.4 = 0.11, which is very close
to the actual IPC of 0.13, confirming our results. The actual
IPC is higher because of the generation of several MACs is
overlapped with BMT updates for new SecPB entries.

@EnoGap @m [Ocm Ebcm mobcm B cobcm

6
20.6j(| 18.2 7.8
05 183
£
=
84
5
g H
%3
w
3
N
52 - l
£
S
21,
0, 111
B8z ifiiEREELEEILEEG
© s g = 9 s > a £ § @
© 3 S 5 E i £ g3 g€ 2 3 E
2 3 w S 2 2 @ N @
8 2 o
o =
Fig. 6. Execution time of 32-entry SecPB normalized to BBB model.

By delaying MAC generation until a SecPB drain, the M
model significantly improves the performance of memory-
intensive workloads over NoGap: 20.6% overall reduction in
execution time, but up to 51.6% for povray and 37.2% for
astar. povray has very high PPTI of 38.8 and NWPE of 17.6,
hence MAC generations are substantially cut down with the
M model.

The CM model performs slightly better than the M model,
dropping the average execution time by 2.5%. Delaying the
ciphertext generation benefits more write-intensive workloads,
such as gamess (12.2% reduction), due to all data value-
dependent metadata being removed from the critical write
path. With CM, the overheads observed stem from constraining
the system to one in-flight BMT update. The data value
independent metadata coalescing reduced the overheads and
will be explored further later in this section.

The BCM model is the first model in the design spectrum
that removes the BMT root update from the critical write
path. We observed a massive performance improvement, with
average execution time reduced by 56.5%. This is especially
pronounced in gamess, where the overheads are reduced from
18.2x to 3.1x. Similar to CM, NWPE now takes precedence
in this model to reduce the total number of OTPs generated.
The rate of reduction follows the BMT root update reduction
seen in Figure 8.

OBCM removes the last cycle-intensive security metadata
mechanism, OTP generation, from the critical path. Overall,
the performance overhead observed is only 1.5% over the BBB
baseline. The source of the overhead stems from the SecPB
access latency being incurred twice for new SecPB entries
before unblocking the L1D: one to write the data block and
the second to check the counter valid bit.

The final model, COBCM, is the highest performing with
an overall overhead of 1.3%. Overall, the performance of
workloads tested nearly match the BBB performance. This is
attributed to the high watermark mechanism draining SecPB
entries to prevent stalling the L1D to drain entries. Some write-
intensive benchmarks such as gamess suffer higher overheads,
e.g., 9.6%. The write frequency and low spatial locality

10

reduced the efficiency of the high watermark scheme.

To showcase the energy source requirements of SecPB and
s_eADR, the last two columns in Table V report the ratio w.r.t.
the footprint area of a client-class core [1], [2] (a 5.37mm?
footprint). We assume a cubic battery shape and deduce the
footprint area from the volume. The areas need for s_eADR
are substantial: assuming SuperCap technology, the battery
required would be 4459% the size of a core, while a Li-Thin
source would be 206.9% of the core area. In contrast, the
battery source for COBCM requires only 53.6% of the core
area for SuperCap and 2.5% for Li-Thin.

TABLE V
ESTIMATES OF THE SIZE OF THE ENERGY SOURCE NEEDED TO
IMPLEMENT ALL MODELS WITH A 32-ENTRY SECPB COMPARED TO
SECURE EADR. VALUES SHOWN ARE PER-CORE.

System Size/Volume (mm?>) | Ratio to Core Area(%)
SuperCap [Li-Thin | SuperCap | Li-Thin

COBCM 4.89 0.049 53.6% 2.5%
OBCM 4.82 0.048 53.1% 2.5%
BCM 4.72 0.047 52.4% 2.4%
CM 0.73 0.007 15.1% 0.7%
M 0.67 0.006 14.2% 0.6%
NoGap 0.28 0.003 7.9% 0.4%
s_eADR 3,706.00 37.060 | 4459.6% 206.9%
BBB 0.07 0.001 3.16% 0.2%
eADR 149.32 1.490 524.1% 24.3%

C. Draining Cost Comparison

To determine the draining costs of our SecPB and secure
eADR, we estimate two energy source types, SuperCap [72]
and Li-Thin [64], and apply the analysis as discussed in
Section V. Table V shows the estimates needed for the
active energy source required to support SecPB across all the
models discussed. We include energy results for BBB [4] and
eADR without any security support to compare the additional
battery capacity required to support SecPB. eADR requires
a capacity of 149.32mm? for SuperCap and 1.490mm? for
Li-Thin, 2500x larger than the energy source required for
BBB. We observe a similar trend when comparing secure
eADR (s_eADR) to SecPB. s_eADR requires a battery source
of 3,706mm? for SuperCap and 37.06mm? for Li-Thin. The
model that requires the largest energy source, COBCM, with
SecPB requires 4.92mm? for SuperCap and 0.049mm? for Li-
Thin. This represents a 753 x decrease in the required battery
capacity to support SecPB compared to s_eADR.

As more security metadata is eagerly generated, the max-
imum battery capacity required is reduced. We observe a
significant drop in the battery required between the BCM
and CM model by 6.5x for SuperCap and 6.7x for Li-Thin.
Since the BMT root update is no longer delayed until after a
crash, the intermediate BMT nodes do not need to be fetched
or computed, therefore reducing the total energy required.
The NoGap model requires the smallest battery amongst the
models proposed, as enough energy needs to be provisioned
for one memory tuple update and draining SecPB entries to

the WPQ, with only 0.36mm? for SuperCap and 0.003mm3
for Li-Thin.

Overall, the best solution in the performance-battery size
trade off space depends on the cost and form factor limi-
tations for the supercap/battery. COBCM is clearly superior
performance wise, and the cost of supercap/battery is still
substantially smaller than eADR, but much larger than BBB.
The budget-conscious solution may be CM, with much smaller
cost for supercap/battery but also much larger slowdown
(71.3% on average).

TABLE VI
ESTIMATED SUPERCAPACITOR OR BATTERY CAPACITY FOR VARYING
SECPB S1ZES FOR COBCM AND NOGAP MODELS.

. COBCM NoGa

SecPB Size SuperCap [Li-Thin | SuperCap | lI)_,i-Thin
8 1.33 0.013 0.08 0.001

16 2.52 0.025 0.14 0.001

32 4.89 0.049 0.28 0.003

64 9.63 0.096 0.55 0.006

128 19.12 0.191 1.10 0.011
256 38.11 0.381 2.18 0.022
512 76.10 0.761 4.35 0.044

D. SecPB Size Impact

To better understand the impact of SecPB design on our
models, we vary the SecPB capacity and measure the perfor-
mance overheads and battery capacity. We choose CM because
the observations apply to NoGap, M, and BCM as well. We
vary the SecPB size from 8 to 512 entries, and show the
results in Figure 8. As expected, the larger the SecPB, the
coalescing opportunity of BMT root updates increases since
SecPB entries are drained less frequently. A 8-entry SecPB
reduces BMT updates to 12.7%, which demonstrates that even
with a small capacity the BMT coalescing optimization is
effective. A 512-entry SecPB capacity reduces the number of
BMT updates further to 1.8%.

Espb8 MWspbl6 [spb32 spb64 @spb128 M sph256 M spb512

16 2.9
214 20.67]
£
c12
2
510
o
28
g6
=
4
;
* o nim | i
0*5$Ea¥855t8t3t>xmon=
Fs0 8 EEESTIEEELS S EEES
“;ﬁgogE = € S 2 o< 8 5 E
2 3 w ¥ £ < o 8 s v a g
Q o0 =3 oo
© 2
o =
Fig. 7. Execution time of various SecPB sizes assuming a CM model.

An 8-entry SecPB incurs overheads of 112.3% while the
512-entry SecPB incurs overheads of 24%. In general, this
observation was true for workloads that were sensitive to

11

the SecPB size. Some workloads, such as bwaves, does not
observe a reduction in BMT root updates as the capacity
increased. This is due to minimal changes in NWPE as the
SecPB capacity varies. Write-intensive workloads such as
gobmk observes continued reduction of performance overheads
as the SecPB capacity and NWPE increases. The increased
SecPB capacity reduces the possibility of thrashing, where
cache blocks drain due to the high watermark being reached
are written to the SecPB again and need to update the BMT.

However, the performance benefit of the increasing SecPB
capacity reaches a diminishing return with 32 or 64 entries.
When also considering the cost of a larger battery, the return
is not worth it. Table VI shows the impact of increasing the
SecPB size for the COBCM and NoGap models, representing
the largest and smallest capacity required to support SecPB. A
larger SecPB increases the battery capacity even further if the
BCM, OBCM or COBCM models are utilized, as the energy
required increases in order to fetch and update BMT nodes
for each SecPB entry. Therefore, the BMT root update has
not only been exposed as a performance bottleneck but as an
energy bottleneck as well. Therefore, we use 32 entries as our
default SecPB size. Next, we will study how to reduce the
performance impact of the BMT root update.

Hspb8 @Espbl6 [spb32 mspb64 MEspb128 M spb256 M spb512
70
X

=60

S50

T

(7]

& 40

30

20

10
0

ate

©

up

m

BMT Roo

astar
bwaves
cactusADM ==
gamess
gobmk =
gromacs
hmmer &
Ibm
leslie3d ==
libquantum
mcf
milc &=
namd
povray =
soplex &
sphinx3 §
tonto
zeusmp
geomean &=

Fig. 8. Total BMT root updates in our proposed models. Normalized to the
total number of BMT root updates in sec_wt.

E. BMT Height Study

To further study the impact of the BMT root update on
the performance overheads, we modeled the state-of-the-art
BMT height reduction mechanisms proposed in [19]. Figure 9
shows a 32-entry SecPB and CM model with DBMF and
SBMF implemented and compared to the DBMF (sp_dbmf)
and SBMF (sp_sbmf) mechanisms with a 4KB root cache. For
the SecPB implementations, we reduced the BMT height from
8 levels to 2 for the DBMF scheme (cm_dbmf) and to 5 levels
for the SBMF (cm_sbmf).

The BMT height reduction with SecPB outperformed the
state-of-the-art DBMF for both the cm_dbmf and cm_sbmf
models. sp_dbmf showed a performance overhead of 88.9%,
while cm_dbmf improved the overhead by 55.6%, observing

an overhead of just 33.3%. sp_sbmf observed a slowdown
of 3.43x that was reduced to just 56.6% in cm_sbmf. The
cm_sbmf even outperformed the sp_dbmf scheme by 32.3%.
This demonstrates the effectiveness of the optimizations pro-
posed, even with a full height BMT, and re-exposes the BMT
root update as the key performance bottleneck.

msp_dbmf @mcm_dbmf DOsp_sbmf &cm_sbmf

12 27.0 |||13.7 15.3 15.8
[
E10
= _
c
o 8 H
g
=
%]
¢
w
T
= 4 - F—
]
£
$21 }
0 1 1””“: H 1m1m1 1”“”:”“1”1 1 m;ﬂﬂﬂ; P,
=0 w o x u = T S L T > X o 0 Qo ¢
EEREEREEDRARRENE R
= $ g ESE E = 28 g<c 2 3E
Zgewgs 23 S A
8 £ "

Fig. 9. Execution time of SecPB with the CM model and DBMF and SBMF
implemented. Normalized to BBB baseline.

Overall, BMT height reduction techniques such as BMF
are useful to pair with our SecPB if we have a limited
supercap/battery budget such that we can only afford more
eager schemes (e.g. CM rather than COBCM) but want to
minimize the performance overheads.

VII. CONCLUSION

In this work, we propose secure persistent buffers to close
the gap between a datum’s point of persistency (PoP) and
the secure point of persistency (SPoP) in on-chip persistent
hierarchies. We proposed six secure persistency schemes that
eagerly persist various security metadata elements to provide
a design spectrum with performance and battery capacity
considerations. Our proposed design significantly reduced
performance overheads compared to strict persistency models
assumed in prior work, with overheads as low as 1.3% for
securing persistent memory.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their insightful
feedback and comments. The NCSU team is funded in part by
NSF grant 1908406, while the UCF author is funded in part
by ONR grant N00014-20-1-2750 and NSF grants 1900724
and 2106629.

REFERENCES

[1] “Die walkthrough: Alder Lake-S/p and a touch of zen 3,” 2022. [Online].
Available: https://locuza.substack.com/p/die- walkthrough- alder-lake-sp-
and

“Intel® Core™ i9-12900KS Processor,” 2022. [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/225916/
intel-core-1912900ks- processor-30m-cache-up-to-5-50- ghz.html

M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), 2018.

[2

—

[3]

12

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “BBB:
Simplifying Persistent Programming using Battery-Backed Buffers,” in
The 27th IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA-27), 2021.

M. Alwadi, K. Zubair, D. Mohaisen, and A. Awad, “Phoenix: Towards
ultra-low overhead, recoverable, and persistently secure nvm,” [EEE
Transactions on Dependable and Secure Computing, 2020.

M. Alwadi, V. R. Kommareddy, C. Hughes, S. D. Hammond, and
A. Awad, “Steal-persist: Architectural support for persistent applications
in hybrid memory systems,” in he 27th IEEE International Symposium
on High-Performance Computer Architecture (HPCA-27), 2021.

M. Alwadi, A. Mohaisen, and A. Awad, “ProMT: optimizing integrity
tree updates for write-intensive pages in secure NVMs,” in Proceedings
of the ACM International Conference on Supercomputing, 2021.
AMD, “AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More,” 2020.

A. Awad, L. Njilla, and M. Ye, “Triad-nvm: Persistent-security for
integrity-protected and encrypted non-volatile memories (nvms),” in Pro-
ceedings of the 46th International Symposium on Computer Architecture,
2019.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, 2014.

S. Chhabra and Y. Solihin, “i-nvmm: A secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), 2011.

S. Chhabra, B. Rogers, and Y. Solihin, “Shieldstrap: Making secure
processors truly secure,” in Proceedings of the 2009 IEEE International
Conference on Computer Design, 2009.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, 2009.

V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, Report 2016/086, 2016.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
2014.

R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and
P. Guillemin, “Tec-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks,” in International Workshop on
Cryptographic Hardware and Embedded Systems, 2007.

A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist Level Parallelism:
Streamlining Integrity Tree Updates for Secure Persistent Non-Volatile
Memory,” in Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020.

A. Freij, H. Zhou, and Y. Solihin, “Bonsai merkle forests: Efficiently
achieving crash consistency in secure persistent memory,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021.

B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings., 2003.

S. Ghosh, M. N. I. Khan, A. De, and J.-W. Jang, “Security and privacy
threats to on-chip non-volatile memories and countermeasures,” in
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2016.

J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calan-
drino, A. Feldman, J. Appelbaum, and E. Felten, “Lest we remember:
Cold boot attacks on encryption keys,” in USENIX Security Symposium,
2008.

X. Han, J. Tuck, and A. Awad, “Dolos: Improving the performance of
persistent applications in adr-supported secure memory,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, 2006.

[25]
[26]

[27]
[28]
[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Intel, “Intel and micron produce breakthrough memory technology,”
2015.

Intel, “Intel Architecture Memory Encryption Technologies Specifica-
tion,” 2019.

Intel, “Intel® architecture memory encryption technologies,” 2021.

D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,” 2016.
Y.-B. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang, J. H. Hur, M.-J. Lee,
G.-S. Park, C. J. Kim, U.-I. Chung, I.-K. Yoo, and K. Kim, “Bi-layered
rram with unlimited endurance and extremely uniform switching,” in
2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011.
A. Kokolis, N. Mantri, S. Ganapathy, J. Torrellas, and J. Kalamatianos,
“Cloak: Tolerating non-volatile cache read latency,” in Proceedings of
the 36th ACM International Conference on Supercomputing, 2022.

E. Kiiltiirsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating stt-ram as an energy-efficient main memory alternative,” in 2013
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2013.

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Zhenghong
Wang, “Architecture for protecting critical secrets in microprocessors,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
2005.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonlvy: Safe Speculation
for Secure Memory,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, 2016.

S. Liu, A. Kolli, J. Ren, and S. M. Khan, “Crash Consistency in En-
crypted Non-volatile Main Memory Systems,” 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.
S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA °19, 2019.

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems, 2017.

D. Nayak, D. P. Acharya, and K. Mahapatra, “An improved energy
efficient sram cell for access over a wide frequency range,” Solid-State
Electronics, 2016.

X. Pan, A. Bacha, S. Rudolph, L. Zhou, Y. Zhang, and R. Teodorescu,
“Nvcool: When non-volatile caches meet cold boot attacks,” 2018 IEEE
36th International Conference on Computer Design (ICCD), 2018.

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L.
Taberna, and P. Simon, “Ultrahigh-power micrometre-sized supercapac-
itors based on onion-like carbon,” Nature Nanotechnology, 2010.

S. Pelley, P. Chen, and T. Wenisch, “Memory Persistency,” in Proceeding
of the 41st Annual International Symposium on Computer Architecuture
(ISCA), 2014.

P. Prasithsangaree and P. Krishnamurthy, “Analysis of energy con-
sumption of rc4 and aes algorithms in wireless lans,” in GLOBE-
COM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.
03CH37489), 2003.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2009.

J. Rakshit and K. Mohanram, “Assure: Authentication scheme for secure
energy efficient non-volatile memories,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017.

N. Rathi, S. Ghosh, A. Iyengar, and H. Naeimi, “Data privacy in
non-volatile cache: Challenges, attack models and solutions,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2016, pp. 348-353.

N. Rathi, S. Ghosh, A. Iyengar, and H. Naeimi, “Data privacy in
non-volatile cache: Challenges, attack models and solutions,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC),
2016.

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os- and performance-friendly,” 2007.

B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data protection for
distributed shared memory multiprocessors,” in Proceedings of the 15th
International Conference on Parallel Architectures and Compilation
Techniques, 2006.

13

(48]

[49]
[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-
level integrity and confidentiality protection for distributed shared
memory multiprocessors,” in in Proceedings of the 14th International
Symposium on High Performance Computer Architecture (HPCA-14,
2008.

A. Rudoff, “Deprecating the pcommit instruction,” 2016.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

S. Scargall, “Programming persistent memory: A comprehensive guide
for developers,” 2020.

D. Sepranos and M. Wolf, “Challenges and opportunities in vlsi iot
devices and systems,” IEEE Design & Test, 2019.

S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017.

S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017.

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003.

G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS: A Single-Chip
Secure Processor,” IEEE Design Test of Computers, 2007.

S. Swami and K. Mohanram, “Acme: Advanced counter mode encryp-
tion for secure non-volatile memories,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018.

S. Swami and K. Mohanram, “ARSENAL.: architecture for secure non-
volatile memories,” Computer Architecture Letters, 2018.

J. Szefer, “Memory protections,” in Principles of Secure Processor
Architecture Design, 2019.

D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
2000.

S. Vig, R. Juneja, G. Jiang, S.-K. Lam, and C. Ou, “Framework for fast
memory authentication using dynamically skewed integrity tree,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2019.

J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i2wap: Improving non-
volatile cache lifetime by reducing inter- and intra-set write variations,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013.

B. Westermann, D. Gligoroski, and S. Knapskog, “Comparison of the
power consumption of the 2nd round sha-3 candidates,” in International
Conference on ICT Innovations. Springer, 2010, pp. 102-113.

Z.-S. Wu, K. Parvez, X. Feng, and K. Miillen, “Graphene-based in-plane
micro-supercapacitors with high power and energy densities,” Nature
Communications, 2013.

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), 2006.

F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
nvm with crash consistency, write-efficiency and high-performance,” in
2019 56th ACM/IEEE Design Automation Conference (DAC), 2019.

J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

M. Ye, C. Huges, and A. Awad, “Osiris: A low-cost mechanism to enable
restoration of secure non-volatile memories,” in 51st Annual IEEE/ACM
International Symposium on Microarchitecture, 2018.

V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2015.

S. Yuan, Y. Solihin, and H. Zhou, “Pssm: achieving secure memory for
gpus with partitioned and sectored security metadata,” in Proceedings
of the ACM International Conference on Supercomputing, 2021.

[71]

[72]

[73]

(741

[75]

[76]

A. W. B. Yudha, K. Kimura, H. Zhou, and Y. Solihin, “Scalable and
fast lazy persistency on gpus,” in 2020 [EEE International Symposium
on Workload Characterization (IISWC), 2020.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira,
A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes et al., “Carbon-
based supercapacitors produced by activation of graphene,” Science,
2011.

Y. Zou, A. Awad, and M. Lin, “Hermes: Hardware-efficient speculative
dataflow architecture for bonsai merkle tree-based memory authentica-
tion,” in 2021 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 1EEE, 2021, pp. 203-213.

K. A. Zubair and A. Awad, “Anubis: Ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019.

P. Zuo and Y. Hua, “Secpm: a secure and persistent memory system
for non-volatile memory,” in 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52Nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

14

