
Accelerate GPU Concurrent Kernel Execution by
Mitigating Memory Pipeline Stalls

Hongwen Dai1, Zhen Lin1, Chao Li1, Chen Zhao2, Fei Wang2, Nanning Zheng2, Huiyang Zhou1
1Department of Electrical and Computer Engineering, North Carolina State University

 {hdai3, zlin4, cli17, hzhou}@ncsu.edu
2School of Electrical and Information Engineering, Xi’an Jiaotong University

{chenzhao, wfx, nnzheng}@mail.xjtu.edu.cn

Abstract-Following the advances in technology scaling,
graphics processing units (GPUs) incorporate an increasing
amount of computing resources and it becomes difficult for a
single GPU kernel to fully utilize the vast GPU resources.
One solution to improve resource utilization is concurrent
kernel execution (CKE). Early CKE mainly targets the
leftover resources. However, it fails to optimize the resource
utilization and does not provide fairness among concurrent
kernels. Spatial multitasking assigns a subset of streaming
multiprocessors (SMs) to each kernel. Although achieving
better fairness, the resource underutilization within an SM is
not addressed. Thus, intra-SM sharing has been proposed to
issue thread blocks from different kernels to each SM.
However, as shown in this study, the overall performance
may be undermined in the intra-SM sharing schemes due to
the severe interference among kernels. Specifically, as
concurrent kernels share the memory subsystem, one kernel,
even as computing-intensive, may starve from not being able
to issue memory instructions in time. Besides, severe L1 D-
cache thrashing and memory pipeline stalls caused by one
kernel, especially a memory-intensive one, will impact other
kernels, further hurting the overall performance.

In this study, we investigate various approaches to
overcome the aforementioned problems exposed in intra-SM
sharing. We first highlight that cache partitioning techniques
proposed for CPUs are not effective for GPUs. Then we
propose two approaches to reduce memory pipeline stalls.
The first is to balance memory accesses of concurrent
kernels. The second is to limit the number of inflight memory
instructions issued from individual kernels. Our evaluation
shows that the proposed schemes significantly improve the
weighted speedup of two state-of-the-art intra-SM sharing
schemes, Warped-Slicer and SMK, by 24.6% and 27.2% on
average, respectively, with lightweight hardware overhead.

1. Introduction
Following the technology scaling trend, modern GPUs
integrate an increasing amount of computing resources
[1][28][29][30][31]. Since GPUs have become prevalent in
high performance computing, they need to support
applications with diverse resource requirements. As a result,
GPU resources are typically underutilized by a single kernel.

To solve the problem of GPU resource underutilization,
concurrent kernel execution (CKE) [20] has been proposed to
support running multiple kernels concurrently on a GPU. One

approach to achieve concurrent kernel execution is to apply
the left-over policy, in which resources are assigned to one
kernel as much as possible and the leftover resources are then
used for another kernel. The examples implementing this
approach include the queue-based multiprogramming
[35][37] introduced by AMD and Hyper-Q by NVIDIA [29].
However, the simple left-over policy fails to optimize
resource utilization and does not provide fairness or quality
of service (QoS) to concurrent kernels.

Researchers have proposed software and hardware
schemes to better exploit CKE. Studies have shown that CKE
improves GPU resource utilization especially when kernels
with complementary characteristics are running together.
Models [17] [26] [48] aim to find the optimal pair of kernels
to run concurrently. Kernel slicing [48] partitions a big kernel
into smaller ones such that no single kernel consumes all
resources. Elastic kernel [32] dynamically adjusts the kernel
size based on the resource availability. Those approaches
have demonstrated the advantages of CKE. However, it may
not be feasible to modify every application. To exploit CKE
more broadly, we focus on hardware approaches in this work.

One hardware-based CKE scheme is spatial multitasking
[2], which groups streaming multiprocessors (SMs) in a GPU
into multiple sets and each set can execute a different kernel.
Such SM partition enables better fairness among kernels but
does not address resource underutilization within an SM. For
instance, the computing resources in an SM, often idle when
running a memory-intensive kernel, cannot be utilized for a
compute-intensive kernel on other SMs.

One appealing approach to improve resource utilization
within an SM is intra-SM sharing, in which thread blocks
from different kernels can be dispatched to one SM. The
intuitive idea is to run kernels with complementary
characteristics concurrently on an SM, such as a compute-
intensive kernel and a memory-intensive one.

SMK [45] and Warped-Slicer [46] are two state-of-the-art
intra-SM sharing schemes, and they adopt different
algorithms to determine Thread-Block (TB) partition among
concurrent kernels, i.e., how many TBs can be issued from
individual kernels to the same SM. Specifically, SMK uses
the metric ‘Dominant Resource Fairness (DRF)’ to fairly
allocate static resources (including registers, shared memory,
number of active threads and number of TBs) among kernels.
As good fairness in static resource allocation does not

2

necessarily lead to good performance fairness, SMK also
periodically allocates quotas of warp instructions for
individual kernels based on profiling each kernel in isolation.
On the other hand, Warped-Slicer determines TB partition
based on scalability curves (performance vs. the number of
TBs from a kernel in an SM), which can be obtained with
either offline/static profiling each kernel in isolation or
online/dynamic profiling during concurrent execution. The
TB partition, for which the performance degradation of each
kernel is minimized when running them concurrently, is
identified as the sweet point.

Although SMK and Warped-Slicer outperform spatial
multitasking, their static approaches profile individual
kernels in isolation and the dynamic approaches do not fully
address the interference among concurrent kernels within an
SM. First, since kernels share the same memory pipeline in
intra-SM sharing, one kernel will starve if it continuously
loses competition to issue memory instructions. Specifically,
as compute-intensive kernels have significantly fewer
memory instructions than memory-intensive ones, their
memory instructions tend to be delayed, leading to their
severe performance loss. Second, as shown in previous works
[8] [38], memory pipeline stalls caused by cache-miss-related
resource saturation prevent ready warps from issuing new
memory instructions. In intra-SM sharing, such memory
pipeline stalls and L1 D-cache thrashing caused by one kernel
will impose stalls on all other co-running kernels, hurting
their performance.

To overcome the aforementioned issues in intra-SM
sharing on GPUs, this paper explores the following
approaches. First, we investigate the effectiveness of cache
partitioning and highlight that cache partitioning cannot
effectively reduce memory pipeline stalls on GPUs. Second,
we propose to balance memory request issuing such that a
compute-intensive kernel does not undergo starvation in
accessing the shared memory subsystem. Third, we propose
memory instruction limiting to control the number of inflight
memory instructions from individual kernels so as to reduce
memory pipeline stall and relieve L1 D-cache thrashing. With
the proposed schemes, we can reduce interference among
concurrent kernels and mitigate memory pipeline stalls,
thereby achieving higher computing resource utilization,
weighted speedup, and fairness.

Overall, this paper makes the following contributions:
• We demonstrate that while the state-of-the-art intra-SM

sharing schemes can identify a good performing TB
partition, they do not fully address the interference,
especially within an SM, among concurrent kernels.

• We show that while cache partitioning cannot reduce
memory pipeline stalls, it is beneficial to balance
memory accesses and limit the number of inflight
memory instructions from concurrent kernels.

• Our experiments show that compared to the two state-
of-art intra-SM sharing schemes: our approaches
improve the Weighted Speedup of Warped-Slicer and
SMK by 24.6% and 27.2% on average, respectively.

2. Motivation and Methodology
2.1. Baseline Architecture and Memory Request

Handling

As shown in Figure 1, a modern GPU consists of multiple
streaming multiprocessors (SMs). A GPU kernel is launched
with a grid of thread blocks (TBs). Threads within a TB form
multiple warps and all threads in a warp execute instructions
in a SIMD manner. More than one warp scheduler can reside
in one SM.

Besides massive multithreading, GPUs have adopted
multi-level cache hierarchies to mitigate long off-chip
memory access latencies. Within each SM, the on-chip
memory resources include a read-only texture cache and a
constant cache, an L1 data cache (D-cache), and shared
memory. A unified L2 cache is shared among multiple SMs.

On GPUs, global and local memory requests from threads
in a warp are coalesced into as few transactions as possible
before being sent to the memory hierarchy. For a request sent
to the L1 D-cache, if it is a hit, the required data is returned
immediately; if it is a miss, cache-miss-related resources are
allocated, including a miss status handling register (MSHR)
and a miss queue entry, and then the request is sent to the L2
cache. If any of the required resources is not available, a
reservation failure occurs and the memory pipeline is stalled.
The allocated MSHR is reserved until the data is fetched from
the L2 cache/off-chip memory while the miss queue entry is
released once the miss request is sent to the L2 cache.

2.2. Multiprogramming Support in GPUs

Since GPUs continue to incorporate an increasing amount of
computing resources, CKE has been introduced to improve

Table 1. Baseline architecture configuration
of SMs 16, SIMD width=32, 1.4GHz

Per-SM warp schedulers 4 Greedy-Then-Oldest schedulers

Per-SM limit
3072 threads, 96 warps, 16 thread
blocks, 128 MSHRs

Per-SM L1D-cache 24KB, 128B line, 6-way associativity

Per-SM SMEM 96KB, 32 banks

Unified L2 cache
2048 KB, 128KB/partition, 128B line,
16-way associativity, 128 MSHRs

L1D/L2 policies
xor-indexing, allocate-on-miss, LRU,
L1D:WEWN, L2: WBWA

Interconnect 16*16 crossbar, 32B flit size, 1.4GHz

DRAM
16 memory channels, FR-FCFS
scheduler, 924MHz, BW: 48bytes/cycle

Figure 1. Baseline GPU.

3

resource utilization. With the Hyper-Q architecture [29],
kernels are mapped into multiple stream queues. Grid launch
inside a GPU kernel has been proposed to reduce costly CPU
intervention [19]. The HSA foundation [35] introduced a
queue based approach for heterogeneous systems with GPUs.
However, none specifies how memory instructions are
selected to issue from individual kernels when they run
concurrently in the same SM.

2.3. Methodology

We use GPGPUsim V3.2.2 [5], a cycle-accurate GPU
microarchitecture simulator, to evaluate different CKE
schemes. Table 1 shows the baseline NVIDIA Maxwell-like
GPU architecture configuration. We extensively modified
GPGPUsim to issue warp instructions from concurrent
kernels, which share the same backend execution pipeline.

We have studied various GPU applications from NVIDIA
CUDA SDK [27], Rodinia [7], Parboil [40] and Polybench
[11]. CKE workloads are constructed by paring different
applications. Each workload runs for 2M cycles and a kernel
will restart if it completes before 2M cycles, the same as in
previous works [2][45]. We mainly report the evaluation
using the Weighted Speedup, which is the sum of speedups
of co-running kernels, speedup being defined as the
normalized IPC in concurrent execution over the IPC in
isolated execution, and the average normalized turnaround
time (ANTT), which quantifies the average user-perceived
slowdown and incorporates fairness [10]. Besides, while it is
intuitive to concurrently run kernels with complimentary
characteristics, such a practice requires knowledge about the
characteristics of kernels to run. Not to lose generality, we

also report the experimental results for concurrent kernels of
the same type. Also, as different compute-intensive kernels
may use different types of computing units and different
memory-intensive kernels may stress various parts along the
memory access path (e.g. the interconnect, the L2 cache, and
memory), there is still potential to increase the overall GPU
resource utilization for concurrent kernels of the same type
with dedicated management.

2.4. Workload Characterization

In this section, we classify applications into compute-
intensive and memory-intensive categories. Then we present
motivational data regarding how the utilization of computing
units, the percentage of LSU (Load/Store Unit) stall cycles,
and the memory access behaviours vary across applications.

Table 2 and Figure 2 show the benchmark characteristics.
First, Table 2 presents the occupancy of static resources
(including registers, shared memory, the number of threads
and the number of TB slots). It is possible to improve the
static resource utilization by running benchmarks with
complementary requirements concurrently, as discussed in
SMK [45]. Second, as shown in Figure 2, where benchmarks
are arranged in the decreasing order of ALU utilization, an
inverse relationship exists between utilization of computing
units and percentage of LSU stalls. Based on the percentage
of LSU stalls, we classify benchmarks with more than 20%
LSU stalls as memory-intensive (M), and others as compute-
intensive (C), indicated in the column ‘Type’ in Table 2. We
shall note that LSU stalls reflect memory pipeline stalls
resulted from failing to allocate cache-miss-related resources
(MSHRs, miss queue entries, etc.) for outstanding misses and
since more such resources are provisioned in our modelled
architecture (Table 1), certain benchmarks, e.g., bs, may
show different characteristics, compared to previous works
[6][36].

Table 2 also shows that compute-intensive kernels and
memory-intensive ones have different memory/cache access
behaviours. First, compute-intensive kernels have more
compute instructions per memory one, than memory-

Table 2. Benchmarks

Benchmark RF_oc SMEM_oc Thread_oc TB_occu
Cinst

/Minst
Req

/Minst
l1d_

miss_rate
l1d_

rsfail_rate
Type

cp(cutcp)[40] 87.5% 67.0% 66.7% 100.0% 4 2 0.45 0.04 C
hs (hotspot) [7] 98.4% 21.9% 58.3% 43.8% 7 3 0.97 1.53 C

dc(dxtc)[27] 56.2% 33.3% 33.3% 100.0% 5 1 0.09 0.17 C
pf (pathfinder) [7] 75.0% 25.0% 100.0% 75.0% 6 2 0.99 0.00 C
bp (backprop) [7] 56.2% 13.3% 100.0% 75.0% 6 2 0.80 0.33 C

bs(bfs)[7] 75.0% 0.0% 100.0% 37.5% 4 1 1.00 0.00 C
st(stencil)[40] 75.0% 0.0% 100.0% 37.5% 4 1 0.67 1.15 C

3m (3mm) [11] 56.2% 0.0% 100.0% 75.0% 2 1 0.63 5.45 M
sv (spmv) [40] 75.0% 0.0% 100.0% 100.0% 3 3 0.78 5.23 M

cd(cfd)[7] 100.0% 0.0% 33.3% 100.0% 9 6 0.96 7.23 M
s2(sad2)[40] 50.0% 0.0% 66.7% 100.0% 2 2 0.92 6.80 M

ks (kmeans) [7] 56.2% 0.0% 100.0% 75.0% 3 17 1.00 7.96 M
ax (ATAX) [11] 56.2% 0.0% 100.0% 75.0% 2 11 0.97 79.70 M

Figure 2. Computing resource utilization and LSU stalls.

0
0.2
0.4
0.6
0.8

1

cp hs dc pf bp bs st 3m sv cd s2 ks ax

Pe
rc

en
ta

ge

ALU_utilization SFU_utilization LSU_stall

4

intensive kernels, as indicated in the column ‘Cinst/Minst’.
For example, while ‘Cinst/Minst’ is 7 for hs, it is only 2 for
3m. Second, memory-intensive kernels may have different
degrees of memory request coalescing, as indicated in the
column ‘Req/Minst’ which denotes the average number of
requests per memory instruction. For instance, while
‘Req/Minst’ is 3 for sv, it is 17 for ks. And the other two
columns ‘l1d_miss_rate’ and ‘l1d_rsfail_rate’ in Table 2
denote miss rate and reservation failures per L1 D-cache
access, respectively. Although compute-intensive kernels
may show a high ‘l1d_miss_rate’, they still achieve high
utilization of compute units, due to the streaming accesses in
L1 D-cache and the usage of shared memory. And a high
‘l1d_rsfail_rate’ of a kernel implies severe cache-miss-
related resource congestion and thus memory pipeline stalls

2.5. Motivational Analysis

In this part, we illustrate that while the state-of-the-art SM-
sharing scheme, Warped-Slicer, can find a good performing
TB partition, there is potential to improve the performance by
addressing the intra-SM interference among kernels.

Figure 3 illustrates the workflow of Warped-Slicer with
the two-programmed workload bp+sv, where bp is compute-
intensive and sv is memory-intensive. Figure 3(a) shows the
performance scalability curves of both benchmarks when
they run in isolation. While the performance of bp near-
linearly increases with more TBs, the performance of sv first
increases and then decreases with more TBs launched to an
SM. Then as shown in Figure 3(b), the scalability curves of
bp and sv are used to identify the sweet point, i.e., the TB
combination, where the performance degradation of each
kernel is minimized while meeting the resource constraint.
For the case of bp+sv, the sweet point is (9, 4), i.e. 9 TBs

from bp and 4 TBs from sv, and the theoretical Weighted
Speedup, which is computed as the sum of normalized IPCs,
for bp+sv is 1.94 at the sweet point.

As introduced in Section 1, while the static Warped-Slicer
approach profiles each kernel in isolation, the dynamic
approach obtains the performance scalability curves of co-
running kernels concurrently by running different numbers of
TBs on SMs (1 TB on one SM, 2 TBs on a second SM and so
on), where each SM is allocated to execute TBs from one
kernel and time sharing of SMs is applied if the total number
of possible TB configurations from all co-running kernels is
more than the number of SMs. The dynamic approach
considers the interference among co-running kernels across
SMs and uses the scaling factor and the weight factor to offset
the imbalance problem in the L2 cache and memory accesses
[46].

Figure 4 shows that the achieved Weighted Speedup is
lower than the theoretical value when the optimal TB
partitions are selected using dynamic Warped-Slicer. The
results are the geometric mean of all the combinations of 2
kernels and different combinations exhibit different features
regarding how individual kernels perform. First, for C+C
workloads, the achieved Weighted Speedup is close to the
theoretical and co-running kernels show similar speedups.
Second, for C+M workloads, the memory-intensive kernel
may dominate the usage of memory pipeline and also
execution in an SM while the compute-intensive one shows
significant performance loss because its memory requests
suffer delays and cannot be timely served, so as its
computation operations. Third, for M+M workloads, one
kernel may suffer more than the other, due to their different
memory/cache access behaviours. Due to such interference,
the achieved Weighted Speedup for C+M and M+M
workloads are much lower than the theoretical. Therefore, it
is crucial to further reduce the interference among kernels in
intra-SM sharing, especially in the memory pipeline and the
memory subsystem, so as to improve computing resource
utilization and achieve better performance.

3. Overcome the Hurdle of Memory Pipeline
Stalls

In Section 2.5, we demonstrated that memory pipeline stalls
incurred by one kernel may negatively affect other kernels on
the same SM. To overcome this issue, we study three methods
to better accommodate memory requests and improve
computing unit utilization. The three methods are: 1) cache
partitioning; 2) balance memory request issuing to prevent
the starvation of any kernel in accessing data; and 3) limit the
number of inflight memory instructions to mitigate L1 D-
cache thrashing and memory pipeline stalls.

3.1. Cache Partitioning

In this part, we show that simply applying cache partitioning
cannot improve the Weighted Speedup for intra-SM sharing.

Figure 5 illustrates the effectiveness of cache partitioning,
where ‘WS’ denotes TB partition using Warped-Slicer and

 (a) (b)
Figure 3. (a) Performance vs. increasing TB occupancy in

one SM, (b) identify the performance sweet spot.

0

0.4

0.8

1.2

1 2 3 4 5 6 7 8 9 10 11 12

N
o

rm
a

li
ze

d
 I

P
C

TB_#

bp sv
10 9 8 6 5 4 2 1 0

0
0.4
0.8
1.2
1.6

2

4 5 6 7 8 9 10 11 12

TB_# of sv

N
o

rm
a

li
ze

d
 IP

C

TB_# of bp

bp sv sum

Figure 4. Performance gap of dynamic Warped-Slicer-

like approach when adapted for performance prediction.

0

0.5

1

1.5

2

C+C C+M M+M ALL

W
ei

gh
te

d
Sp

ee
du

p

theoretical achieved

5

‘WS-L1D Partition’ is for WS with L1 D-cache partitioning,
for which UCP (Utility-based Cache Partitioning) [34] is
adopted. First, Figure 5(a) shows that, on average, L1 D-
cache partitioning fails to improve Weighted Speedup across
all three workload classes. Two workloads from each class
are selected for further investigation, pf+bp and bp+hs from
the C+C class, bp+sv and bp+ks from C+M, and sv+ks and
sv+ax from M+M. Among them, there is not much Weighted
Speedup variation for pf+bp and bp+sv; bp+hs, bp+ks and
sv+ks show Weighted Speedup degradation with L1 D-cache
partitioning; and only sv+atx obtains Weighted Speedup
improvement.

We checked L1 D-cache efficiency and cache-miss-
related resource congestion to better understand how cache
partitioning affects performance. Figure 5 (b) and (c) present
the L1 D-cache miss rate and rsfail rate (reservation failures
per access) of individual kernels in the selected workloads.
First, pf+bp and bp+sv do not show much variation in L1 D-
cache miss rate and rsfail rate between WS and ‘WS-L1D
Partition’. Second, although bp in bp+hs, ks in bp+ks and ks
in sv+ks has a lower L1 D-cache miss rate in ‘WS-L1D
Partition’ than WS, the other kernel, namely hs in bp+hs, bp
in bp+ks and sv in sv+ks, suffers from a much higher L1 D-
cache rsfail rate, i.e., more reservation failures per access,
because a smaller portion of L1 D-cache is assigned to it
according to UCP and a cache slot needs to be allocated for
an outstanding miss. The combined effect of the reduced L1
D-cache miss rate of one kernel, a higher rsfail rate of the
other and high miss penalty leads to the performance
degradation. Third, for sv+ax, ax obtains both lower L1 D-
cache miss rate and rsfail rate, and the reduction in
reservation failures of ax benefits the co-running kernel sv,

resulting in improved performance of sv+ax with ‘WS-L1D
Partition’.

As discussed, while cache partitioning may help reduce
the miss rate of a kernel in intra-SM sharing, it does not
necessarily reduce the overall memory pipeline stalls.
Although it is possible that the effectiveness of cache
partitioning can be improved if reservation failures are taken
into account, it is nontrivial to differentiate reservation
failures caused by each kernel as the cache-miss-related
resources are shared and the occupancy of those resource by
one kernel may lead to reservation failures of another and it
requires dedicated hardware designs, in addition to shadow
tag arrays used to evaluate partitioning configurations [34].

3.2. BMI: Balanced Memory Request Issuing

In this section, we present the idea of balanced memory
request issuing in intra-SM sharing.

As shown in Table 2, compute-intensive kernels tend to
have more compute instructions per memory one, indicated
by ‘Cinst/Minst’, than memory-intensive kernels. Also,
compute-intensive kernels have fewer requests per memory
instruction, indicated by ‘Req/Minst’. When multiple kernels
concurrently run on the same SM, they compete for the same
memory pipeline. Since a memory-intensive kernel has more
memory instructions in nature, it has a higher probability to
access LSU (Load/Store Unit) if there is no dedicated
memory instruction issuing management. When the
compute-intensive kernel needs to issue a memory
instruction, however, it has to wait until the LSU becomes
available. Due to the high ‘Req/Minst’ of memory-intensive
kernels, the waiting time can be quite long especially when
the memory-intensive kernel has a low hit rate and/or a high

 (a) (b) (c)

Figure 6. L1 D-cache accesses: (a) bp executes in isolation; (b) sv executes in isolation; (c) bp and sv run concurrently.

0
50

100
150
200
250
300
350

0 10 20 30 40 50 60 70 80 90 10
0

Co
un

t

Cycle (k)

bp

0
50

100
150
200
250
300
350

0 10 20 30 40 50 60 70 80 90 10
0

Co
un

t

Cycle (k)

sv

0
50

100
150
200
250
300
350

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0L1

D
ca

ce
h

ac
ce

ss
es

Cycle (k)

bp sv

 (a) (b) (c)

Figure 5. Effectiveness of Cache Partitioning: (a) Weighted Speedup; (b) L1 D-cache miss rate; and (c) L1 D-cache rsfail rate.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

C+
C

C+
M

M
+M Al

l

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

W
ei

gh
te

d
Sp

ee
du

p WS WS-L1D Partition

Gmean 2 cases from
each class

0
0.2
0.4
0.6
0.8

1
1.2

pf
+

bp
bp

+
hs

bp
+

sv
bp

+
ks

sv
+

ks
sv

+
ax

pf
+

bp
bp

+
hs

bp
+

sv
bp

+
ks

sv
+

ks
sv

+
ax

L1
 D

-c
ac

he
 m

is
s r

at
e kernel_0 kernel_1

WS WS-L1D
Partition

0
10
20
30
40
50

pf
+

bp
bp

+
hs

bp
+

sv
bp

+
ks

sv
+

ks
sv

+
ax

pf
+

bp
bp

+
hs

bp
+

sv
bp

+
ks

sv
+

ks
sv

+
ax

L1
 D

-c
ac

he
 rs

ra
il

ra
te kernel_0 kernel_1

WS WS-L1D
Partition

6

rsfail rate. Moreover, the compute-intensive kernel may lose
the competition again due to the warp scheduling policy even
when the LSU becomes available.

Figure 6 shows the number of L1 D-cache accesses with a
sampling interval of 1K cycles for the workload bp+sv, where
bp is compute-intensive and sv is memory-intensive. Figure
6 (a) and (b) show that both bp and sv have a considerable
amount (around 130) of accesses every 1K cycles when either
runs in isolation. However, as shown in Figure 6 (c), when
they run concurrently, sv dominates L1 D-cache accesses and
bp starves. Even when the underlying GTO warp scheduling
policy determines that the warps of bp should be actively
scheduled, like for the time windows [200K, 400K] and
[600K, 800K], sv still aggressively issues requests to L1 D-
cache and bp only achieves around 70 accesses per 1K cycles,
much lower compared to that when it runs in isolation.
Consequently, bp cannot get its memory requests
accommodated timely and therefore not able to execute data-
dependent computation instructions, leading to the
performance degradation.

To resolve the problem that one kernel starves from failing
to access the memory subsystem, we propose balanced
memory request issuing (BMI). One way to implement BMI
is to issue memory instructions from concurrent kernels in a
loose round-robin manner and this approach is referred to as
RBMI. However, since one warp memory instruction may
result in multiple memory requests and different kernels
show different ‘Req/Minst’ (as seen in Table 2), RBMI
cannot ensure balanced memory accessing among concurrent
kernels. To overcome this problem, we propose quota-based
memory instruction issuing, named QBMI, and the memory
instruction quotas of concurrent kernels are calculated with
the formula below:

௞௜ܽݐ݋ݑܳ ൌ ܯܥܮ ቀቀ ቁ௞଴ݐݏ݊݅ܯݍܴ݁ , ቀ ቁ௞ଵݐݏ݊݅ܯݍܴ݁ , … , ቀ ቁ௞௡ቁቀݐݏ݊݅ܯݍܴ݁ ቁ௞௜ݐݏ݊݅ܯݍܴ݁

where ܳܽݐ݋ݑ௞௜ is the quota for kernel i, ܯܥܮ denotes Least

Common Multiple and ቀ ோ௘௤ெ௜௡௦௧ቁ௞௜ is the average number of

requests per memory instruction for kernel i. Therefore, the
higher ‘Req/Minst’ of a kernel, the lower quota will be

assigned to it. As defined, QBMI takes multiple accesses
from an atomic operation into account.

The workflow of QBMI is shown in Figure 7. The priority
of a kernel to issue a memory instruction is based on its
current quota and the more its quota, the higher its priority.
Each time a memory instruction is issued from a kernel, its
quota is decremented by 1. When the quota of any kernel
reaches zero, a new set of quotas, calculated with the most
recent values of ‘Req/Minst’, will be added to the current
quota values of concurrent kernels, so as to eliminate the
scenario where a kernel with zero quota cannot issue memory
instructions even when there is no ready memory instruction
from any other co-running kernel. Specifically, ‘Req/Minst’
of a kernel is updated every 1024 memory requests issued by
it. The sampling interval of 1024 accesses works well as the
metric ‘Req/Minst’ is relatively stable throughout the
execution of a GPU kernel.

Figure 8 shows the number of warp instructions issued
from the two kernels of the workload bp+sv, with a sampling
interval of 1K cycles, where WS-RBMI in Figure 8(b)
denotes TB partition with Warped-Slicer plus RBMI and
WS-QBMI in Figure 8(c) is for Warped-Slicer plus QBMI.
As we can see, RBMI and QBMI both enable more warp
instructions to be issued from the compute-intensive kernel
bp than WS. For example, compared to WS, bp issues more
instructions for the time windows [200K, 400K] and [600K,
800K] under WS-RBMI and even more instructions are
issued under WS-QBMI. This confirms our hypothesis: in-
time memory request accommodation is critical for the
execution of compute-intensive kernels in CKE. And more
warp instruction issuing translates to a better performance of
bp. As shown in Figure 8(d), the normalized IPC (IPC of
concurrent execution to that of isolated execution) of bp

 (a) (b) (c) (d)

Figure 8. Warp instruction issuing: (a) WS; (b) WS-RBMI; (c) WS-QBMI; (d) Normalized IPC.

0

800

1600

2400

3200
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

W
S:

 C
ou

nt

Cycle (k)

bp sv

0

800

1600

2400

3200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

W
S-

RB
M

I:
Co

un
t

Cycle (k)

bp sv

0

800

1600

2400

3200

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

W
S-

Q
BM

I:
Co

un
t

Cycle (k)

bp sv

0.39 0.45 0.48

0.00
0.20
0.40
0.60
0.80
1.00

N
or

m
al

zi
ed

 IP
C

bp sv

Figure 7. The Workflow of QBMI (Quota Based Memory

request Issuing).

7

increases from 0.39 under WS to 0.45 under WS-RBMI and
to 0.48 under WS-QBMI as more cache bandwidth is
assigned to bp and in turn more compute instructions can be
executed. In the meanwhile, the performance of sv remains
relatively stable. Therefore, the overall performance is
improved. Since QBMI can better cope with the different
degrees of memory coalescing (indicated by ‘Req/Minst’)
and shows a better performance than RBMI, we adopt QBMI
in the rest of the paper.

3.3. MIL: Memory Instruction Limiting

Although QBMI is good to use when memory access
imbalance (i.e., when one kernel issues too many requests) is
the main issue, it does not necessarily reduce memory
pipeline stalls. In this section, we highlight that the overall
performance can be further improved by explicitly limiting
the number of in-flight memory instructions when the
memory pipeline stalls often and different kernels are in
favour of different memory instruction limiting numbers.

While BMI can help achieve more balanced memory
accesses and get a kernel’s requests served more timely, it
does not necessarily reduce memory pipeline stalls incurred
by a memory-intensive kernel and the co-running kernels
may still suffer from such penalties. In the meanwhile,
limiting the number of in-flight memory instructions of a
kernel is an effective way to reduce memory pipeline stalls
and improve L1 D-cache efficiency. To exploit this factor, we
propose MIL (Memory Instruction Limiting) for intra-SM
sharing and we investigate two variants of MIL: SMIL (static
MIL) and DMIL (dynamic MIL).

3.3.1 SMIL: Static Memory Instruction Limiting

In SMIL, we run simulations for all combinations regarding
the number of in-flight memory instructions that can be
issued from individual kernels in intra-SM sharing.
Specifically, we vary the in-flight memory instruction
limiting number on kernel 0 from 1 to 24, and symmetrically
for kernel 1. The simulation point of no such a limitation (Inf)
for each kernel is also examined.

We use one representative workload from each class to
show how SMIL performs. Figure 9 shows the performance
with varied memory instruction limiting numbers on kernel 0
and kernel 1. In the figures, the right horizontal axis
(Limit_k0) denotes the memory instruction limiting number

on kernel 0 while the left one (Limit_k1) is for kernel 1, and
the vertical axis indicates Weighted Speedup.

Figure 9(a) shows that for the C+C workload, pf+bp, with
a fixed Limit_k1, the performance increases with a larger
Limit_k0 and it is similar when varying Limit_k1 with
Limit_k0 fixed. Therefore, there is no need to limit the
number of inflight memory instructions for co-running
compute-intensive kernels. Figure 9(b) shows the case of a
C+M workload, bp+ks, in which the overall performance
suffers from a large number of in-flight memory instructions
issued by kernel 1, ks. When Limit_k1 is at least 8, the
performance is low with varied Limit_k0 and Limit_k1.
When Limit_k1 is small (smaller than 8), a better
performance can be achieved with a large Limit_k0, due to
the improved L1 D-cache locality resulted from the combined
effect of in-flight memory instruction limiting and underlying
warp scheduling policy GTO. Figure 9(c) presents the case of
sv+ks, an M+M workload, in which the performance remains
low when Limit_k1 is at least 8. However, different from
bp+ks, the overall performance first increases and then
decreases with a larger Limit_k0 when Limit_k1 is small
(smaller than 8). As a result, an optimal point exists in terms
of the peak performance and it is (3, 1) for sv+ks, indicating
the highest performance occurs when Limit_k0 is 3 and
Limit_k1 is 1.

As illustrated, limiting the number of in-flight memory
instructions from the memory-intensive kernel effectively
improves the overall performance. The compute-intensive
kernel can have a better chance to access memory subsystem
and get requests served timely when memory pipeline stalls
are reduced with fewer in-flight memory instructions from
the co-running memory-intensive kernel. In the meanwhile,
the performance of the memory-intensive kernel also
increases due to the improved L1 D-cache efficiency.
However, since different kernels have different memory
access features, indicated by metrics like ‘Req/Minst’ and
‘l1d miss rate’ (Table 2), different workloads show different
optimal limiting numbers for concurrently running kernels.

3.3.2 DMIL: Dynamic Memory Instruction Limiting

Although SMIL can effectively improve the performance, it
requires re-profiling whenever there are updates in the
architecture, application optimization and input size. Also, it
cannot cope with application phase changing behaviours.

(a) pf+bp (b) bp+ks (c) sv+ks

Figure 9. Weighted Speedup with varied memory instruction limiting numbers on kernel 0 and kernel 1 for workloads from
different classes: (a) C+C workload: pf+bp; (b) C+M workload: bp+ks; (c) M+M workload: sv+ks.

8

Therefore, we propose DMIL (dynamic MIL) to adapt the in-
flight memory instruction limiting numbers at run-time.

As discussed in Section 2.1, cache-miss-related resources,
including a cache line slot, a MSHR and miss queue entry,
are allocated for an outstanding miss. If any of the required
resources is unavailable, reservation failures occur, resulting
in memory pipeline stalls. And the memory pipeline stalls
incurred by one kernel will affect other concurrent kernels,
further reducing computing resource utilization and
degrading performance. Therefore, we use the number of
reservation failures per memory request as the indicator to
check how severe cache contention and cache-miss-related
resource congestion are and use the following formula to
calculate the memory instruction limiting number: ܮܫܯ௞௜ ൌ ݔܽܯ ൬ܲ݁ܽ݇_ݐݏ݊݅ܯ_ݐ݄݈݂݃݅݊ܫ௞௜ܴ݈݁݅ܽܨ_ݒ௞௜ ≫ 10 , 1൰

where ܮܫܯ௞௜	is the memory instruction limiting number for
kernel i and it is generated with a sampling interval of every
1024 memory requests from this kernel. According to our
experiments, the selected sampling interval works well in
capturing the phase behaviours. ௞௜ݐݏ݊݅ܯ_ݐ݄݈݂݃݅݊ܫ_݇ܽ݁ܲ
represents the peak number of inflight memory instructions
in the last sampling interval. ܴ݈݁݅ܽܨ_ݒ௞௜ ≫ 10 calculates the
number of reservation failures per memory request. To avoid
the scenario that a kernel is prohibited to issue memory
instructions, the policy that at least one inflight memory
instruction from a kernel is incorporated. Overall, the allowed
number of inflight memory instructions from a kernel is
reduced when there are more than one reservation failures per
memory request. The key insight is to achieve at most one
reservation failure per memory request (i.e., a fully
utilized/near stall-free memory pipeline).

Figure 10 shows the organization of a memory instruction
limiting number generator (MILG), which has one in-flight
memory instruction counter to capture the peak number of
inflight memory instruction in a sampling interval, one
reservation failure counter, one memory request counter and
one 10-bit right shifter which is used to calculate reservation
failures per memory request.

Since each kernel has its own MILG, for our created 2-
kernel workloads, there are two MILGs on each SM. It is
flexible to extend to support more kernels on one SM. As

there are MILGs in each SM, we refer to this design as local
DMIL. Although it is possible to reduce the hardware cost by
deploying global DMIL, which monitors concurrent kernel
execution on one SM and broadcasts the generated results to
others, global DMIL requires all SMs run the same pair of
kernels. Due to the inflexibility of global DMIL, we stick to
local DMIL in this study.

3.4. QBMI vs. DMIL

As discussed in Section 3.2 and 3.3, QBMI can balance
memory accesses of concurrent kernels and DMIL can boost
performance by reducing memory pipeline stalls incurred by
memory-intensive kernels. In this part, we compare the
performance impact of QBMI and DMIL, and investigate the
integration of the two.

Figure 11 illustrates how QBMI and DMIL perform when
Warped-Slicer is used for TB partition and QBMI+DMIL
denotes the combination of the two. Figure 11(a) shows the
Weighted Speedup. First, WS-QBMI and WS-DMIL achieve
similar performance for C+C workloads since compute-
intensive kernels have high ‘Cinst/Minst’ and low memory
pipeline stalls. Second, on average, WS-DMIL outperforms
WS-QBMI for C+M and M+M workloads with improved L1

Figure 10. Organization of a Memory Instruction
Limiting number Generator (MILG).

(a)

(b)

(c)
Figure 11. Performance impact of QBMI and DMIL.

0
0.3
0.6
0.9
1.2
1.5
1.8

W
ei

gh
te

d
Sp

ee
du

p WS-QBMI WS-DMIL WS-QBMI+DMIL

Gmean 2 cases selected from each class

0
0.2
0.4
0.6
0.8

1
1.2

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

L1
D

m
is

s r
at

e kernel_0 kernel_1

WS-DMIL WS-QBMI+DMILWS-QBMI

0
10
20
30
40
50
60

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

pf
+b

p
bp

+h
s

bp
+s

v
bp

+k
s

sv
+k

s
sv

+a
x

L1
D

rs
fa

il
ra

te kernel_0 kernel_1

WS-DMIL WS-QBMI+DMILWS-QBMI

9

D-cache efficiency and further reduced memory pipeline
stalls. For instance, compared to WS-QBMI, WS-DMIL
effectively reduces L1 D-cache miss rate of ks from 0.88 to
0.52 in the C+M workload bp+ks and from 0.98 to 0.52 in the
M+M workload sv+ks (Figure 11(b)). Figure 11(c) shows
that WS-DMIL has a lower L1 D-cache rsfail rate, indicating
fewer memory pipeline stalls.

While it is tempting to integrate QBMI and DMIL to reap
the benefits of both, Figure 11 (b) and (c) show that the
improvement from WS-QBMI+DMIL over WS-DMIL is
minor regarding L1 D-cache efficiency and memory pipeline
stalls, resulting its slightly better performance than WS-
DMIL, as shown in Figure 11(a). Therefore, we report how
QBMI and DMIL perform separately in the evaluation.

4. Experimental Results and Analysis
In this section, we conduct experimental analysis on our
schemes and investigate how they improve the performance
of the two state-of-art intra-SM sharing techniques, Warped-
Slicer and SMK, both targeting TB (Thread-Block) partition,
as described in Section 1.
WS: Warped-Slicer [46], which enforces TB partition using
the performance scalability curves generated by dynamically
profiling kernels during concurrent execution.
WS-QBMI: Our proposed quota-based balance memory
request issuing (QBMI) is applied to WS.
WS-DMIL: Our proposed dynamic memory instruction
limiting (DMIL) is applied to WS.
SMK-(P+W): SMK-(P+W) in work [45], which enforces TB
partition based on fairness of static resources allocation and

periodically allocates warp instruction quotas for concurrent
kernels with profiling each one in isolation. In SMK-(P+W),
a kernel will stop issuing instructions if it runs out of quota
and a new set of quotas will be assigned only when quotas of
all kernels equal zero. Since the warp instruction quota
allocation in SMK-(P+W) and our proposed QBMI/DMIL
are mutually exclusive, we apply our schemes to SMK-P and
compare them with SMK-(P+W).
SMK-(P+QBMI): QBMI is applied to SMK-P.
SMK-(P+DMIL): DMIL is applied to SMK-P.

4.1. Performance Evaluation and Analysis

4.1.1 Comparison with Warped-Slicer

In this part, we illustrate how our proposed QBMI and DMIL
perform when Warped-Slicer is used for TB partition.
a) Weighted Speedup, ANNT and Fairness

Figure 12(a) show the Weighted Speedup of WS, WS-QBMI
and WS-DMIL, and spatial multitasking (Spatial) is shown
as a reference. We have the following observations. First, WS
performs better than Spatial on average with a better resource
utilization within an SM, consistent with prior works [45][46]
Second, WS, WS-QBMI and WS-DMIL have similar
Weighted Speedup for C+C workloads where there are
almost no memory pipeline stalls. Third, while WS-QBMI
and WS-DMIL outperform WS for C+M and M+M

workloads, WS-DMIL has a much higher Weighted Speedup
due to further reduced memory pipeline stalls and improved
L1 D-cache efficiency. On average, Weighted Speedup is
1.13 from Spatial, 1.20 from WS, 1.22 from WS-QBMI and

 (a) (b) (c)

 (d) (e) (f) (g)
Figure 12. Effectiveness of QBMI and DMIL on top of Warped-Slicer: (a) Weighted Speedup; (b) Normalized ANNT (Average

Normalized Turnaround Time); (c) Normalized Fairness; (d) L1 D-cache miss rate; (e) L1 D-cache rsfail rate (reservation
failures per access); (f) percentage of LSU stall cycles; (g) computing resource utilization.

0

0.5

1

1.5

2

C+C C+M M+M ALL

W
ei

gh
te

d
Sp

ee
du

p
Spatial WS WS-QBMI WS-DMIL

0
0.2
0.4
0.6
0.8

1
1.2

C+C C+M M+M ALL

N
or

m
al

iz
ed

 A
N

TT

WS WS-QBMI WS-DMIL

0

0.4

0.8

1.2

1.6

2

C+C C+M M+M ALL

N
or

m
al

iz
ed

 F
ai

rn
es

s

WS WS-QBMI WS-DMIL

0

0.2

0.4

0.6

0.8

1

C+C C+M M+M ALL

L1
 D

-c
ac

eh
 m

is
s r

at
e

WS WS-QBMI WS-DMIL

0
2
4
6
8

10
12

C+C C+M M+M ALL

L1
 D

-c
ac

eh
 rs

fa
il

ra
te

WS WS-QBMI WS-DMIL

0

0.2

0.4

0.6

0.8

1

C+C C+M M+M ALL
LS

U
 st

al
l p

er
ce

nt
ag

e

WS WS-QBMI WS-DMIL

0

0.2

0.4

0.6

0.8

1

C+C C+M M+M ALL

Co
m

pu
tin

g
ut

ili
za

tio
n

WS WS-QBMI WS-DMIL

10

1.49 from WS-DMIL. Thus WS-QBMI and WS-DMIL
improve the performance of WS by 1.5% and 24.6%.

In addition to Weighted Speedup, we also report ANNT
(the lower the better) and Fairness (the lowest normalized
IPC over the highest normalized IPC, the higher the better)
[10], shown in Figure 12(b) and (c), respectively. First, WS-
QBMI improves ANNT and Fairness for C+C workloads.
Second, WS-QBMI and WS-DMIL greatly improve ANNT
over WS for C+M workloads. Nevertheless, WS-QBMI and
WS-DBMIL outperforms WS by 40.5% and 56.1% in terms
of ANTT, on average. Regarding Fairness, WS-QBMI and
WS-DBMIL outperforms WS by 17.8% and 32.3%.

While WS can limit the memory instructions as well by
limiting the number of the thread blocks, our scheme works
at a more fine-grained granularity. For instance, WS loses the
memory instruction limiting capability when there is only one
TB from the memory-intensive kernel (e.g., ax in sv+ax).
Besides, our schemes can better cope with the phase changing
behaviours of applications. Such advantages lead to better
performance of our schemes.
b) L1 D-cache Miss Rate, rsfail Rate and LSU Stalls

In this section, we show that our proposed schemes achieve
high L1 D-cache efficiency and significantly relieve cache-
miss-related resource congestion. Figure 12 (d) and (e) show
that WS suffers from a high L1 D-cache miss rate and rsfail
rate in C+M and M+M workloads. WS-QBMI experiences
similar L1 D-cache miss rate and rsfail rate to WS. In
contrast, WS-DMIL consistently demonstrates lower L1 D-
cache miss rates and fewer reservation failures per request
than both WS and WS-QBMI.
c) LSU Stalls and Computing Resource Utilization

The relieved L1 D-cache miss-related resource congestion
will translate to fewer memory pipeline stalls. As shown in
Figure 12(f), the percentage of LSU stall cycles closely
correspond to the L1 D-cache rsfail rate. And the reduced
memory pipeline stalls can lead to a better computing
resource utilization, especially for C+M workloads, as shown
in Figure 12(g). One exceptional case is M+M workloads
where WS-DMIL has a significantly lower L1 D-cache rsfail
rate but it does not deliver a higher computing resource
utilization. This is because essentially, both kernels of M+M
workloads stress the memory pipeline and intrinsically have
lower computing resource usage.

4.1.2 Comparison with SMK

Besides Warped-Slicer, we also investigate how QBMI and
DMIL perform when SMK is used for TB partition. Figure
13 shows Weighted Speedup of SMK-(P+W), SMK-
(P+QBMI) and SMK-(P+DMIL). We have similar
observations to those when Warped-Slicer is used. First, all
three schemes have similar Weighted Speedup for C+C
workloads. Second, SMK-(P+QBMI) and SMK-(P+DMIL)
outperform SMK-(P+W) for C+M workloads, while SMK-
(P+DMIL) has a much higher Weighted Speedup. Third,
SMK-(P+DMIL) remains effective for M+M workloads. On

average, Weighted Speedup is 1.10 from SMK-(P+W), 1.15
from SMK-(P+QBMI) and 1.40 from SMK-(P+DMIL). Thus
SMK-(P+QBMI) and SMK-(P+DMIL) boost the Weighted
Speedup of SMK-(P+W) by 4.4% and 27.2%, respectively.
Although details not shown here, SMK-(P+QBMI) and
SMK-(P+DMIL) outperforms SMK-(P+W) by 49.2% and
64.6% in terms of ANTT. The improvements of SMK-
(P+QBMI) and SMK-(P+DMIL) are due to higher L1 D-
cache efficiency, reduced LSU stalls and higher computing
unit utilization.

4.2. More Kernels in Concurrent Execution

In this part, we demonstrate that our proposed schemes have
good scalability and remain effective when more than two
kernels concurrently on an SM. As described in Section 3.2
and 3.3.2, the proposed QBMI and DMIL are general and not
restrained by the number of concurrent kernels. We evaluate
all the combinations of 3-kernel workloads and have similar
observations to those on 2-kernel workloads, as shown in
Figure 14. First, when all kernels are compute-intensive,
indicated by ‘C+C+C’, WS, WS-QBMI and WS-DMIL have
similar Weighted Speedup while WS-QBMI improves
ANTT. Second, WS-QBMI and WS-DMIL outperform WS
for C+C+M and C+M+M workloads. Third, WS-DMIL
continues to improve Weighted Speedup for M+M+M
workloads, where all kernels are memory-intensive, but
sacrifices fairness for Weighted Speedup. On average, WS-
QBMI and WS-DMIL improve Weighted Speedup of WS by

 (a) Weighted Speedup (b) Normalized ANTT
Figure 14. Effectiveness of QBMI and DMIL in 3-kernel

concurrent execution on top of Warped-Slicer.

0
0.4
0.8
1.2
1.6

C+
C+

C
C+

C+
M

C+
M

+M
M

+M
+M

Gm
ea

nW
ei

gh
te

d
Sp

ee
du

p

0
0.2
0.4
0.6
0.8

1
1.2
1.4

C+
C+

C

C+
C+

M

C+
M

+M

M
+M

+M

Gm
ea

nN
or

m
al

iz
ed

 A
N

TT

 (a) (b)

Figure 13. Effectiveness of QBMI and DMIL on top of
SMK: (a) Weighted Speedup; (b) Normalized ANNT.

0

0.5

1

1.5

C+C C+M M+M All

W
ei

gh
te

d
Sp

ee
du

p

0
0.2
0.4
0.6
0.8

1
1.2

C+C C+M M+M All

N
or

m
al

iz
ed

 A
N

TT

11

3.2% and 19.4%, respectively. In terms of ANTT, WS-QBMI
and WS-DMIL outperform WS by 58.3% and 68.7%.

Besides Warped-Slicer, we also investigate when SMK is
used for TB partition in 3-kernel concurrent execution. SMK-
(P+QBMI) and SMK-(P+DMIL) improve the average
Weighted Speedup of SMK-(P+W) by 5.5% and 21.9%; for
ANTT, SMK-(P+QBMI) and SMK-(P+DMIL) outperform
SMK-(P+W) by 79.1% and 85.9%, respectively.

4.3. Sensitivity Study

Sensitivity to L1 D-cache Capacity: Although not shown,
we examined how our schemes perform with various L1 D-
cache capacities. On average, WS-QBMI outperforms WS
with 2.1% (1.5%) higher Weighted Speedup and 32.1%
(30.8%) better ANTT, on a 48KB (96KB) L1 D-cache; and
WS-DMIL outperforms WS with 18.5% (3.5%) higher
Weighted Speedup and 22.6% (10.1%) better ANTT, on a
48KB (96KB) L1 D-cache. Furthermore, while reservation
failures due to MSHRs are the most common ones in our
study, our schemes remain effective with increased MSHR
sizes because high queuing delays in the memory subsystem
can result in all MSHRs quickly being used up, similar to that
when the cache capacity is enlarged to reduce memory
pipeline stalls.
Sensitivity to Warp Scheduling Policy: besides the default
GTO (Greedy-Then-Oldest) warp scheduling policy used in
the prior experiments, we investigate how QBMI and DMIL
perform when LRR (Loose Round Robin) is deployed. Our
experiments show that on average, WS-QBMI and WS-
DMIL boost the average Weighted Speedup of WS by 3.2%
and 25.8%, respectively; in terms of ANTT, WS-QBMI and
WS-DMIL outperform WS by 16.4% and 34.3%.

4.4. Hardware Overhead

As described in Section 3.3, the hardware cost for a memory
instruction limiting number generator (MILG) includes one
7-bit inflight memory instruction counter (maximum 128
instructions can access L1 D-cache concurrently), one 12-bit
reservation failure counter, one 10-bit memory request
counter, and one 10-bit right shifter (only wires). For QBMI,
one more 10-bit memory instruction counter and extra
arithmetic logics are required to compute ‘Req/Minst’ and
quotas. Although the amount of these components are
proportional to the number of SMs, those overheads are
negligible, compared to the area of a GPU [28][29][30][31].
Besides, the calculation and decision signal broadcasting are
not on the critical path. So no extra delay is incurred.

4.5. Further Discussion

In this part, we further discuss the inadequacy to partitioning
cache-miss-related resources as well as the energy efficiency
and applicability of our proposed schemes.

Although it is tempting to partition cache-miss-related
resources to prevent any kernel from starvation in allocating
them, our experiments show that simply partitioning such
resources cannot improve performance. This is because all
accesses to LSU are in-order and even when a kernel’s

assigned portion of resources is not fully occupied, its
accesses can be blocked by accesses from other co-running
kernels of which the assigned resources already saturate,
leading to unrelieved memory pipeline stalls.

Regarding energy efficiency, with our proposed schemes,
although the average dynamic power may increase due to the
improved computing resource utilization, the overall energy
efficiency is improved due to much reduced leakage energy.

Although we only use the metric reservation failures per
memory request to generate memory instruction limiting
numbers, the performance results are highly promising. The
underlying idea can be applied to other parts along the
memory access path. For example, stalls encountered at the
L1-interconnect and/or interconnect-L2 queues, can be
incorporated to obtain memory instruction limiting numbers.
Also, certain memory access optimization techniques, like
cache bypassing, can be first applied to improve the isolated
execution, and as a result the TB partition of Warped-Slicer
and SMK may change. Although the effectiveness of our
schemes in boosting Weighted Speedup may decrease, they
shall remain effective in improving fairness, similar to the
fact that QBMI enhances the fairness of C+C workloads, as
shown in Section 4.1.1. Moreover, while cache bypassing
relieves the contention at one level, it offloads transactions to
the lower level memory hierarchies and may still stress the
interconnect, L2 cache or memory, causing congestion at
these parts. This would be the case especially for memory-
intensive kernels, if there is no constrain on the number of
their bypassed requests. We expect the underlying idea of
BMI and MIL can be applied in such scenarios by
monitoring/managing the memory access behaviours of
different kernels at these parts along the memory access path
to reduce congestion. We leave comprehensive investigation
on this topic in our future work.

5. Related Work
Resource distribution and request throttling on CPUs:
Several studies have addressed resource distribution among
threads in simultaneous multithreading on CPUs, with a
focus on cache partitioning [14][34][36][44]. Our work
targets concurrent kernel execution on GPUs where there are
massive memory accesses and cache partitioning is not as
effective as for CPUs. Thus, we propose balanced memory
request issuing (BMI) and inflight memory instruction
limiting (MIL) to prevent one kernel starving from failing to
access LSU and reduce LSU stalls. Besides, Ebrahimi et al
[9] proposed a shared memory resource management
approach, FST (Fairness via Source Throttling), to mitigate
inter-core interference and improve system performance for
chip-multiprocessor systems. On one hand, FST monitors
unfairness and throttles down sources of interfering memory
requests, similar to our proposed BMI and MIL. On the other
hand, our schemes focus on intra-SM (or intra-core)
interference among applications, and we directly
monitor/manage memory accesses from within an SM.

12

Concurrent kernel execution on GPUs: Several software-
centric GPU multiprogramming approaches have been
studied as discussed in Section 1.

Researchers have also proposed hardware schemes to
better exploit concurrent kernel execution on GPUs. Adriaens
et al. [2] proposed spatial multitasking to groups SMs into
different sets which can run different kernels. Ukidave et al.
[42] studied runtime support for adaptive spatial partition on
GPUs. Aguilera et al. [3] showed the unfairness of the spatial
multitasking and proposed fair resource allocation for both
performance and fairness. Tanasic el al. [41] proposed pre-
emption mechanisms to allow dynamic spatial sharing of
GPU cores across kernels. Gregg et al. [12] proposed a kernel
scheduler to increase throughput. Wang et al. [43] proposed
dynamic thread block launching to better support irregular
applications. Wang et al. [45] and Xu et al.[46] addressed SM
resource partition at the granularity of thread block. Park et
al [33] improved GPU resource utilization through dynamic
resource management but the scalability is limited. In
comparison, we focus on mitigating interference among
kernels and further improving resource utilization of an SM,
with a good scalability to support multiple concurrent
kernels.
Thread throttling and cache management on GPUs:
Managing accesses to the limited memory resources has been
a challenge on GPUs. Guz et al. [13] showed that a
performance valley exists with increased number of threads
accessing a cache. Bakhoda et al. [5] showed some
applications perform better when scheduling fewer TBs.
Kayıran et al. [21] and Xie et al. [47] dynamically adjust the
number of TBs accessing L1 D-caches. Rogers et al. [36]
proposed CCWS to control the number of warps scheduled.

On GPU cache management, Jia et al. [17] used multiple
queues to preserve intra-warp locality. Kloosterman et al.
[22] proposed WarpPool to exploit inter-warp locality with
request queues. Detecting and protecting hot cache lines has
been proposed in the work [24].

Researchers have also exploited the combination of thread
throttling and cache bypassing. Li et al. [25] proposed
priority-based cache allocation on top of CCWS. Chen et al.
proposed CBWT [6] to adopt PDP for L1 D-cache bypassing
and applies warp throttling. Li et al. [23] propose a compile-
time framework for cache bypassing at the warp level.

These approaches mainly target cache locality. However,
as Sethia et al. [38] and Dai et al. [8] demonstrated, cache-
miss-related resource saturation can cause severe memory
pipeline stalls and performance degradation. To address this
issue, they proposed Mascar and MDB, respectively.

In comparison, our schemes do not throttle any TBs or
warps but limit the number of in-flight memory instructions
to reduce memory pipeline stalls and accelerate concurrent
kernel execution with one SM shared by multiple kernels.
Our approaches are complementary to cache bypassing: if not
controlled, bypassing can make a memory-intensive kernel
occupy even more memory resources.

6. Conclusions
In this paper, we show that the state-of-the-art intra-SM
sharing techniques do not fully address the interference in
CKE on GPUs. We argue that dedicated management on
memory access is necessary and propose to balance memory
request issuing from individual kernels and limit inflight
memory instructions to mitigate memory pipeline stalls. We
evaluated our proposed schemes on two intra-SM sharing
schemes, Warped-Slicer and SMK. The experimental results
show that our approaches improve Weighted Speedup by
24.6% and 27.2% on average over Warped-Slicer and SMK,
respectively, with minor hardware cost. Our approaches also
significantly improve the fairness.

Acknowledgments

We would like to thank the anonymous reviewers and the
shepherd for their insightful comments to improve our paper.
This work is supported by an NSF grant CCF-1618509, a
Chinese research program “introducing talents of discipline
to universities B13043”, and an AMD gift fund.

References
[1] AMD GCN Architecture White paper, 2012.
[2] Adriaens, Jacob T., Katherine Compton, Nam Sung Kim, and Michael
J. Schulte. "The case for GPGPU spatial multitasking." In IEEE International
Symposium on High-Performance Comp Architecture, pp. 1-12. IEEE,
2012.
[3] Aguilera, Paula, Katherine Morrow, and Nam Sung Kim. "Fair share:
Allocation of GPU resources for both performance and fairness." In 2014
IEEE 32nd International Conference on Computer Design (ICCD), pp. 440-
447. IEEE, 2014.
[4] Awatramani, Mihir, Joseph Zambreno, and Diane Rover. "Increasing
GPU throughput using kernel interleaved thread block scheduling." In 2013
IEEE 31st International Conference on Computer Design (ICCD).
[5] Bakhoda, Ali, George L. Yuan, Wilson WL Fung, Henry Wong, and
Tor M. Aamodt. "Analyzing CUDA workloads using a detailed GPU
simulator." In Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on, pp. 163-174.
[6] Chen, Xuhao, Li-Wen Chang, Christopher I. Rodrigues, Jie Lv,
Zhiying Wang, and Wen-Mei Hwu. "Adaptive cache management for
energy-efficient gpu computing." In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 343-355.
IEEE Computer Society, 2014.
[7] Che, Shuai, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. "Rodinia: A benchmark suite
for heterogeneous computing." In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, pp. 44-54. IEEE, 2009.
[8] Dai, Hongwen, S. Gupta, C. Li, C. Kartsaklis, M. Mantor, and H.
Zhou. "A model-driven approach to warp/thread-block level GPU cache
bypassing." InProceedings of the Design Automation Conference (DAC),
Austin, TX, USA, pp. 5-9. 2016.
[9] Ebrahimi, Eiman, Chang Joo Lee, Onur Mutlu, and Yale N. Patt.
"Fairness via source throttling: a configurable and high-performance fairness
substrate for multi-core memory systems." In ACM Sigplan Notices, vol. 45,
no. 3, pp. 335-346. ACM, 2010.
[10] Eyerman, Stijn, and Lieven Eeckhout. "Restating the case for
weighted-ipc metrics to evaluate multiprogram workload
performance." IEEE Computer Architecture Letters 13, no. 2 (2014): 93-96.
[11] Grauer-Gray, Scott, Lifan Xu, Robert Searles, Sudhee
Ayalasomayajula, and John Cavazos. "Auto-tuning a high-level language
targeted to GPU codes." In Innovative Parallel Computing (InPar), 2012, pp.
1-10. IEEE, 2012.
[12] Gregg, Chris, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron.
"Fine-grained resource sharing for concurrent GPGPU kernels." Presented
as part of the 4th USENIX Workshop on Hot Topics in Parallelism. 2012.

13

[13] Guz, Zvika, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi
Mendelson, and Uri C. Weiser. "Many-core vs. many-thread machines: Stay
away from the valley." IEEE Computer Architecture Letters 8, no. 1 (2009):
25-28.
[14] Herdrich, Andrew, Edwin Verplanke, Priya Autee, Ramesh Illikkal,
Chris Gianos, Ronak Singhal, and Ravi Iyer. "Cache QoS: From concept to
reality in the Intel® Xeon® processor E5-2600 v3 product family." In 2016
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 657-668. IEEE, 2016.
[15] Jiao, Qing, Mian Lu, Huynh Phung Huynh, and Tulika Mitra.
"Improving GPGPU energy-efficiency through concurrent kernel execution
and DVFS." In Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 1-11. IEEE
Computer Society, 2015.
[16] Jia, Wenhao, Kelly A. Shaw, and Margaret Martonosi. "MRPB:
Memory request prioritization for massively parallel processors." In 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 272-283. IEEE, 2014.
[17] Jog, Adwait, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W.
Keckler, Mahmut T. Kandemir, and Chita R. Das. "Application-aware
memory system for fair and efficient execution of concurrent GPGPU
applications." InProceedings of workshop on general purpose processing
using GPUs, p. 1. ACM, 2014.
[18] Jog, Adwait, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny
Bolotin, Niladrish Chatterjee, Stephen W. Keckler, Mahmut T. Kandemir,
and Chita R. Das. "Anatomy of GPU Memory System for Multi-Application
Execution." In Proceedings of the 2015 International Symposium on
Memory Systems, pp. 223-234. ACM, 2015.
[19] Jones, Stephen. "Introduction to dynamic parallelism." In GPU
Technology Conference Presentation S, vol. 338, p. 2012. 2012.
[20] Justin Luitjens. “Cuda Streams: Best Practices and Common Pitfalls”,
GPU Techonology Conference, 2015.
[21] Kayıran, Onur, Adwait Jog, Mahmut Taylan Kandemir, and Chita
Ranjan Das. "Neither more nor less: optimizing thread-level parallelism for
GPGPUs." InProceedings of the 22nd international conference on Parallel
architectures and compilation techniques, pp. 157-166. IEEE Press, 2013.
[22] Kloosterman, John, Jonathan Beaumont, Mick Wollman, Ankit Sethia,
Ron Dreslinski, Trevor Mudge, and Scott Mahlke. "WarpPool: sharing
requests with inter-warp coalescing for throughput processors."
In Proceedings of the 48th International Symposium on Microarchitecture,
pp. 433-444. ACM, 2015.
[23] Li, Ang, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal.
"Adaptive and transparent cache bypassing for GPUs." In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 17. ACM, 2015.
[24] Li, Chao, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva
Kumar Sastry Hari, and Huiyang Zhou. "Locality-driven dynamic GPU
cache bypassing." In Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 67-77. ACM, 2015.
[25] Li, Dong, Minsoo Rhu, Daniel R. Johnson, Mike O'Connor, Mattan
Erez, Doug Burger, Donald S. Fussell, and Stephen W. Redder. "Priority-
based cache allocation in throughput processors." In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pp. 89-100. IEEE, 2015.
[26] Liang, Yun, Huynh Phung Huynh, Kyle Rupnow, Rick Siow Mong
Goh, and Deming Chen. "Efficient gpu spatial-temporal multitasking." IEEE
Transactions on Parallel and Distributed Systems 26, no. 3 (2015): 748-760.
[27] “NVIDIA CUDA compute unified device architecture -programming
guide.” https://docs.nvidia.com/cuda/cuda-c-programming-guide/, 2008.
[28] “Whitepaper: NVIDIA’s Next Generation CUDA TM Compute
Architecture: Fermi TM ,” tech. rep., NVIDIA, 2009.
[29] “Whitepaper: NVIDIA’s Next Generation CUDA TM Compute
Architecture: Kepler TM GK110,” tech. rep., NVIDIA, 2012.
[30] “Whitepaper: NVIDIA GeForce GTX980,” tech. rep., NVIDIA, 2014.
[31] “Whitepaper: NVIDIA GeForce GTX1080,” tech. rep., NVIDIA,
2016.
[32] Pai, Sreepathi, Matthew J. Thazhuthaveetil, and Ramaswamy
Govindarajan. "Improving GPGPU concurrency with elastic kernels." ACM
SIGPLAN Notices 48, no. 4 (2013): 407-418.

[33] Park, Jason Jong Kyu, Yongjun Park, and Scott Mahlke. "Dynamic
Resource Management for Efficient Utilization of Multitasking GPUs." In
Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems.
ACM, 2017.
[34] Qureshi, Moinuddin K., and Yale N. Patt. "Utility-based cache
partitioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches." In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 423-432. IEEE
Computer Society, 2006.
[35] Rogers, Phil, Ben Sander, Yeh-Ching Chung, B. R. Gaster, H. Persson,
and W-M. W. Hwu. "Heterogeneous system architecture (hsa): Architecture
and algorithms tutorial." In Proceedings of the 41st Annual International
Symposium on Computer Architecture.
[36] Rogers, Timothy G., Mike O'Connor, and Tor M. Aamodt. "Cache-
conscious wavefront scheduling." In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 72-83. IEEE
Computer Society, 2012.
[37] Schulte, Michael J., Mike IgnatoWSki, Gabriel H. Loh, Bradford M.
Beckmann, William C. Brantley, Sudhanva Gurumurthi, Nuwan Jayasena,
Indrani Paul, Steven K. Reinhardt, and Gregory Rodgers. "Achieving
exascale capabilities through heterogeneous computing." IEEE Micro 35,
no. 4 (2015): 26-36.
[38] Sethia, Ankit, D. Anoushe Jamshidi, and Scott Mahlke. "Mascar:
Speeding up gpu warps by reducing memory pitstops." In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pp. 174-185. IEEE, 2015.
[39] Sethia, Ankit, and Scott Mahlke. "Equalizer: Dynamic tuning of gpu
resources for efficient execution." In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 647-658.
IEEE Computer Society, 2014.
[40] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, Li Wen Chang, N.
Anssari, G. D. Liu, and W. mei W. Hwu. Parboil: A revised benchmark suite
for scientific and commercial throughput computing. IMPACT Technical
Report, 2012.
[41] Tanasic, Ivan, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho
Navarro, and Mateo Valero. "Enabling preemptive multiprogramming on
GPUs." In ACM SIGARCH Computer Architecture NeWS, vol. 42, no. 3,
pp. 193-204. IEEE Press, 2014.
[42] Ukidave, Yash, Charu Kalra, David Kaeli, Perhaad Mistry, and Dana
Schaa. "Runtime support for adaptive spatial partitioning and inter-kernel
communication on gpus." In Computer Architecture and High Performance
Computing (SBAC-PAD), 2014 IEEE 26th International Symposium on, pp.
168-175. IEEE, 2014.
[43] Wang, Jin, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili.
"Dynamic thread block launch: a lightweight execution mechanism to
support irregular applications on GPUs." In ACM SIGARCH Computer
Architecture NeWS, vol. 43, no. 3, pp. 528-540. ACM, 2015.
[44] Wang, Ruisheng, and Lizhong Chen. "Futility scaling: High-
associativity cache partitioning." In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 356-367. IEEE, 2014.
[45] Wang, Zhenning, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. "Simultaneous Multikernel GPU: Multi-tasking
throughput processors via fine-grained sharing." In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 358-
369. IEEE, 2016.
[46] Xu, Qiumin, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali
Annavaram. "Warped-slicer: efficient intra-SM slicing through dynamic
resource partitioning for GPU multiprogramming." In Proceedings of the
43rd International Symposium on Computer Architecture, pp. 230-242.
IEEE Press, 2016.
[47] Xie, Xiaolong, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang.
"Coordinated static and dynamic cache bypassing for GPUs." In 2015 IEEE
21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 76-88. IEEE, 2015.
[48] Zhong, Jianlong, and Bingsheng He. "Kernelet: High-throughput gpu
kernel executions with dynamic slicing and scheduling." IEEE Transactions
on Parallel and Distributed Systems 25, no. 6 (2014): 1522-1532.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

