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Abstract-Following the advances in technology scaling, 
graphics processing units (GPUs) incorporate an increasing 
amount of computing resources and it becomes difficult for a 
single GPU kernel to fully utilize the vast GPU resources. 
One solution to improve resource utilization is concurrent 
kernel execution (CKE). Early CKE mainly targets the 
leftover resources. However, it fails to optimize the resource 
utilization and does not provide fairness among concurrent 
kernels. Spatial multitasking assigns a subset of streaming 
multiprocessors (SMs) to each kernel. Although achieving 
better fairness, the resource underutilization within an SM is 
not addressed. Thus, intra-SM sharing has been proposed to 
issue thread blocks from different kernels to each SM. 
However, as shown in this study, the overall performance 
may be undermined in the intra-SM sharing schemes due to 
the severe interference among kernels. Specifically, as 
concurrent kernels share the memory subsystem, one kernel, 
even as computing-intensive, may starve from not being able 
to issue memory instructions in time. Besides, severe L1 D-
cache thrashing and memory pipeline stalls caused by one 
kernel, especially a memory-intensive one, will impact other 
kernels, further hurting the overall performance. 

In this study, we investigate various approaches to 
overcome the aforementioned problems exposed in intra-SM 
sharing. We first highlight that cache partitioning techniques 
proposed for CPUs are not effective for GPUs. Then we 
propose two approaches to reduce memory pipeline stalls. 
The first is to balance memory accesses of concurrent 
kernels. The second is to limit the number of inflight memory 
instructions issued from individual kernels. Our evaluation 
shows that the proposed schemes significantly improve the 
weighted speedup of two state-of-the-art intra-SM sharing 
schemes, Warped-Slicer and SMK, by 24.6% and 27.2% on 
average, respectively, with lightweight hardware overhead. 

1. Introduction 
Following the technology scaling trend, modern GPUs 
integrate an increasing amount of computing resources 
[1][28][29][30][31]. Since GPUs have become prevalent in 
high performance computing, they need to support 
applications with diverse resource requirements. As a result, 
GPU resources are typically underutilized by a single kernel. 

To solve the problem of GPU resource underutilization, 
concurrent kernel execution (CKE) [20] has been proposed to 
support running multiple kernels concurrently on a GPU. One 

approach to achieve concurrent kernel execution is to apply 
the left-over policy, in which resources are assigned to one 
kernel as much as possible and the leftover resources are then 
used for another kernel. The examples implementing this 
approach include the queue-based multiprogramming 
[35][37] introduced by AMD and Hyper-Q by NVIDIA [29]. 
However, the simple left-over policy fails to optimize 
resource utilization and does not provide fairness or quality 
of service (QoS) to concurrent kernels. 

Researchers have proposed software and hardware 
schemes to better exploit CKE. Studies have shown that CKE 
improves GPU resource utilization especially when kernels 
with complementary characteristics are running together. 
Models [17] [26] [48] aim to find the optimal pair of kernels 
to run concurrently. Kernel slicing [48] partitions a big kernel 
into smaller ones such that no single kernel consumes all 
resources. Elastic kernel [32] dynamically adjusts the kernel 
size based on the resource availability. Those approaches 
have demonstrated the advantages of CKE. However, it may 
not be feasible to modify every application. To exploit CKE 
more broadly, we focus on hardware approaches in this work. 

One hardware-based CKE scheme is spatial multitasking 
[2], which groups streaming multiprocessors (SMs) in a GPU 
into multiple sets and each set can execute a different kernel. 
Such SM partition enables better fairness among kernels but 
does not address resource underutilization within an SM. For 
instance, the computing resources in an SM, often idle when 
running a memory-intensive kernel, cannot be utilized for a 
compute-intensive kernel on other SMs. 

One appealing approach to improve resource utilization 
within an SM is intra-SM sharing, in which thread blocks 
from different kernels can be dispatched to one SM. The 
intuitive idea is to run kernels with complementary 
characteristics concurrently on an SM, such as a compute-
intensive kernel and a memory-intensive one.  

SMK [45] and Warped-Slicer [46] are two state-of-the-art 
intra-SM sharing schemes, and they adopt different 
algorithms to determine Thread-Block (TB) partition among 
concurrent kernels, i.e., how many TBs can be issued from 
individual kernels to the same SM. Specifically, SMK  uses 
the metric ‘Dominant Resource Fairness (DRF)’ to fairly 
allocate static resources (including registers, shared memory, 
number of active threads and number of TBs) among kernels. 
As good fairness in static resource allocation does not 
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necessarily lead to good performance fairness, SMK also 
periodically allocates quotas of warp instructions for 
individual kernels based on profiling each kernel in isolation. 
On the other hand, Warped-Slicer determines TB partition 
based on scalability curves (performance vs. the number of 
TBs from a kernel in an SM), which can be obtained with 
either offline/static profiling each kernel in isolation or 
online/dynamic profiling during concurrent execution. The 
TB partition, for which the performance degradation of each 
kernel is minimized when running them concurrently, is 
identified as the sweet point. 

Although SMK and Warped-Slicer outperform spatial 
multitasking, their static approaches profile individual 
kernels in isolation and the dynamic approaches do not fully 
address the interference among concurrent kernels within an 
SM. First, since kernels share the same memory pipeline in 
intra-SM sharing, one kernel will starve if it continuously 
loses competition to issue memory instructions. Specifically, 
as compute-intensive kernels have significantly fewer 
memory instructions than memory-intensive ones, their 
memory instructions tend to be delayed, leading to their 
severe performance loss. Second, as shown in previous works 
[8] [38], memory pipeline stalls caused by cache-miss-related 
resource saturation prevent ready warps from issuing new 
memory instructions. In intra-SM sharing, such memory 
pipeline stalls and L1 D-cache thrashing caused by one kernel 
will impose stalls on all other co-running kernels, hurting 
their performance. 

To overcome the aforementioned issues in intra-SM 
sharing on GPUs, this paper explores the following 
approaches. First, we investigate the effectiveness of cache 
partitioning and highlight that cache partitioning cannot 
effectively reduce memory pipeline stalls on GPUs. Second, 
we propose to balance memory request issuing such that a 
compute-intensive kernel does not undergo starvation in 
accessing the shared memory subsystem. Third, we propose 
memory instruction limiting to control the number of inflight 
memory instructions from individual kernels so as to reduce 
memory pipeline stall and relieve L1 D-cache thrashing. With 
the proposed schemes, we can reduce interference among 
concurrent kernels and mitigate memory pipeline stalls, 
thereby achieving higher computing resource utilization, 
weighted speedup, and fairness. 

Overall, this paper makes the following contributions: 
• We demonstrate that while the state-of-the-art intra-SM 

sharing schemes can identify a good performing TB 
partition, they do not fully address the interference, 
especially within an SM, among concurrent kernels. 

• We show that while cache partitioning cannot reduce 
memory pipeline stalls, it is beneficial to balance 
memory accesses and limit the number of inflight 
memory instructions from concurrent kernels. 

• Our experiments show that compared to the two state-
of-art intra-SM sharing schemes: our approaches 
improve the Weighted Speedup of Warped-Slicer and 
SMK by 24.6% and 27.2% on average, respectively. 

2. Motivation and Methodology 
2.1.  Baseline Architecture and Memory Request 

Handling 

As shown in Figure 1, a modern GPU consists of multiple 
streaming multiprocessors (SMs). A GPU kernel is launched 
with a grid of thread blocks (TBs). Threads within a TB form 
multiple warps and all threads in a warp execute instructions 
in a SIMD manner. More than one warp scheduler can reside 
in one SM. 

Besides massive multithreading, GPUs have adopted 
multi-level cache hierarchies to mitigate long off-chip 
memory access latencies. Within each SM, the on-chip 
memory resources include a read-only texture cache and a 
constant cache, an L1 data cache (D-cache), and shared 
memory. A unified L2 cache is shared among multiple SMs. 

On GPUs, global and local memory requests from threads 
in a warp are coalesced into as few transactions as possible 
before being sent to the memory hierarchy. For a request sent 
to the L1 D-cache, if it is a hit, the required data is returned 
immediately; if it is a miss, cache-miss-related resources are 
allocated, including a miss status handling register (MSHR) 
and a miss queue entry, and then the request is sent to the L2 
cache. If any of the required resources is not available, a 
reservation failure occurs and the memory pipeline is stalled. 
The allocated MSHR is reserved until the data is fetched from 
the L2 cache/off-chip memory while the miss queue entry is 
released once the miss request is sent to the L2 cache. 

2.2. Multiprogramming Support in GPUs 

Since GPUs continue to incorporate an increasing amount of 
computing resources, CKE has been introduced to improve 

Table 1. Baseline architecture configuration 
# of SMs 16, SIMD width=32, 1.4GHz 

Per-SM warp schedulers 4 Greedy-Then-Oldest schedulers 

Per-SM limit 
3072 threads, 96 warps, 16 thread 
blocks, 128 MSHRs 

Per-SM L1D-cache 24KB, 128B line, 6-way associativity 

Per-SM SMEM 96KB, 32 banks 

Unified L2 cache 
2048 KB, 128KB/partition, 128B line, 
16-way associativity, 128 MSHRs 

L1D/L2 policies 
xor-indexing, allocate-on-miss, LRU, 
L1D:WEWN,  L2: WBWA 

Interconnect 16*16 crossbar, 32B flit size, 1.4GHz 

DRAM 
16 memory channels, FR-FCFS 
scheduler, 924MHz, BW: 48bytes/cycle 

 
Figure 1. Baseline GPU. 
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resource utilization. With the Hyper-Q architecture [29], 
kernels are mapped into multiple stream queues. Grid launch 
inside a GPU kernel has been proposed to reduce costly CPU 
intervention [19]. The HSA foundation [35] introduced a 
queue based approach for heterogeneous systems with GPUs. 
However, none specifies how memory instructions are 
selected to issue from individual kernels when they run 
concurrently in the same SM. 

2.3. Methodology 

We use GPGPUsim V3.2.2 [5], a cycle-accurate GPU 
microarchitecture simulator, to evaluate different CKE 
schemes. Table 1 shows the baseline NVIDIA Maxwell-like 
GPU architecture configuration. We extensively modified 
GPGPUsim to issue warp instructions from concurrent 
kernels, which share the same backend execution pipeline. 

We have studied various GPU applications from NVIDIA 
CUDA SDK [27], Rodinia [7], Parboil [40] and Polybench 
[11]. CKE workloads are constructed by paring different 
applications. Each workload runs for 2M cycles and a kernel 
will restart if it completes before 2M cycles, the same as in 
previous works [2][45]. We mainly report the evaluation 
using the Weighted Speedup, which is the sum of speedups 
of co-running kernels, speedup being defined as the 
normalized IPC in concurrent execution over the IPC in 
isolated execution, and the average normalized turnaround 
time (ANTT), which quantifies the average user-perceived 
slowdown and incorporates fairness [10]. Besides, while it is 
intuitive to concurrently run kernels with complimentary 
characteristics, such a practice requires knowledge about the 
characteristics of kernels to run. Not to lose generality, we 

also report the experimental results for concurrent kernels of 
the same type. Also, as different compute-intensive kernels 
may use different types of computing units and different 
memory-intensive kernels may stress various parts along the 
memory access path (e.g. the interconnect, the L2 cache, and 
memory), there is still potential to increase the overall GPU 
resource utilization for concurrent kernels of the same type 
with dedicated management. 

2.4. Workload Characterization 

In this section, we classify applications into compute-
intensive and memory-intensive categories. Then we present 
motivational data regarding how the utilization of computing 
units, the percentage of LSU (Load/Store Unit) stall cycles, 
and the memory access behaviours vary across applications. 

Table 2 and Figure 2 show the benchmark characteristics. 
First, Table 2 presents the occupancy of static resources 
(including registers, shared memory, the number of threads 
and the number of TB slots). It is possible to improve the 
static resource utilization by running benchmarks with 
complementary requirements concurrently, as discussed in 
SMK [45]. Second, as shown in Figure 2, where benchmarks 
are arranged in the decreasing order of ALU utilization, an 
inverse relationship exists between utilization of computing 
units and percentage of LSU stalls. Based on the percentage 
of LSU stalls, we classify benchmarks with more than 20% 
LSU stalls as memory-intensive (M), and others as compute-
intensive (C), indicated in the column ‘Type’ in Table 2. We 
shall note that LSU stalls reflect memory pipeline stalls 
resulted from failing to allocate cache-miss-related resources 
(MSHRs, miss queue entries, etc.) for outstanding misses and 
since more such resources are provisioned in our modelled 
architecture (Table 1), certain benchmarks, e.g., bs, may 
show different characteristics, compared to previous works 
[6][36]. 

Table 2 also shows that compute-intensive kernels and 
memory-intensive ones have different memory/cache access 
behaviours. First, compute-intensive kernels have more 
compute instructions per memory one, than memory-

Table 2. Benchmarks 

Benchmark RF_oc SMEM_oc Thread_oc TB_occu 
Cinst 

/Minst 
Req 

/Minst 
l1d_ 

miss_rate 
l1d_ 

rsfail_rate 
Type 

cp(cutcp)[40] 87.5% 67.0% 66.7% 100.0% 4 2 0.45 0.04 C 
hs (hotspot) [7] 98.4% 21.9% 58.3% 43.8% 7 3 0.97 1.53 C 

dc(dxtc)[27] 56.2% 33.3% 33.3% 100.0% 5 1 0.09 0.17 C 
pf (pathfinder) [7] 75.0% 25.0% 100.0% 75.0% 6 2 0.99 0.00 C 
bp (backprop) [7] 56.2% 13.3% 100.0% 75.0% 6 2 0.80 0.33 C 

bs(bfs)[7] 75.0% 0.0% 100.0% 37.5% 4 1 1.00 0.00 C 
st(stencil)[40] 75.0% 0.0% 100.0% 37.5% 4 1 0.67 1.15 C 

3m (3mm) [11] 56.2% 0.0% 100.0% 75.0% 2 1 0.63 5.45 M 
sv (spmv) [40] 75.0% 0.0% 100.0% 100.0% 3 3 0.78 5.23 M 

cd(cfd)[7] 100.0% 0.0% 33.3% 100.0% 9 6 0.96 7.23 M 
s2(sad2)[40] 50.0% 0.0% 66.7% 100.0% 2 2 0.92 6.80 M 

ks (kmeans) [7] 56.2% 0.0% 100.0% 75.0% 3 17 1.00 7.96 M 
ax (ATAX) [11] 56.2% 0.0% 100.0% 75.0% 2 11 0.97 79.70 M 

 
Figure 2. Computing resource utilization and LSU stalls.  
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intensive kernels, as indicated in the column ‘Cinst/Minst’. 
For example, while ‘Cinst/Minst’ is 7 for hs, it is only 2 for 
3m. Second, memory-intensive kernels may have different 
degrees of memory request coalescing, as indicated in the 
column ‘Req/Minst’ which denotes the average number of 
requests per memory instruction. For instance, while 
‘Req/Minst’ is 3 for sv, it is 17 for ks. And the other two 
columns ‘l1d_miss_rate’ and ‘l1d_rsfail_rate’ in Table 2 
denote miss rate and reservation failures per L1 D-cache 
access, respectively. Although compute-intensive kernels 
may show a high ‘l1d_miss_rate’, they still achieve high 
utilization of compute units, due to the streaming accesses in 
L1 D-cache and the usage of shared memory. And a high 
‘l1d_rsfail_rate’ of a kernel implies severe cache-miss-
related resource congestion and thus memory pipeline stalls 

2.5. Motivational Analysis 

In this part, we illustrate that while the state-of-the-art SM-
sharing scheme, Warped-Slicer, can find a good performing 
TB partition, there is potential to improve the performance by 
addressing the intra-SM interference among kernels. 

Figure 3 illustrates the workflow of Warped-Slicer with 
the two-programmed workload bp+sv, where bp is compute-
intensive and sv is memory-intensive. Figure 3(a) shows the 
performance scalability curves of both benchmarks when 
they run in isolation. While the performance of bp near-
linearly increases with more TBs, the performance of sv first 
increases and then decreases with more TBs launched to an 
SM. Then as shown in Figure 3(b), the scalability curves of 
bp and sv are used to identify the sweet point, i.e., the TB 
combination, where the performance degradation of each 
kernel is minimized while meeting the resource constraint. 
For the case of bp+sv, the sweet point is (9, 4), i.e. 9 TBs 

from bp and 4 TBs from sv, and the theoretical Weighted 
Speedup, which is computed as the sum of normalized IPCs, 
for bp+sv is 1.94 at the sweet point. 

As introduced in Section 1, while the static Warped-Slicer 
approach profiles each kernel in isolation, the dynamic 
approach obtains the performance scalability curves of co-
running kernels concurrently by running different numbers of 
TBs on SMs (1 TB on one SM, 2 TBs on a second SM and so 
on), where each SM is allocated to execute TBs from one 
kernel and time sharing of SMs is applied if the total number 
of possible TB configurations from all co-running kernels is 
more than the number of SMs. The dynamic approach 
considers the interference among co-running kernels across 
SMs and uses the scaling factor and the weight factor to offset 
the imbalance problem in the L2 cache and memory accesses 
[46]. 

Figure 4 shows that the achieved Weighted Speedup is 
lower than the theoretical value when the optimal TB 
partitions are selected using dynamic Warped-Slicer. The 
results are the geometric mean of all the combinations of 2 
kernels and different combinations exhibit different features 
regarding how individual kernels perform. First, for C+C 
workloads, the achieved Weighted Speedup is close to the 
theoretical and co-running kernels show similar speedups. 
Second, for C+M workloads, the memory-intensive kernel 
may dominate the usage of memory pipeline and also 
execution in an SM while the compute-intensive one shows 
significant performance loss because its memory requests 
suffer delays and cannot be timely served, so as its 
computation operations. Third, for M+M workloads, one 
kernel may suffer more than the other, due to their different 
memory/cache access behaviours. Due to such interference, 
the achieved Weighted Speedup for C+M and M+M 
workloads are much lower than the theoretical. Therefore, it 
is crucial to further reduce the interference among kernels in 
intra-SM sharing, especially in the memory pipeline and the 
memory subsystem, so as to improve computing resource 
utilization and achieve better performance. 

3. Overcome the Hurdle of Memory Pipeline 
Stalls 

In Section 2.5, we demonstrated that memory pipeline stalls 
incurred by one kernel may negatively affect other kernels on 
the same SM. To overcome this issue, we study three methods 
to better accommodate memory requests and improve 
computing unit utilization. The three methods are:  1) cache 
partitioning; 2) balance memory request issuing to prevent 
the starvation of any kernel in accessing data; and 3) limit the 
number of inflight memory instructions to mitigate L1 D-
cache thrashing and memory pipeline stalls. 

3.1. Cache Partitioning  

In this part, we show that simply applying cache partitioning 
cannot improve the Weighted Speedup for intra-SM sharing. 

Figure 5 illustrates the effectiveness of cache partitioning, 
where ‘WS’ denotes TB partition using Warped-Slicer and 

 
          (a)                             (b) 
Figure 3. (a) Performance vs. increasing TB occupancy in 

one SM, (b) identify the performance sweet spot. 
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‘WS-L1D Partition’ is for WS with L1 D-cache partitioning, 
for which UCP (Utility-based Cache Partitioning) [34] is 
adopted. First, Figure 5(a) shows that, on average, L1 D-
cache partitioning fails to improve Weighted Speedup across 
all three workload classes. Two workloads from each class 
are selected for further investigation, pf+bp and bp+hs from 
the C+C class, bp+sv and bp+ks from C+M, and sv+ks and 
sv+ax from M+M. Among them, there is not much Weighted 
Speedup variation for pf+bp and bp+sv; bp+hs, bp+ks and 
sv+ks show Weighted Speedup degradation with L1 D-cache 
partitioning; and only sv+atx obtains Weighted Speedup 
improvement. 

We checked L1 D-cache efficiency and cache-miss-
related resource congestion to better understand how cache 
partitioning affects performance. Figure 5 (b) and (c) present 
the L1 D-cache miss rate and rsfail rate (reservation failures 
per access) of individual kernels in the selected workloads. 
First, pf+bp and bp+sv do not show much variation in L1 D-
cache miss rate and rsfail rate between WS and ‘WS-L1D 
Partition’. Second, although bp in bp+hs, ks in bp+ks and ks 
in sv+ks has a lower L1 D-cache miss rate in ‘WS-L1D 
Partition’ than WS, the other kernel, namely hs in bp+hs, bp 
in bp+ks and sv in sv+ks, suffers from a much higher L1 D-
cache rsfail rate, i.e., more reservation failures per access, 
because a smaller portion of L1 D-cache is assigned to it 
according to UCP and a cache slot needs to be allocated for 
an outstanding miss. The combined effect of the reduced L1 
D-cache miss rate of one kernel, a higher rsfail rate of the 
other and high miss penalty leads to the performance 
degradation. Third, for sv+ax, ax obtains both lower L1 D-
cache miss rate and rsfail rate, and the reduction in 
reservation failures of ax benefits the co-running kernel sv, 

resulting in improved performance of sv+ax with ‘WS-L1D 
Partition’. 

As discussed, while cache partitioning may help reduce 
the miss rate of a kernel in intra-SM sharing, it does not 
necessarily reduce the overall memory pipeline stalls. 
Although it is possible that the effectiveness of cache 
partitioning can be improved if reservation failures are taken 
into account, it is nontrivial to differentiate reservation 
failures caused by each kernel as the cache-miss-related 
resources are shared and the occupancy of those resource by 
one kernel may lead to reservation failures of another and it 
requires dedicated hardware designs, in addition to shadow 
tag arrays used to evaluate partitioning configurations [34]. 

3.2. BMI: Balanced Memory Request Issuing 

In this section, we present the idea of balanced memory 
request issuing in intra-SM sharing. 

As shown in Table 2, compute-intensive kernels tend to 
have more compute instructions per memory one, indicated 
by ‘Cinst/Minst’, than memory-intensive kernels. Also, 
compute-intensive kernels have fewer requests per memory 
instruction, indicated by ‘Req/Minst’. When multiple kernels 
concurrently run on the same SM, they compete for the same 
memory pipeline. Since a memory-intensive kernel has more 
memory instructions in nature, it has a higher probability to 
access LSU (Load/Store Unit) if there is no dedicated 
memory instruction issuing management. When the 
compute-intensive kernel needs to issue a memory 
instruction, however, it has to wait until the LSU becomes 
available. Due to the high ‘Req/Minst’ of memory-intensive 
kernels, the waiting time can be quite long especially when 
the memory-intensive kernel has a low hit rate and/or a high 

 
  (a)                 (b)          (c) 

Figure 6. L1 D-cache accesses: (a) bp executes in isolation; (b) sv executes in isolation; (c) bp and sv run concurrently.
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Figure 5. Effectiveness of Cache Partitioning: (a) Weighted Speedup; (b) L1 D-cache miss rate; and (c) L1 D-cache rsfail rate. 
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rsfail rate. Moreover, the compute-intensive kernel may lose 
the competition again due to the warp scheduling policy even 
when the LSU becomes available. 

Figure 6 shows the number of L1 D-cache accesses with a 
sampling interval of 1K cycles for the workload bp+sv, where 
bp is compute-intensive and sv is memory-intensive. Figure 
6 (a) and (b) show that both bp and sv have a considerable 
amount (around 130) of accesses every 1K cycles when either 
runs in isolation. However, as shown in Figure 6 (c), when 
they run concurrently, sv dominates L1 D-cache accesses and 
bp starves. Even when the underlying GTO warp scheduling 
policy determines that the warps of bp should be actively 
scheduled, like for the time windows [200K, 400K] and 
[600K, 800K], sv still aggressively issues requests to L1 D-
cache and bp only achieves around 70 accesses per 1K cycles, 
much lower compared to that when it runs in isolation. 
Consequently, bp cannot get its memory requests 
accommodated timely and therefore not able to execute data-
dependent computation instructions, leading to the 
performance degradation. 

To resolve the problem that one kernel starves from failing 
to access the memory subsystem, we propose balanced 
memory request issuing (BMI). One way to implement BMI 
is to issue memory instructions from concurrent kernels in a 
loose round-robin manner and this approach is referred to as 
RBMI. However, since one warp memory instruction may 
result in multiple memory requests and different kernels 
show different ‘Req/Minst’ (as seen in Table 2), RBMI 
cannot ensure balanced memory accessing among concurrent 
kernels. To overcome this problem, we propose quota-based 
memory instruction issuing, named QBMI, and the memory 
instruction quotas of concurrent kernels are calculated with 
the formula below: 

௞௜ܽݐ݋ݑܳ ൌ ܯܥܮ ቀቀ ቁ௞଴ݐݏ݊݅ܯݍܴ݁ , ቀ ቁ௞ଵݐݏ݊݅ܯݍܴ݁ , … , ቀ ቁ௞௡ቁቀݐݏ݊݅ܯݍܴ݁ ቁ௞௜ݐݏ݊݅ܯݍܴ݁  

where ܳܽݐ݋ݑ௞௜ is the quota for kernel i, ܯܥܮ denotes Least 

Common Multiple and ቀ ோ௘௤ெ௜௡௦௧ቁ௞௜  is the average number of 

requests per memory instruction for kernel i. Therefore, the 
higher ‘Req/Minst’ of a kernel, the lower quota will be 

assigned to it. As defined, QBMI takes multiple accesses 
from an atomic operation into account. 

The workflow of QBMI is shown in Figure 7. The priority 
of a kernel to issue a memory instruction is based on its 
current quota and the more its quota, the higher its priority. 
Each time a memory instruction is issued from a kernel, its 
quota is decremented by 1. When the quota of any kernel 
reaches zero, a new set of quotas, calculated with the most 
recent values of ‘Req/Minst’, will be added to the current 
quota values of concurrent kernels, so as to eliminate the 
scenario where a kernel with zero quota cannot issue memory 
instructions even when there is no ready memory instruction 
from any other co-running kernel. Specifically, ‘Req/Minst’ 
of a kernel is updated every 1024 memory requests issued by 
it. The sampling interval of 1024 accesses works well as the 
metric ‘Req/Minst’ is relatively stable throughout the 
execution of a GPU kernel. 

Figure 8 shows the number of warp instructions issued 
from the two kernels of the workload bp+sv, with a sampling 
interval of 1K cycles, where WS-RBMI in Figure 8(b) 
denotes TB partition with Warped-Slicer plus RBMI and 
WS-QBMI in Figure 8(c) is for Warped-Slicer plus QBMI. 
As we can see, RBMI and QBMI both enable more warp 
instructions to be issued from the compute-intensive kernel 
bp than WS. For example, compared to WS, bp issues more 
instructions for the time windows [200K, 400K] and [600K, 
800K] under WS-RBMI and even more instructions are 
issued under WS-QBMI. This confirms our hypothesis: in-
time memory request accommodation is critical for the 
execution of compute-intensive kernels in CKE.  And more 
warp instruction issuing translates to a better performance of 
bp. As shown in Figure 8(d), the normalized IPC (IPC of 
concurrent execution to that of isolated execution) of bp 

 
  (a)             (b)       (c)          (d) 

Figure 8. Warp instruction issuing: (a) WS; (b) WS-RBMI; (c) WS-QBMI; (d) Normalized IPC. 
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increases from 0.39 under WS to 0.45 under WS-RBMI and 
to 0.48 under WS-QBMI as more cache bandwidth is 
assigned to bp and in turn more compute instructions can be 
executed. In the meanwhile, the performance of sv remains 
relatively stable. Therefore, the overall performance is 
improved. Since QBMI can better cope with the different 
degrees of memory coalescing (indicated by ‘Req/Minst’) 
and shows a better performance than RBMI, we adopt QBMI 
in the rest of the paper. 

3.3. MIL: Memory Instruction Limiting 

Although QBMI is good to use when memory access 
imbalance (i.e., when one kernel issues too many requests) is 
the main issue, it does not necessarily reduce memory 
pipeline stalls. In this section, we highlight that the overall 
performance can be further improved by explicitly limiting 
the number of in-flight memory instructions when the 
memory pipeline stalls often and different kernels are in 
favour of different memory instruction limiting numbers. 

While BMI can help achieve more balanced memory 
accesses and get a kernel’s requests served more timely, it 
does not necessarily reduce memory pipeline stalls incurred 
by a memory-intensive kernel and the co-running kernels 
may still suffer from such penalties. In the meanwhile, 
limiting the number of in-flight memory instructions of a 
kernel is an effective way to reduce memory pipeline stalls 
and improve L1 D-cache efficiency. To exploit this factor, we 
propose MIL (Memory Instruction Limiting) for intra-SM 
sharing and we investigate two variants of MIL: SMIL (static 
MIL) and DMIL (dynamic MIL). 

3.3.1  SMIL: Static Memory Instruction Limiting 

In SMIL, we run simulations for all combinations regarding 
the number of in-flight memory instructions that can be 
issued from individual kernels in intra-SM sharing. 
Specifically, we vary the in-flight memory instruction 
limiting number on kernel 0 from 1 to 24, and symmetrically 
for kernel 1. The simulation point of no such a limitation (Inf) 
for each kernel is also examined.  

We use one representative workload from each class to 
show how SMIL performs. Figure 9 shows the performance 
with varied memory instruction limiting numbers on kernel 0 
and kernel 1. In the figures, the right horizontal axis 
(Limit_k0) denotes the memory instruction limiting number 

on kernel 0 while the left one (Limit_k1) is for kernel 1, and 
the vertical axis indicates Weighted Speedup. 

Figure 9(a) shows that for the C+C workload, pf+bp, with 
a fixed Limit_k1, the performance increases with a larger 
Limit_k0 and it is similar when varying Limit_k1 with 
Limit_k0 fixed. Therefore, there is no need to limit the 
number of inflight memory instructions for co-running 
compute-intensive kernels. Figure 9(b) shows the case of a 
C+M workload, bp+ks, in which the overall performance 
suffers from a large number of in-flight memory instructions 
issued by kernel 1, ks. When Limit_k1 is at least 8, the 
performance is low with varied Limit_k0 and Limit_k1. 
When Limit_k1 is small (smaller than 8), a better 
performance can be achieved with a large Limit_k0, due to 
the improved L1 D-cache locality resulted from the combined 
effect of in-flight memory instruction limiting and underlying 
warp scheduling policy GTO. Figure 9(c) presents the case of 
sv+ks, an M+M workload, in which the performance remains 
low when Limit_k1 is at least 8. However, different from 
bp+ks, the overall performance first increases and then 
decreases with a larger Limit_k0 when Limit_k1 is small 
(smaller than 8). As a result, an optimal point exists in terms 
of the peak performance and it is (3, 1) for sv+ks, indicating 
the highest performance occurs when Limit_k0 is 3 and 
Limit_k1 is 1. 

As illustrated, limiting the number of in-flight memory 
instructions from the memory-intensive kernel effectively 
improves the overall performance. The compute-intensive 
kernel can have a better chance to access memory subsystem 
and get requests served timely when memory pipeline stalls 
are reduced with fewer in-flight memory instructions from 
the co-running memory-intensive kernel. In the meanwhile, 
the performance of the memory-intensive kernel also 
increases due to the improved L1 D-cache efficiency. 
However, since different kernels have different memory 
access features, indicated by metrics like ‘Req/Minst’ and 
‘l1d miss rate’ (Table 2), different workloads show different 
optimal limiting numbers for concurrently running kernels. 

3.3.2  DMIL: Dynamic Memory Instruction Limiting 

Although SMIL can effectively improve the performance, it 
requires re-profiling whenever there are updates in the 
architecture, application optimization and input size. Also, it 
cannot cope with application phase changing behaviours. 

 
(a) pf+bp         (b) bp+ks      (c) sv+ks 

Figure 9. Weighted Speedup with varied memory instruction limiting numbers on kernel 0 and kernel 1 for workloads from 
different classes: (a) C+C workload: pf+bp; (b) C+M workload: bp+ks; (c) M+M workload: sv+ks. 
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Therefore, we propose DMIL (dynamic MIL) to adapt the in-
flight memory instruction limiting numbers at run-time. 

As discussed in Section 2.1, cache-miss-related resources, 
including a cache line slot, a MSHR and miss queue entry, 
are allocated for an outstanding miss. If any of the required 
resources is unavailable, reservation failures occur, resulting 
in memory pipeline stalls. And the memory pipeline stalls 
incurred by one kernel will affect other concurrent kernels, 
further reducing computing resource utilization and 
degrading performance. Therefore, we use the number of 
reservation failures per memory request as the indicator to 
check how severe cache contention and cache-miss-related 
resource congestion are and use the following formula to 
calculate the memory instruction limiting number: ܮܫܯ௞௜ ൌ ݔܽܯ ൬ܲ݁ܽ݇_ݐݏ݊݅ܯ_ݐ݄݈݂݃݅݊ܫ௞௜ܴ݈݁݅ܽܨ_ݒ௞௜ ≫ 10 , 1൰ 

where ܮܫܯ௞௜	is the memory instruction limiting number for 
kernel i and it is generated with a sampling interval of every 
1024 memory requests from this kernel. According to our 
experiments, the selected sampling interval works well in 
capturing the phase behaviours.  ௞௜ݐݏ݊݅ܯ_ݐ݄݈݂݃݅݊ܫ_݇ܽ݁ܲ
represents the peak number of inflight memory instructions 
in the last sampling interval. ܴ݈݁݅ܽܨ_ݒ௞௜ ≫ 10 calculates the 
number of reservation failures per memory request. To avoid 
the scenario that a kernel is prohibited to issue memory 
instructions, the policy that at least one inflight memory 
instruction from a kernel is incorporated. Overall, the allowed 
number of inflight memory instructions from a kernel is 
reduced when there are more than one reservation failures per 
memory request. The key insight is to achieve at most one 
reservation failure per memory request (i.e., a fully 
utilized/near stall-free memory pipeline). 

Figure 10 shows the organization of a memory instruction 
limiting number generator (MILG), which has one in-flight 
memory instruction counter to capture the peak number of 
inflight memory instruction in a sampling interval, one 
reservation failure counter, one memory request counter and 
one 10-bit right shifter which is used to calculate reservation 
failures per memory request. 

Since each kernel has its own MILG, for our created 2-
kernel workloads, there are two MILGs on each SM. It is 
flexible to extend to support more kernels on one SM. As 

there are MILGs in each SM, we refer to this design as local 
DMIL. Although it is possible to reduce the hardware cost by 
deploying global DMIL, which monitors concurrent kernel 
execution on one SM and broadcasts the generated results to 
others, global DMIL requires all SMs run the same pair of 
kernels. Due to the inflexibility of global DMIL, we stick to 
local DMIL in this study. 

3.4. QBMI vs. DMIL 

As discussed in Section 3.2 and 3.3, QBMI can balance 
memory accesses of concurrent kernels and DMIL can boost 
performance by reducing memory pipeline stalls incurred by 
memory-intensive kernels. In this part, we compare the 
performance impact of QBMI and DMIL, and investigate the 
integration of the two. 

Figure 11 illustrates how QBMI and DMIL perform when 
Warped-Slicer is used for TB partition and QBMI+DMIL 
denotes the combination of the two. Figure 11(a) shows the 
Weighted Speedup. First, WS-QBMI and WS-DMIL achieve 
similar performance for C+C workloads since compute-
intensive kernels have high ‘Cinst/Minst’ and low memory 
pipeline stalls. Second, on average, WS-DMIL outperforms 
WS-QBMI for C+M and M+M workloads with improved L1 

Figure 10. Organization of a Memory Instruction 
Limiting number Generator (MILG).

(a) 

(b) 

(c) 
Figure 11. Performance impact of QBMI and DMIL. 
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D-cache efficiency and further reduced memory pipeline 
stalls. For instance, compared to WS-QBMI, WS-DMIL 
effectively reduces L1 D-cache miss rate of ks from 0.88 to 
0.52 in the C+M workload bp+ks and from 0.98 to 0.52 in the 
M+M workload sv+ks (Figure 11(b)). Figure 11(c) shows 
that WS-DMIL has a lower L1 D-cache rsfail rate, indicating 
fewer memory pipeline stalls. 

While it is tempting to integrate QBMI and DMIL to reap 
the benefits of both, Figure 11 (b) and (c) show that the 
improvement from WS-QBMI+DMIL over WS-DMIL is 
minor regarding L1 D-cache efficiency and memory pipeline 
stalls, resulting its slightly better performance than WS-
DMIL, as shown in Figure 11(a). Therefore, we report how 
QBMI and DMIL perform separately in the evaluation. 

4. Experimental Results and Analysis 
In this section, we conduct experimental analysis on our 
schemes and investigate how they improve the performance 
of the two state-of-art intra-SM sharing techniques, Warped-
Slicer and SMK, both targeting TB (Thread-Block) partition, 
as described in Section 1. 
WS: Warped-Slicer [46], which enforces TB partition using 
the performance scalability curves generated by dynamically 
profiling kernels during concurrent execution. 
WS-QBMI: Our proposed quota-based balance memory 
request issuing (QBMI) is applied to WS. 
WS-DMIL: Our proposed dynamic memory instruction 
limiting (DMIL) is applied to WS. 
SMK-(P+W): SMK-(P+W) in work [45], which enforces TB 
partition based on fairness of static resources allocation and 

periodically allocates warp instruction quotas for concurrent 
kernels with profiling each one in isolation. In SMK-(P+W), 
a kernel will stop issuing instructions if it runs out of quota 
and a new set of quotas will be assigned only when quotas of 
all kernels equal zero. Since the warp instruction quota 
allocation in SMK-(P+W) and our proposed QBMI/DMIL 
are mutually exclusive, we apply our schemes to SMK-P and 
compare them with SMK-(P+W). 
SMK-(P+QBMI): QBMI is applied to SMK-P. 
SMK-(P+DMIL): DMIL is applied to SMK-P. 

4.1. Performance Evaluation and Analysis 

4.1.1 Comparison with Warped-Slicer 

In this part, we illustrate how our proposed QBMI and DMIL 
perform when Warped-Slicer is used for TB partition. 
a) Weighted Speedup, ANNT and Fairness 

Figure 12(a) show the Weighted Speedup of WS, WS-QBMI 
and WS-DMIL, and spatial multitasking (Spatial) is shown 
as a reference. We have the following observations. First, WS 
performs better than Spatial on average with a better resource 
utilization within an SM, consistent with prior works [45][46] 
Second, WS, WS-QBMI and WS-DMIL have similar 
Weighted Speedup for C+C workloads where there are 
almost no memory pipeline stalls. Third, while WS-QBMI 
and WS-DMIL outperform WS for C+M and M+M 

workloads, WS-DMIL has a much higher Weighted Speedup 
due to further reduced memory pipeline stalls and improved 
L1 D-cache efficiency. On average, Weighted Speedup is 
1.13 from Spatial, 1.20 from WS, 1.22 from WS-QBMI and 

    
          (a)                   (b)                                                            (c) 

   
                         (d)      (e)                      (f)                 (g) 
Figure 12. Effectiveness of QBMI and DMIL on top of Warped-Slicer: (a) Weighted Speedup; (b) Normalized ANNT (Average 

Normalized Turnaround Time); (c) Normalized Fairness; (d) L1 D-cache miss rate; (e) L1 D-cache rsfail rate (reservation 
failures per access); (f) percentage of LSU stall cycles; (g) computing resource utilization. 
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1.49 from WS-DMIL. Thus WS-QBMI and WS-DMIL 
improve the performance of WS by 1.5% and 24.6%. 

In addition to Weighted Speedup, we also report ANNT 
(the lower the better) and Fairness (the lowest normalized 
IPC over the highest normalized IPC, the higher the better) 
[10], shown in Figure 12(b) and (c), respectively. First, WS-
QBMI improves ANNT and Fairness for C+C workloads. 
Second, WS-QBMI and WS-DMIL greatly improve ANNT 
over WS for C+M workloads. Nevertheless, WS-QBMI and 
WS-DBMIL outperforms WS by 40.5% and 56.1% in terms 
of ANTT, on average. Regarding Fairness, WS-QBMI and 
WS-DBMIL outperforms WS by 17.8% and 32.3%. 

While WS can limit the memory instructions as well by 
limiting the number of the thread blocks, our scheme works 
at a more fine-grained granularity. For instance, WS loses the 
memory instruction limiting capability when there is only one 
TB from the memory-intensive kernel (e.g., ax in sv+ax). 
Besides, our schemes can better cope with the phase changing 
behaviours of applications. Such advantages lead to better 
performance of our schemes. 
b) L1 D-cache Miss Rate, rsfail Rate and LSU Stalls 

In this section, we show that our proposed schemes achieve 
high L1 D-cache efficiency and significantly relieve cache-
miss-related resource congestion. Figure 12 (d) and (e) show 
that WS suffers from a high L1 D-cache miss rate and rsfail 
rate in C+M and M+M workloads. WS-QBMI experiences 
similar L1 D-cache miss rate and rsfail rate to WS. In 
contrast, WS-DMIL consistently demonstrates lower L1 D-
cache miss rates and fewer reservation failures per request 
than both WS and WS-QBMI. 
c) LSU Stalls and Computing Resource Utilization 

The relieved L1 D-cache miss-related resource congestion 
will translate to fewer memory pipeline stalls. As shown in 
Figure 12(f), the percentage of LSU stall cycles closely 
correspond to the L1 D-cache rsfail rate. And the reduced 
memory pipeline stalls can lead to a better computing 
resource utilization, especially for C+M workloads, as shown 
in Figure 12(g). One exceptional case is M+M workloads 
where WS-DMIL has a significantly lower L1 D-cache rsfail 
rate but it does not deliver a higher computing resource 
utilization. This is because essentially, both kernels of M+M 
workloads stress the memory pipeline and intrinsically have 
lower computing resource usage. 

4.1.2  Comparison with SMK 

Besides Warped-Slicer, we also investigate how QBMI and 
DMIL perform when SMK is used for TB partition. Figure 
13 shows Weighted Speedup of SMK-(P+W), SMK-
(P+QBMI) and SMK-(P+DMIL). We have similar 
observations to those when Warped-Slicer is used. First, all 
three schemes have similar Weighted Speedup for C+C 
workloads. Second, SMK-(P+QBMI) and SMK-(P+DMIL) 
outperform SMK-(P+W) for C+M workloads, while SMK-
(P+DMIL) has a much higher Weighted Speedup. Third, 
SMK-(P+DMIL) remains effective for M+M workloads. On 

average, Weighted Speedup is 1.10 from SMK-(P+W), 1.15 
from SMK-(P+QBMI) and 1.40 from SMK-(P+DMIL). Thus 
SMK-(P+QBMI) and SMK-(P+DMIL) boost the Weighted 
Speedup of SMK-(P+W) by 4.4% and 27.2%, respectively. 
Although details not shown here, SMK-(P+QBMI) and 
SMK-(P+DMIL) outperforms SMK-(P+W) by 49.2% and 
64.6% in terms of ANTT. The improvements of SMK-
(P+QBMI) and SMK-(P+DMIL) are due to higher L1 D-
cache efficiency, reduced LSU stalls and higher computing 
unit utilization. 

4.2. More Kernels in Concurrent Execution 

In this part, we demonstrate that our proposed schemes have 
good scalability and remain effective when more than two 
kernels concurrently on an SM. As described in Section 3.2 
and 3.3.2, the proposed QBMI and DMIL are general and not 
restrained by the number of concurrent kernels. We evaluate 
all the combinations of 3-kernel workloads and have similar 
observations to those on 2-kernel workloads, as shown in 
Figure 14. First, when all kernels are compute-intensive, 
indicated by ‘C+C+C’, WS, WS-QBMI and WS-DMIL have 
similar Weighted Speedup while WS-QBMI improves 
ANTT. Second, WS-QBMI and WS-DMIL outperform WS 
for C+C+M and C+M+M workloads. Third, WS-DMIL 
continues to improve Weighted Speedup for M+M+M 
workloads, where all kernels are memory-intensive, but 
sacrifices fairness for Weighted Speedup. On average, WS-
QBMI and WS-DMIL improve Weighted Speedup of WS by 

  

  
          (a) Weighted Speedup               (b) Normalized ANTT 
Figure 14. Effectiveness of QBMI and DMIL in 3-kernel 

concurrent execution on top of Warped-Slicer. 
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Figure 13. Effectiveness of QBMI and DMIL on top of 
SMK: (a) Weighted Speedup; (b) Normalized ANNT. 
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3.2% and 19.4%, respectively. In terms of ANTT, WS-QBMI 
and WS-DMIL outperform WS by 58.3% and 68.7%. 

Besides Warped-Slicer, we also investigate when SMK is 
used for TB partition in 3-kernel concurrent execution. SMK-
(P+QBMI) and SMK-(P+DMIL) improve the average 
Weighted Speedup of SMK-(P+W) by 5.5% and 21.9%; for 
ANTT, SMK-(P+QBMI) and SMK-(P+DMIL) outperform 
SMK-(P+W) by 79.1% and 85.9%, respectively. 

4.3. Sensitivity Study 

Sensitivity to L1 D-cache Capacity: Although not shown, 
we examined how our schemes perform with various L1 D-
cache capacities. On average, WS-QBMI outperforms WS 
with 2.1% (1.5%) higher Weighted Speedup and 32.1% 
(30.8%) better ANTT, on a 48KB (96KB) L1 D-cache; and 
WS-DMIL outperforms WS with 18.5% (3.5%) higher 
Weighted Speedup and 22.6% (10.1%) better ANTT, on a 
48KB (96KB) L1 D-cache. Furthermore, while reservation 
failures due to MSHRs are the most common ones in our 
study, our schemes remain effective with increased MSHR 
sizes because high queuing delays in the memory subsystem 
can result in all MSHRs quickly being used up, similar to that 
when the cache capacity is enlarged to reduce memory 
pipeline stalls. 
Sensitivity to Warp Scheduling Policy: besides the default 
GTO (Greedy-Then-Oldest) warp scheduling policy used in 
the prior experiments, we investigate how QBMI and DMIL 
perform when LRR (Loose Round Robin) is deployed. Our 
experiments show that on average, WS-QBMI and WS-
DMIL boost the average Weighted Speedup of WS by 3.2% 
and 25.8%, respectively; in terms of ANTT, WS-QBMI and 
WS-DMIL outperform WS by 16.4% and 34.3%. 

4.4. Hardware Overhead 

As described in Section 3.3, the hardware cost for a memory 
instruction limiting number generator (MILG) includes one 
7-bit inflight memory instruction counter (maximum 128 
instructions can access L1 D-cache concurrently), one 12-bit 
reservation failure counter, one 10-bit memory request 
counter, and one 10-bit right shifter (only wires). For QBMI, 
one more 10-bit memory instruction counter and extra 
arithmetic logics are required to compute ‘Req/Minst’ and 
quotas. Although the amount of these components are 
proportional to the number of SMs, those overheads are 
negligible, compared to the area of a GPU [28][29][30][31]. 
Besides, the calculation and decision signal broadcasting are 
not on the critical path. So no extra delay is incurred. 

4.5. Further Discussion 

In this part, we further discuss the inadequacy to partitioning 
cache-miss-related resources as well as the energy efficiency 
and applicability of our proposed schemes. 

Although it is tempting to partition cache-miss-related 
resources to prevent any kernel from starvation in allocating 
them, our experiments show that simply partitioning such 
resources cannot improve performance. This is because all 
accesses to LSU are in-order and even when a kernel’s 

assigned portion of resources is not fully occupied, its 
accesses can be blocked by accesses from other co-running 
kernels of which the assigned resources already saturate, 
leading to unrelieved memory pipeline stalls. 

Regarding energy efficiency, with our proposed schemes, 
although the average dynamic power may increase due to the 
improved computing resource utilization, the overall energy 
efficiency is improved due to much reduced leakage energy. 

Although we only use the metric reservation failures per 
memory request to generate memory instruction limiting 
numbers, the performance results are highly promising. The 
underlying idea can be applied to other parts along the 
memory access path. For example, stalls encountered at the 
L1-interconnect and/or interconnect-L2 queues, can be 
incorporated to obtain memory instruction limiting numbers. 
Also, certain memory access optimization techniques, like 
cache bypassing, can be first applied to improve the isolated 
execution, and as a result the TB partition of Warped-Slicer 
and SMK may change. Although the effectiveness of our 
schemes in boosting Weighted Speedup may decrease, they 
shall remain effective in improving fairness, similar to the 
fact that QBMI enhances the fairness of C+C workloads, as 
shown in Section 4.1.1. Moreover, while cache bypassing 
relieves the contention at one level, it offloads transactions to 
the lower level memory hierarchies and may still stress the 
interconnect, L2 cache or memory, causing congestion at 
these parts. This would be the case especially for memory-
intensive kernels, if there is no constrain on the number of 
their bypassed requests. We expect the underlying idea of 
BMI and MIL can be applied in such scenarios by 
monitoring/managing the memory access behaviours of 
different kernels at these parts along the memory access path 
to reduce congestion. We leave comprehensive investigation 
on this topic in our future work.  

5. Related Work 
Resource distribution and request throttling on CPUs: 
Several studies have addressed resource distribution among 
threads in simultaneous multithreading on CPUs, with a 
focus on cache partitioning [14][34][36][44]. Our work 
targets concurrent kernel execution on GPUs where there are 
massive memory accesses and cache partitioning is not as 
effective as for CPUs. Thus, we propose balanced memory 
request issuing (BMI) and inflight memory instruction 
limiting (MIL) to prevent one kernel starving from failing to 
access LSU and reduce LSU stalls. Besides, Ebrahimi et al 
[9] proposed a shared memory resource management 
approach, FST (Fairness via Source Throttling), to mitigate 
inter-core interference and improve system performance for 
chip-multiprocessor systems. On one hand, FST monitors 
unfairness and throttles down sources of interfering memory 
requests, similar to our proposed BMI and MIL. On the other 
hand, our schemes focus on intra-SM (or intra-core) 
interference among applications, and we directly 
monitor/manage memory accesses from within an SM. 
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Concurrent kernel execution on GPUs: Several software-
centric GPU multiprogramming approaches have been 
studied as discussed in Section 1. 

Researchers have also proposed hardware schemes to 
better exploit concurrent kernel execution on GPUs. Adriaens 
et al. [2] proposed spatial multitasking to groups SMs into 
different sets which can run different kernels. Ukidave et al. 
[42] studied runtime support for adaptive spatial partition on 
GPUs. Aguilera et al. [3] showed the unfairness of the spatial 
multitasking and proposed fair resource allocation for both 
performance and fairness. Tanasic el al. [41] proposed pre-
emption mechanisms to allow dynamic spatial sharing of 
GPU cores across kernels. Gregg et al. [12] proposed a kernel 
scheduler to increase throughput. Wang et al. [43] proposed 
dynamic thread block launching to better support irregular 
applications. Wang et al. [45] and Xu et al.[46] addressed SM 
resource partition at the granularity of thread block. Park et 
al [33] improved GPU resource utilization through dynamic 
resource management but the scalability is limited. In 
comparison, we focus on mitigating interference among 
kernels and further improving resource utilization of an SM, 
with a good scalability to support multiple concurrent 
kernels. 
Thread throttling and cache management on GPUs: 
Managing accesses to the limited memory resources has been 
a challenge on GPUs. Guz et al. [13] showed that a 
performance valley exists with increased number of threads 
accessing a cache. Bakhoda et al. [5] showed some 
applications perform better when scheduling fewer TBs. 
Kayıran et al. [21] and Xie et al. [47] dynamically adjust the 
number of TBs accessing L1 D-caches. Rogers et al. [36] 
proposed CCWS to control the number of warps scheduled. 

On GPU cache management, Jia et al. [17] used multiple 
queues to preserve intra-warp locality. Kloosterman et al. 
[22] proposed WarpPool to exploit inter-warp locality with 
request queues. Detecting and protecting hot cache lines has 
been proposed in the work [24]. 

Researchers have also exploited the combination of thread 
throttling and cache bypassing. Li et al. [25] proposed 
priority-based cache allocation on top of CCWS. Chen et al. 
proposed CBWT [6] to adopt PDP for L1 D-cache bypassing 
and applies warp throttling. Li et al. [23] propose a compile-
time framework for cache bypassing at the warp level.  

These approaches mainly target cache locality. However, 
as Sethia et al. [38] and Dai et al. [8] demonstrated, cache-
miss-related resource saturation can cause severe memory 
pipeline stalls and performance degradation. To address this 
issue, they proposed Mascar and MDB, respectively. 

In comparison, our schemes do not throttle any TBs or 
warps but limit the number of in-flight memory instructions 
to reduce memory pipeline stalls and accelerate concurrent 
kernel execution with one SM shared by multiple kernels. 
Our approaches are complementary to cache bypassing: if not 
controlled, bypassing can make a memory-intensive kernel 
occupy even more memory resources. 

6. Conclusions 
In this paper, we show that the state-of-the-art intra-SM 
sharing techniques do not fully address the interference in 
CKE on GPUs. We argue that dedicated management on 
memory access is necessary and propose to balance memory 
request issuing from individual kernels and limit inflight 
memory instructions to mitigate memory pipeline stalls. We 
evaluated our proposed schemes on two intra-SM sharing 
schemes, Warped-Slicer and SMK. The experimental results 
show that our approaches improve Weighted Speedup by 
24.6% and 27.2% on average over Warped-Slicer and SMK, 
respectively, with minor hardware cost. Our approaches also 
significantly improve the fairness. 
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