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Abstract 

Even though graphics processors (GPUs) are becoming 
increasingly popular for general purpose computing, current 
(and likely near future) generations of GPUs do not provide 
hardware support for detecting soft/hard errors in 
computation logic or memory storage cells since graphics 
applications are inherently fault tolerant. As a result, if an 
error occurs in GPUs during program execution, the results 
could be silently corrupted, which is not acceptable for 
general purpose computations. To improve the fidelity of 
general purpose computation on GPUs (GPGPU), we 
investigate software approaches to perform redundant 
execution. In particular, we propose and study three 
different, application-level techniques. The first technique 
simply executes the GPU kernel program twice, and thus 
achieves roughly half of the throughput of a non-redundant 
execution. The next two techniques interleave redundant 
execution with the original code in different ways to take 
advantage of the parallelism between the original code and 
its redundant copy. Furthermore, we evaluate the benefits of 
providing hardware support, including ECC/parity 
protection to on-chip and off-chip memories, for each of the 
software techniques. Interestingly, our findings, based on 
six commonly used applications, indicate that the benefits 
of complex software approaches are both application and 
architecture dependent. The simple approach, which 
executes the kernel twice, is often sufficient and may even 
outperform the complex ones. Moreover, we argue that the 
cost is not justified to protect memories with ECC/parity 
bits. 
Categories and Subject Descriptors B.8.1 [Performance 
and Reliability]: Reliability, Testing, and Fault-Tolerance; 
I.3.1 [Computer Graphics]: Hardware Architecture – 
Graphics processors 
General Terms  Performance, Reliability 
Keywords  GPGPU, Reliability 
 

1. Introduction 

General purpose computing on graphics processor units 
(GPGPU) becomes increasingly popular due to their 

remarkable computational power, memory access 
bandwidth and improved programmability. Current GPUs 
contain hundreds of compute cores and support thousands 
of light-weight threads, which hide memory latency and 
provide massive throughput for parallel computations. New 
programming models including CUDA from NVIDIA  [3], 
Brook+ from AMD/ATI  [1], and under-development 
OpenCL  [7], facilitate programmers by allowing them to 
write GPU code in a familiar C/C++ environment, instead 
of forcing them to map general purpose computation to the 
graphics domain. In these programming models, the GPU is 
used as an accelerator to the CPU, from which memory-
intensive and compute-intensive tasks are offloaded.   

However, current GPUs do not provide hardware 
support for detecting soft or hard errors, which may occur 
in computation logic or memory storage. For instance, the 
off-chip storage of modern GPUs such as ATI Radeon HD 
series uses graphics double data rate (GDDR) type 
memories. The latest GDDR5 memory contains error 
detection, however, only for transmission errors  [4]. As a 
result, any bit-flip in a memory cell may lead to silently 
corrupted results, i.e., erroneous results which are not 
detected. With soft-error rates predicted to grow 
exponentially  [16] [17] in future process generations and 
permanent failures/hard errors such as gate-oxide 
breakdown  [15] gaining importance,  future GPUs are 
likely to be prone to hardware errors. This has an adverse 
impact on GPGPU since many scientific, medical imaging 
and financial applications require strict correctness 
guarantees. Unfortunately, such reliability requirements are 
not likely to be answered in current or near future GPU 
generations. The reason is that even though GPGPU 
applications are gaining popularity, modern GPU design 
remains largely driven by the video games market, where 
100% correct results are not strictly necessary. As observed 
by Sheaffer et. al.  [13], errors in video applications are 
often masked because they affect a single or a few pixels, or 
the corrupted image is promptly recomputed in the next 
frame. As such, in order to overcome the GPU reliability 
limitations, we need to develop reliability schemes for 
GPGPU, which are software only, or require very few 
hardware changes to the GPU hardware.  

In this work, we first propose and evaluate three 
different methodologies for providing redundancy entirely 
in software. We implemented the redundancy methods at 
the application level. In other words, we assume that the 
programmer is responsible for writing redundant code. 
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However, we believe that the approaches are relevant and 
insightful to possible compiler implementations like  [10] 
due to their regular patterns. The first technique, which we 
call R-Naïve, simply executes the GPU computation (or 
GPU kernel) twice. This approach is simple, but naturally 
leads to roughly half of the throughput compared to a non-
redundant version. The other two approaches, R-Scatter and 
R-Thread, interleave redundant execution with the original 
program code in different manners. R-Scatter takes 
advantage of unused instruction-level parallelism, while R-
Thread utilizes available thread-level parallelism. The goal 
of R-Scatter and R-Thread is to better utilize the vast 
computational resources of the GPU and achieve lower 
performance overhead by leveraging the inherent 
parallelism between the original and redundant execution. 
Note that although leveraging unused instruction or thread-
level parallelism has been proposed for central processing 
units (CPU) redundancy  [6] [8] [9] [11] [12], we adapt the 
principle to GPUs and evaluate how well it may works for 
GPGPU redundancy. For each of the three approaches, we 
further consider whether adding hardware support, 
including ECC/parity bits to on-chip static random access 
memory (SRAM) and off-chip dynamic random access 
memory (DRAM), is justifiable. Interestingly, our 
experience with six commonly used applications on two 
GPU architectures, indicate that the benefits of the R-
Scatter and R-Thread approaches are both application and 
architecture dependent. In comparison, R-Naïve has 
consistently predictable performance and may even 
outperform R-Scatter or R-thread in some cases. Moreover, 
we argue that the area and cost overhead of protecting 
SRAM and DRAM memories with ECC/parity bits are not 
justified, because they do not result in significant 
performance improvements for our software redundancy 
approaches.  

The rest of this paper is organized as follows. In Section 
2 we briefly review the basics of GPU architecture and 
GPGPU programming. In Section 3, we describe the 
proposed application-level software redundancy 
approaches. In Sections 4 and 5, we discuss our 
experimental methodology and results. Section 6 concludes 
the paper and addresses the future work. 

2. GPU Architecture and Programming 

In this section, we provide a high-level overview of modern 
GPU architectures and programming models. This 
overview is sufficient for the reliability techniques 
presented in this paper. More in-depth treatment of GPU 
architectures and programming models can be found in 
 [1] [3].  

2.1. GPU Architectures 

In this work, we experiment with two different GPU 
architectures, namely NVIDIA G80 and AMD/ATI R670 
architectures. We first describe G80, followed by R670, 
highlighting their differences and similarities.  

NVIDIA G80 contains 16 streaming multi-processors 
(Compute Units) and each Compute Unit contains 8 
steaming processors (SPs) or compute cores, for a total of 
128 cores. In addition, each Compute Unit has an 8K-entry 
(32kB) register file, 16kB read/write shared memory and 
8kB read-only constant memory. Shared and constant 
memories are on-chip, fast access SRAM, managed 
explicitly by the programmer in software. The main 
memory storage, or global memory, is off-chip DRAM and 
takes hundreds of cycles to access. In order to hide global 
memory access latency, Compute Units can be assigned a 
large number of light-weight threads, up to 512 threads per 
Compute Unit. Thus, while some threads are waiting for 
global memory access, other threads can execute on the 
Compute Unit and overlap memory latency. Creating more 
threads is generally better for achieving high performance. 
However, the programmer has to be aware of the hardware 
limitations of the GPU. For instance, the number of 
registers or shared memory that each thread requires may 
limit the number of threads that can be created. If the 
programmer wants to assign 512 threads to a Compute Unit, 
then each thread should consume at most 16 registers (8k-
registers / 512 = 16). In G80, threads are scheduled for 
execution in granularity of warps. Each warp consists of 32 
threads. Threads within a warp share the same program 
counter (PC), following the single-instruction multiple-data 
(SIMD) mode. Different warps execute the same program 
(kernel) but maintain their own PC, thus following the 
single-program multiple-data (SPMD) mode.  

The architecture of AMD/ATI R670 is similar to G80 in 
many respects. R670 contains 320 compute cores. The 
compute cores are organized into 4 Compute Units of 16x5 
cores per Compute Unit. Similar to warps in G80, threads in 
R670 are organized into wavefronts. Each wavefront 
contains 64 threads and follows the SIMD mode, while 
different wavefronts follow the SPMD mode. In contrast 
from G80, in R670 instructions are grouped into VLIW 
words of 5 instructions. Thus, in order to fully utilize the 
computational resources of the machine, the compiler needs 
to find enough instruction-level parallelism to fully pack the 
VLIW words. R670 does not contain a shared memory. 
However it has two levels hardware managed caches (32kB 
L1 and 128kB L2 shared by all Compute Units) and a larger 
(1MB total or 256kB per Compute Unit) register file.  

2.2. GPGPU Programming Models 

The NVIDIA programming model is called CUDA  [3] and 
the AMD/ATI programming model is called Brook+  [1]. In 
both programming environments, the GPU is viewed as an 
accelerator to the CPU. The overall process required to 
write a GPGPU program for both environments is 
summarized as follows. First, the programmer writes a 
kernel function(s) in extended C/C++. The extensions to 
C/C++ are necessary in order to control GPU specific 
resources, such as thread ids, vector operations or shared-
memory variables. The kernel executes on the GPU and 
forms the task that a single GPU thread has to complete. 



Thus, following the SPMD mode, every thread on the GPU 
will execute the same kernel, however depending on the 
thread id (CUDA) or index (Brook+ 1.0) each thread will 
work on a different portion of the data. Second, on the CPU 
side, the programmer allocates and initializes the problem 
data. Then the programmer writes code to transfer the data 
from the CPU to the GPU.  Finally, the programmer 
invokes the GPU kernel and then copies the results back 
from the GPU to the CPU. The memory transfer from CPU-
GPU-CPU is achieved using intrinsics such as 
“streamRead/streamWrite” in Brook+ 1.0 and 
“cudaMemCopy” in CUDA. In this work, for simplicity we 
refer to the CPU-GPU-CPU memory transfer as memcopy.  

While CUDA and Brook+ 1.0 share many similarities, 
the most notable difference between the two is their thread 
management model. In CUDA, threads are created 
explicitly and arranged into a thread hierarchy. For 
instance, threads are grouped into three dimensional thread 
blocks. Thread blocks are further arranged into a two 
dimensional grid. At runtime, each thread block will be 
assigned to an available Compute Unit for execution. The 
threads find their working data, by querying their thread id 
and block id. In contrast, Brook+ 1.0 adopts a streaming 
model, in which the kernel operates concurrently on each 
data element of an input stream(s) and updates the 
corresponding element of an output stream(s). Thus, thread 
creation in Brook+ 1.0 is implicit. An implicit thread is 
created for each streaming element, and the thread operates 
on that element. The number of threads created depends on 
the size of the data stream. Since the pure streaming model 
is too restrictive, in Brook+ 1.0 there are exceptions which 
allow for scatter/gather or random access streams. Scatter 
and gather streams allow the kernel to access arbitrary 
memory locations within a stream. However, some 
restrictions still apply. In particular, at least one stream in 
the kernel (either an input or an output stream) has to be 
declared as a proper stream (i.e., not a scatter/gather 
stream). This is because the proper stream drives the 
implicit creation of threads. Similar to “thread id” in 
CUDA, in Brook+ 1.0 we use “index of” to find out which 
data element we are working on. Later versions of Brook+ 
(version 1.3) add flexibility for explicit thread creation.  

3. Proposed Software Redundancy 

Approaches 

In this section we describe the three approaches that we 
propose for software-only reliability. We also discuss how 
each approach can be enhanced by adding ECC/parity 
protection in off-chip global memory and on-chip memory. 
The R-Naïve approach simply executes the kernel twice and 
then compares the two results for discrepancy. The R-
Scatter and R-Thread approaches are motivated by the fact 
that even a highly optimized GPGPU application is likely to 
leave some unused instruction or thread-level parallelism. 
These two approaches, attempt to take advantage of the 
unused parallelism in order to reduce the performance 
overhead of redundant execution. However, because the 

two different architectures, G80 and R670, achieve high 
performance in different ways, some of the reliability 
approaches are more suitable to one architecture and not the 
other. For example, in R670 instruction-level parallelism is 
critical in order to fully pack the VLIW words with 
operations, which can issue together. On the other hand, in 
G80, instruction-level parallelism does not play such a large 
role and the focus is shifted to thread-level parallelism.  

In both architectures, our goal is to provide 100% 
redundancy, and we only assume that the CPU is reliable, 
i.e. any GPU component – global off-chip memory, on-chip 
memory, ALUs, on-chip interconnect, etc, is considered 
unreliable. While it is difficult to prove/guarantee that a 
certain approach provides 100% error detection, we present 
a best-effort approach. Moreover, the focus of our work is 
to study if we can effectively reduce the performance 
overhead by better utilizing resources. 

3.1. R-Naive 

In this approach, we duplicate both the memcopy (CPU-
GPU-CPU) and the kernel executions. By allocating two 
copies of the data on the GPU, we provide spatial 
redundancy for GPU memory. Executing the computation 
kernels twice (once for each copy of the data) provides 
temporal redundancy to computational logic and 
communication links. In order to improve reliability further 
and detect permanent defects, it is desirable for the original 
and redundant input/output streams to use different 
communication links and compute cores (i.e., to achieve 
spatial redundancy). For some applications we can easily 
achieve that by rearranging the input data appropriately. For 
example, in matrix multiplication of two matrices M and N, 
we can circular-shift the columns of M by 1 (the first 
column becomes last) and the rows of N by 1 (the first row 
becomes last). The resulting matrix multiplication will 
produce the same result as before, however we have 
ensured the input streams are different from the original. On 
the other hand, rearranging the data to obtain identical 
results may not as easy for other applications. In this case, it 
would be desirable to have a software controllable interface 
to assign the hardware resource. For example, if the 
software can specify the Compute Unit where the first 
thread block should be dispatched to, the original dispatch 
and its redundant copy can be assigned to different 
Compute Unit so that a permanent error will not affect both 
of them in the same manner. Similarly we may use this 
software interface to allocate redundant memory resources 
at a user-defined offset from the original data in order to 
detect permanent errors in memory. Since rearranging the 
input and subsequently the output is most naturally done on 
the CPU, while the data is initialized or consumed, we do 
not include this overhead when evaluating the performance 
on the GPU. We also duplicate the transfer of the results 
from the GPU back to the CPU to account for any data 
corruption which may occur during the transfer as well as to 
check the results. Once the results are transmitted to 
system’s memory (which is ECC protected) the CPU will 



compare the results and use them if they are identical. In the 
rare case that there is an error, the CPU may re-submit the 
request to the GPU or perform more elaborate checks to 
determine the cause of the error.  

A pseudo code of implementing R-Naïve is presented in 
Figure 1, where the redundant code is highlighted in bold. 
The original version of the code is presented in Figure 1 (a) 
and three different implementations of R-Naïve are 
presented in Figure 1 (b), (c), and (d). In Figure 1 (b), we 
first transfer the data to the GPU twice and then invoke the 
computation kernels. Thus, there is no overlap between 
CPU-GPU transfer and kernel computation. In Figure 1(c), 
the redundant memory transfer is after the asynchronous 
kernel invocation, which in theory means that 
StreamRead(in_R) can be executed without the completion 
of Kernel(in,out). However, in practice we did not observe 
any performance difference between the two approaches. 
We believe that this is a limitation of the programming 
environments, which are still being refined, and not a 
hardware limitation. In Figure 1 (d), the original code and 
the redundant code run back-to-back. So, the original data 
and its redundant copy do not need to reside in the device 
memory at the same time. However, it may happen that the 
redundant data are loaded to the same memory location as 
original data. In this case, if the redundant data is not 
rearranged (or allocated at an offset using a software 
interface as mentioned above), we may lose the capability 
to detect permanent memory errors. In terms of 
performance, we did not observe any difference between 
Figure 1 (d) and Figure 1 (b) or (c). Therefore, the approach 
shown in Figure 1(c) is the preferred one as long as the 
device memory can hold both the original data and its 
redundant copy simultaneously.  
StreamRead(in) 

 

Kernel(in, out) 

 

StreamWrite(out) 

StreamRead(in) 

StreamRead(in_R) 

 

Kernel(in,out) 

Kernel(in_R,out_R) 

 

StreamWrite(out) 

StreamWrite(out_R) 

StreamRead(in) 

Kernel(in,out) 

 

StreamRead(in_R) 

Kernel(in_R,out_R) 

 

StreamWrite(out) 

StreamWrite(out_R) 

StreamRead(in) 

Kernel(in,out) 

StreamWrite(out) 

 

 

StreamRead(in_R) 

Kernel(in_R,out_R) 

StreamWrite(out_R) 

(a) Original 

Code 

(b) Redundant 

code without 

overlap 

(c) Redundant 

code with overlap 

(d) Redundant 

code back-to-back 

Figure 1. Pseudo code for R-Naïve, with and without 

overlapping memory transfers and kernel computation, 

and back-to-back execution. Extra code added for 

redundancy is in bold. 

3.2. R-Scatter 

In this approach, we try to take advantage of unused 
instruction-level parallelism. Even though this approach has 
some potential benefits for the G80 architectures, which we 
describe shortly, it is more suitable to the VLIW model of 
R670. The idea, as applied to R670, is illustrated in Figure 
2. From Figure 2 (a), we can see that due to data 
dependencies, the original VLIW schedule of the GPU 
kernel is not fully packed, thus not utilizing the hardware. 
On the other hand, since the redundant instructions are 

inherently independent from the original code, we can 
interleave them and create more compact schedules, as 
shown in Figure 2 (b). 

Figure 2. Original vs. R-Scatter VLIW instruction 

schedules.  

To see how a programmer can implement this approach, 
we present a code sample from a simple matrix 
multiplication kernel in Figure 3. We first show how this 
approach can be implemented in Brook+ 1.0 and discuss 
CUDA shortly. Brook+ 1.0 uses a streaming compute 
model and an implicit thread is created for each proper 
stream element. In Figure 3 (a), the output stream P is a 
proper stream and the input streams M and N are gather 
streams. We first obtain the position into the output stream, 
using “indexof”. Then, in the for-loop, we use this position 
to compute an index into the input matrices M and N and 
perform the computation. Figure 3 (a) also demonstrates the 
use of vector types and swizzle operations, which allow 
access to the elements of a vector in any order. In Figure 3 
(b), we show the code implementing R-Scatter. The 
redundant code is highlighted in bold. We supply redundant 
input and output streams to the kernel. We also duplicate 
the computation within the for-loop and write the results to 
a redundant output stream. The operations within the for-
loop are inherently independent, thus they may result in 
better utilized VLIW instruction schedules, which is the 
insight behind R-Scatter. In this particular example we have 
7 VLIW words in the original and 11 VLIW words in the 
R-scatter version, respectively. Moreover, in R-scatter code, 
the input stream accesses of the original and redundant 
execution are overlapped, achieving higher memory-level 
parallelism in the kernel function.  

Notice that in Figure 3 (b) we do not duplicate all the 
kernel code. Instead, we reuse some kernel code for 
redundant execution. For instance we reuse the for-loop and 
the index computation, which leads to a reduced number of 
redundant instructions compared to R-Naïve. However, 
such reuse can compromise the reliability, since an error to 
the variable “i” will affect both the original and redundant 
computation. To prevent this from happening, we want the 
kernel to compute different data elements in the original 
and the redundant streams so that an error to “i” will cause 
errors in different elements in the output data and its 
redundant copy. Computing different data elements in the 
original and the redundant streams can be implemented in 
either of the following two ways. The first is to rearrange 
the input data for redundant execution as discussed in 
Section 3.1. The second is to use the same input data but 
manipulate the thread index. The first approach is more 
suitable for Brook+ 1.0 due to its relatively restrictive 
streaming program model, in which the threads are 
implicitly generated based on the proper stream. To make a 
thread to process different data items in two output streams 

(a) (b) 

Original 
operation 
Redundant operation 



requires gather and scatter streams, which have additional 
restrictions. For example, in Brook+ 1.0, if we want to 
update a different element of the redundant output stream 
(scatter), the output stream has to be 128 bits wide. CUDA, 
in comparison, supports explicit management of threads, 
which makes the second approach easy to implement, as 
shown in Figure 4. In the figure, the redundant code (b) is 
interleaved with the original code (a) and the for-loop is 
reused. We use explicit thread id management “tx_R = 
(threadIdx.x + 1) % (Width)” to force the kernel to compute 
on different elements of the original and the redundant 
matrices. This way, each thread computes a different 
redundant element from the same corresponding thread 
block. Similarly, if the application uses multiple thread 
blocks, we can also force each thread to compute the same 
element from a different thread block. This is achieved by 
re-using the thread id, but modifying the block id.  

The performance benefit from R-scatter in CUDA, as 
seen from the example in Figure 4, mainly comes from 
reused instructions and overlapped memory accesses, a 
degree of 4 in Figure 4 (b) compared to a degree of 2 in 
Figure 4 (a). The tradeoff, however, is the extra 
registers/shared memory to hold the loaded data. Such 
increased register/shared memory pressure in the kernel 
may affect thread-level parallelism or shared memory 

utilization since all concurrent threads in a Compute Unit 
share the register file and shared memory. 

3.3. R-Thread 

In this approach, we try to take advantage of unused thread-
level parallelism. Recall that threads are specified explicitly 
only in CUDA and not in Brook+ 1.0. While it is possible 
to create more threads in Brook+ 1.0, by combining the 
original and the redundant stream into a single large stream, 
the stream scatter restrictions of Brook+ 1.0 mentioned in 
Section 3.2 prevent us from implementing this approach. 
Thus we consider R-Thread only for CUDA. The idea of R-
Thread is as follows. Each thread does the same amount of 
work as in the original kernel. However, we allocate double 
the number of thread blocks per kernel. The extra thread 
blocks will perform the redundant computations and are 
scheduled for execution on the Compute Units together 
with the original thread blocks. In case the original GPGPU 
application does not utilize all the Compute Units of G80, 
then the redundant thread blocks will be able to utilize those 
otherwise idle Compute Units and reduce the redundancy 
overhead. An example from the simplified version of 
matrix multiplication is presented in Figure 5 to illustrate 
R-thread. In this example, address computation is omitted 
for clarity. The portion of the code, which is marked in 

kernel void mat_mult(float width, float M[][], float N[][], out float P<>){ 
 
    float2 vPos = indexof(P).xy;  // obtain position into the stream 
    float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y); 
    float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f); 
    float sum = 0.0f; 
      
    for(float i=0; i<width; i= i+1){ 
       sum += M[index.zw]*N[index.xy]; //accessing input stream 
       index += step; 
    } 
    P = sum; 
} 

kernel void mat_mult(float width, float M[][], float M_R[][], 
                     float N[][], float N_R[][],out float P<>, out float P_R<>){ 
  float2 vPos = indexof(P).xy; 
  float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y); 
  float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f); 
  float sum = 0.0f; 
  float sum_R = 0.0f; 
  for(float i=0; i<width; i= i+1){ 
    sum += M[index.zw]*N[index.xy]; //accessing input stream 
    sum_R += M_R[index.zw]*N_R[index.xy]; //accessing input stream 
    index += step; 
  } 
  P = sum; 
  P_R = sum_R; 
} 

(a) Original code (b) R-Scatter Code 
Figure 3. Simple matrix multiplication kernel code in Brook+ 1.0 for R-Scatter. Code added for redundancy is in 

bold. 
int tx,ty;     // Obtain 2D thread id 
tx = threadIdx.x; 
ty = threadIdx.y; 
 
 
int Pvalue = 0;    // Store the computed elem 
 
 
for (int k = 0; k<Width; ++k){ 
    float m = M[ty*Width + k];   // global memory access 
    float n = N[k*Width + tx];    // global memory access   
 
 
    Pvalue += m * n; 
 
} 
P[ty*Width + tx] = Pvalue 

int tx,ty, tx_R, ty_R;    // Obtain 2D thread id 
tx = threadIdx.x; 
ty = threadIdx.y; 
tx_R = (threadIdx.x +1)%(Width) ; 
ty_R = (threadIdx.y +1)%(Width); 
int Pvalue = 0; // Store the computed elem 
int Pvalue_R = 0; 
 
for (int k = 0; k<Width; ++k){ 
    float m = M[ty*Width + k]; //global memory access 
    float n = N[k*Width + tx]; //global memory access 
    float m_R = M_R[ty_R*Width + k]; //global memory access 
     float n_R = N_R[k*Width + tx_R]; //global memory access 
     Pvalue += m * n; 
     Pvalue_R += m_R * n_R; 
} 
P[ty*Width + tx] = Pvalue; 
P_R[ty_R*Width + tx_R] = Pvalue_R; 

(a) Original code (b) R-Scatter Code 
Figure 4. Simple matrix multiplication kernel code in CUDA for R-Scatter.  Extra code added for redundancy is in 

bold. The global memory accesses are indicated with comments. 



bold, belongs to R-Thread. Intuitively, in the bold portion 
of the code, we check to see to which thread block the 
current thread belongs. If this thread block is one of the 
redundant thread blocks, then we simply re-direct the 
memory pointers to point to the redundant copies of the 
input and output matrices. The rest of the code remains the 
same and the thread will automatically compute a redundant 
element.  

if(by >= NumBlocks){ 
   M = M_R; 
   N = N_R; 
   P = P_R; 
   by = by - NumBlocks; 
} 
float Pvalue = 0; 
 for (int k = 0; k < Block_Size; ++k){ 
    float m = M[addr_md]; 
    float n = N[addr_nd]; 
    Pvalue += m * n; 
} 
P[ty*Width + tx] = Pvalue; 

Figure 5. Pseudo code of simple matrix multiplication 

for R-Thread. Extra code added for redundancy is in 

bold. 

3.4. Hardware Support for Error Detection  in 

Off-Chip and On-Chip Memories 

The three software approaches proposed in this work will 
benefit from added hardware support for error 
detection/correction to off-chip (global) memory and on-
chip (caches, constant, shared) memory. In G80, caching is 
explicitly controlled in software, i.e. the programmer 
specifies which data will be stored in constant or shared 
memory. Thus, we can decide to protect either off-chip 
memory only, or both off-chip and on-chip memory in 
hardware. If off-chip memory is protected, then duplication 
of the input data is not necessary and the redundant CPU-
GPU memory transfers may be eliminated. In R670 caching 
is implicit, thus we may not separate off-chip and on-chip 
hardware error protection. If we protect only off-chip 
memory and keep only one copy of data in off-chip 
memory, an on-chip, cached copy of the data may be 
corrupted leading to incorrect computation in both original 
and redundant execution. Thus, in Brook+ 1.0 we assume 
that we can eliminate the redundant transfer from CPU-
GPU only if both off-chip and on-chip memory is 
parity/ECC protected.  

We may use either the CPU or GPU to perform result 
comparison for error detection. If using CPU, we still need 
to transfer the redundant computation results from GPU-
CPU. When using GPU, although the redundant GPU-CPU 
transfer can be removed, there is a penalty on reliability as 
an error may happen in the GPU when it is busy comparing 
results. Thus, in this work we do not consider checking the 
results using the GPU.  

R-Naïve, R-Scatter and R-Thread can all benefit from 
reduced CPU-GPU transfers. R-scatter on CUDA may 
additionally benefit from on-chip memory protection. This 
is because a thread block may fetch data into 

shared/constant memory only once, and then the interleaved 
original and redundant computation will use the same 
cached data. For R-Naïve and R-Thread, the data sharing 
among original and redundant codes is not applicable as 
they are treated as separate and independent threads. 

Hardware protection for off-chip and on-chip memories 
is advocated by Sheaffer et al.  [14] and they also propose 
hardware protection for computation logic by using two 
compute cores to perform the same computation. As 
discussed in Section 1, such extra hardware investment and 
reduced computation throughput may be hard to justify as 
graphics applications are fault tolerant and hardware errors 
are rare events. In our work, we analyze how much the 
hardware memory protection benefits our software 
redundancy approaches.  

4. Experimental Methodology 

We evaluate our proposed approaches by providing 
redundancy to six commonly used applications from 
different fields, as shown in Table 1. When available, we 
used the source codes distributed with CUDA and Brook+ 
1.0 development samples, otherwise we coded and 
optimized our own versions. Among Brook+ 1.0 codes, 
matrix multiplication, black scholes, Mandelbrot and 
bitonic sort are from the Brook+ 1.0 samples. Among 
CUDA codes, black scholes is from the version in the 
CUDA samples. The rest of the applications were coded 
and optimized with our best effort. Our version of matrix 
multiplication on CUDA  [2] achieves 149 GFLOPS for 
2kx2k matrices, significantly outperforming the carefully 
tuned Nvidia CUBLAS library implementation as well as 
the existing CUDA sample code for matrix multiplication.  

The Brook+ experiments were conducted using Brook+ 
1.0 Alpha on a PC running Windows XP, with Intel Core2 
Quad CPU at 2.4 Ghz with 3.25GBytes of RAM and an 
ATI R670 card with 512MB memory and 825MHz core 
clock frequency. The CUDA experiments were performed 
using CUDA SDK 1.1 on a Linux workstation with quad 
core Intel Xeon at 2.3 GHz and 2GBytes of RAM and an 
Nvidia GTX 8800 card with 768 MB memory and 575MHz 
core frequency. Both machines have PCIe x16 to provide 
3.2 GB/s bandwidth between the GPU and CPU. Each 
execution time is collected using an average of 100 runs of 
the same code. 

Table 1. Evaluated Applications 
Benchmark Name Description Application 

Domain 

Matrix 

Multiplication 

Multiplying two 2k by 2k matrices  Mathematics 

Convolution Applying a 5x5 filter on a 2k by 2k 

image 

Graphics 

Black Scholes Compute the pricing of 8 million stock 

options  

Finance 

Mandelbrot Obtain a Mandelbrot set from a 

quadratic recurrence equation 

Mathematics 

Bitonic Sort A parallel sorting algorithm. Sort 2^20 

elements 

Computer 

Science 

1D FFT Fast Furrier Transform on a 4K array  Mathematics 



5. Experimental Results 

In this section, we evaluate our proposed approaches – R-
Naïve, R-Scatter and R-Thread. For each of them, we first 
discuss the performance results and then address the impact 
of hardware support for memory protection.  

5.1. R-Naive 

In this experiment, we evaluate the performance overheads 
of providing redundant execution using R-Naïve. For each 
benchmark, we present the original execution time, the R-
Naïve execution time, and the R-Naïve execution time with 
hardware DRAM protection, all normalized to the original 
execution time. Each execution time is also broken down to 
kernel computation time and memory copy time and the 
results are shown in Figure 6 (a) and (b) for NVIDIA G80 
and AMD/ATI R670, respectively. The last set of bars in 
the figure is the average across the six benchmarks, which 
is computed as the arithmetic mean of the execution times 
for each configuration and then normalized to the arithmetic 
mean of original execution without redundancy.  

The first observation that we can make from this is that 
the execution time of R-Naïve is consistently close to 2x the 
original execution time: 199% for both Brook+ 1.0 and 
CUDA. This behavior is expected, since we duplicate both 
memcopy as well as kernel executions. In some cases it is 
possible for R-Naïve to incur less than 2x overhead. This 
behavior is due to pipeline setup times in the GPU. Since in 
R-Naïve, we issue two copies of the kernel so that some of 
the pipeline setup overhead can be avoided. 

The second observation is that protecting global memory 
with ECC bits, thus eliminating one CPU-GPU memory 
transfer as discussed in Section 3.4, helps some applications 
much more than others. The reason is that some 

applications spend a much larger fraction of their execution 
time moving data between the CPU and GPU. For example, 
in matrix multiplication memcopy accounts for 22% of the 
total execution time on CUDA. On the other hand, the 
memcopy time for the benchmark black scholes is as much 
as 92% on CUDA, as seen from Figure 6. Thus eliminating 
a memory transfer is much more important for some 
applications than others. Another subtle issue that we 
noticed was that the memcopy time from GPU back to the 
CPU is longer than the memcopy time from CPU to GPU. 
This effect is more pronounced in Brook+ 1.0 than CUDA, 
due to the early development stage of the tool (in hardware 
both G80 and R670 use high bandwidth PCIex16 bus to 
communicate with the CPU). Since, we do not eliminate the 
redundant memory transfer of results from the GPU back to 
the CPU, the benefit of protecting global memory with ECC 
is diminished. Furthermore, as obvious from Figure 6, some 
applications such as mandelbrot, bitonic sort and fft do not 
reap any performance benefit from protecting global 
memory with ECC. For instance, the mandelbrot 
application has small input data sets that result in large 
output data that is always replicated. In bitonic sort and fft, 
the application performs multiple passes, where the inputs 
and outputs are toggled in each pass, i.e. the outputs of one 
pass become the inputs of the next pass. Since the outputs 
are always duplicated, this forces us to duplicate the inputs 
as well even if the memory is protected. On average, the 
execution time of R-Naïve with hardware protection is 
192% and 194% of the original for Brook+ 1.0 and CUDA 
respectively. Compared to non-memory-protection R-
Naïve, the performance gains (7% the original for Brook+ 
1.0 and 5% the original for CUDA) do not well justify the 
hardware cost. 

 

 
Figure 6. Execution time of R-Naïve for NVIDIA (A) and ATI (B). We show 3 bars for each application: Original, 

R-Naïve, and R-Naïve with hardware DRAM protection. Execution time is normalized to Original. 



5.2. R-Scatter 

5.2.1.  R-Scatter on ATI R670 

For AMD/ATI R670, we found strong evidence that R-
Scatter results in better, more compact VLIW schedules as 
shown in Table 2, which lists a summary of the number of 
VLIW words, texture operations and general purpose 
registers used in the original vs. the R-Scatter version of the 
kernels.  

From Table 2 we can see that R-Scatter results in 
significantly better utilized schedules. Note that the number 
of TEX operations is always double in R-scatter, which 
shows that we perform each data input redundantly. Taking 
the benchmark bitonic sort, as an example, the original 
kernel has 39 VLIW words compared to only 46 VLIW 
words in the R-Scatter version. Using the ATI Shader 
Analyzer we verified that the significantly smaller number 
of VLIW operations is due to the fact that most VLIW 
words are much better packed in R-Scatter than the original 
version. Figure 7 shows an extract of the VLIW schedules 
for the original kernel (a) and the R-Scatter (b) kernel. 
From the figure, we can see that only about 2-3 out of the 5 
VLIW slots are populated in the original kernel, while the 
redundant kernel populates the VLIW slots fully thus 
utilizing the machine resources better. The kernel, which 
benefits the most from R-Scatter, is 1D fft with 72 vs. 78 
VLIW instructions in the original and redundant version 
respectively. On the other hand, for other applications such 
as matrix multiplication, we did not observe such large 
improvements in the VLIW schedules. There are two 
primary reasons why this may happen. First, if the original 
scheduling is almost fully populated to begin with, this will 
result in less opportunity to pack better. The second reason 
is if the original scheduling contains a lot of control flow or 
transcendental operations (sin, cos, log, etc.). Only 1 
control path or 1 transcendental operation can be handled 
per VLIW word. Thus, even if those operations are 
independent of each other, we will not be able to construct a 
better schedule. In the case of matrix multiplication, the 
original schedule was relatively well populated, thus 
limiting the benefit that we can achieve with R-Scatter. 

Figure 8 shows the overall performance overhead of R-
Scatter compared to a non-redundant implementation. We 
can see that generally those applications such as bitonic sort 
and fft, which resulted in better VLIW schedules, as shown 
in Table 2, perform significantly better, with redundant fft 
having only 40% performance overhead over the original 
execution. The performance of convolution is not 
significantly improved by R-Scatter, because the 

performance of convolution is dominated by CPU-GPU-
CPU memory transfer and thus improvements in the kernel 
execution do not translate into overall speedup. Matrix 
multiplication has a very well utilized schedule to begin 
with and thus does not benefit much from R-scatter. In 
addition, we had to reduce the number of output streams 
used in the optimized matrix multiplication in order to 
incorporate the redundant output streams, since Brook+ 1.0 
has a restriction of 8 output streams per kernel. In 
mandelbrot, there are too many branch instructions and R-
scatter was not able to create a more efficient schedule. On 
average, the execution time of R-Scatter is 193% the 
original execution time. 
16  x: MUL_e       ____,  T1.w,  T3.z       
    y: FLOOR       ____,  T0.z       
    z: SETGE       ____,  T0.y,  |KC0[5].x|       
 
17  x: CNDE        T1.x,  PV16.z,  T0.y,  T0.w      
    y: FLOOR       T1.y,  PV16.x       
    z: ADD         T0.z,  PV16.y,  0.0f         
 
18  x: MOV         T0.x,  |PV17.y|       
    y: ADD         ____,  |KC0[5].x|,  PV17.x      
    w: MOV/2       ____,  |PV17.y|          
 
19  z: TRUNC       ____,  PV18.w       
    w: CNDGT       ____, -T1.x,  PV18  

(a) Original code 
16  x: SETGE       ____,  PS15,  |KC0[5].x|       
    y: ADD         ____,  T1.w,  KC0[2].x       
    z: MULADD      T2.z, -T0.y,  T2.x,  T1.x      
    w: ADD         ____, -|KC0[5].x|,  PS15       
    t: ADD         ____,  T1.w,  KC0[8].x       
17  x: ADD         ____, -|KC0[11].x|,  PV16.z      
    y: SETGE       ____,  PV16.z,  |KC0[11].x|      
    z: CNDE        T3.z,  PV16.x,  T1.y,  PV16.w      
    w: FLOOR       ____,  PV16.y       
    t: FLOOR       ____,  PS16       
18  x: ADD         R2.x,  PV17.w,  0.0f       
    y: ADD         ____,  |KC0[5].x|,  PV17.z      
    z: ADD         R1.z,  PS17,  0.0f       
    w: CNDE        T0.w,  PV17.y,  T2.z,  PV17.x      
    t: MUL_e       ____,  T1.w,  T2.y       
19  x: FLOOR       R0.x,  PS18       
    y: MUL_e       ____,  T1.w,  T3.x       
    z: ADD         ____,  |KC0[11].x|,  PV18.w      
    w: CNDGT       ____, -T3.z,  PV18.y,  T3.z    
(b) R-Scatter code 

Figure 7. An extract of VLIW instruction schedules for 

bitonic sort on ATI R670.  These schedules show VLIW 

words from 16 to 19. Each VLIW word may contain up 

to 5 instructions – x,y,z,w,t. The R-Scatter schedule 

results in more fully packed VLIW words. The 

instructions do not correspond exactly between the two 

versions, because the compiler has reordered them. 

Table 2. VLIW words, Texture operations and General Purpose Registers used in the original vs. R-Scatter kernel. 
Benchmark Name Original VLIW Original TEX Original GPR R-Scatter VLIW R-Scatter TEX R-Scatter GPR 

Matrix Multiplication 33 8 15 64 16 32 

Convolution 21 3 8 29 6 12 

Black Scholes 66 5 7 111 10 12 

Mandelbrot 19 0 9 33 0 15 

Bitonic Sort 39 2 4 46 4 5 

1D FFT 72 4 6 78 8 8 

 



In terms of hardware protection of off-chip and on-chip 
memory, we did not observe a significant enough 
improvement (184% the original execution time on average, 
a 4.6% reduction compared to non-memory-protection R-
Scatter), even for applications which are highly dominated 
by memcopy time such as convolution and black schools, to 
justify the implementation of ECC. The reason is that using 
Brook+ 1.0 it is much more expensive to transfer data from 
the GPU back to the CPU, than it is from CPU to GPU, as 
observed in Section  5.1. Since we always duplicate output 
streams, and we sometimes duplicate input streams, we 
conclude that it is not justified to include hardware support 
for off-chip and on-chip memory protection in ATI R670. 

5.2.2. R-Scatter on NVIDIA G80 

The performance overhead of R-Scatter for CUDA is 
presented in Figure 9. Interestingly, for all applications, the 
performance of R-Scatter is the same or worse than the 
simple R-Naïve. We observe the most evident increase in 
execution time in matrix multiplication, up to 3x. The 
reason for this behavior is that when we interleave the 
redundant code with the original code, we also impact the 
hardware resource usage in a negative way. The matrix 
multiplication application is a highly optimized code with 
large 16x256 tiles loaded in shared memory and registers, 
combined with prefetching  [2]. When we interleaved the 
redundant code, we also increased the register and shared 
memory usage. Thus we had to reduce the tile size to 8x64 

as well as the number of prefetched elements in order to 
satisfy the hardware limitations. Reducing the tile size and 
prefetching, however, has a fairly negative impact on 
performance. 

One of the potential benefits of R-Scatter to CUDA, as 
discussed in Section  3.2 is overlapping independent 
memory accesses from the original and redundant code. 
The reason why latency hiding did not benefit our 
applications is because GPUs are much more efficient in 
hiding memory latency using thread-level parallelism and 
shared memory, than using memory-level parallelism 
within each thread. Since our applications are sufficiently 
well optimized, interleaving memory accesses using R-
Scatter does not benefit and may actually hurt in some 
cases. To analyze this issue further, we dissect two 
examples. In those examples we compare R-Scatter to R-
Naïve, because R-Naïve consistently incurs 2x overhead in 
execution time. First, we look at how program 
optimizations impact the benefit of R-Scatter. We evaluated 
a well optimized matrix multiplication (with 8x64 tiles, 
loop interchange and pre-fetching into registers, which 
achieves 113 GFLOPS on G80 for 2kx2k matrix 
multiplication) and a simple, un-optimized matrix 
multiplication (which does not use shared memory and each 
thread calculate one element in product matrix, which 
achieves only 3.8 GFLOPS on G80 for 2kx2k matrix 
multiplication). The un-optimized code is memory bound as 
it does not reuse data in shared memory. As a result, the 

 
Figure 8. Execution time of R-Scatter for ATI R670. We show 3 bars for each application: Original, R-Scatter, and 

R-Scatter with hardware DRAM protection. Execution time is normalized to Original.  

 
Figure 9. Execution time of R-Scatter for NVIDIA G80. We show 4 bars for each application: Original, R-Scatter, R-

Scatter with DRAM and R-Scatter with DRAM and shared memory protection. Exec. time is normalized to Original. 



memory bandwidth is nearly saturated by the memory 
requests from a large number of active threads. Adding 
memory-level parallelism in the kernel function, R-Scatter 
performs about 1% better than R-Naïve on this code. On the 
other hand, R-Scatter performs about 17% worse on the 
highly optimized code than R-Naïve as the optimized code 
hides off-chip memory latency well using shared memory 
and thread-level parallelism. Introducing additional 
independent memory accesses to this code, does not help 
but actually hurts performance. In our second example, we 
limit the amount of thread-level parallelism available to the 
highly optimized matrix multiplication. To do that, we 
execute the kernel on a small input of only 64 x 64 elements 
matrix, which requires only 4 thread blocks. To obtain 
reliable timings, we looped around the kernel 100K times. 
The outcome of this experiment was that R-Scatter 
executed 15% faster than R-Naïve. The overlapping 
memory accesses issued by R-Scatter helped, because there 
was no sufficient thread-level parallelism to hide the 
latency. In comparison, R-Scatter is 10% better than R-
Naïve on the simple version of matrix multiplication for 
64x64 matrices since more memory bandwidth is available 
for redundant memory accesses than large matrices.  

As discussed in Section 3.4, protecting global memory 
benefits applications in the same way as in R-naïve, by 
eliminating a redundant CPU-GPU transfer. Furthermore, 
R-Scatter benefits from protecting shared memory with an 
average of 8% speedup compared to no shared memory 
protection (the fourth bar of each benchmark in Figure 9). 
However, only matrix multiplication and convolution were 
able to take advantage of shared memory protection, 
because the other applications do not make heavy use of 
shared memory. However, even with shared memory 
protected, the matrix multiplication kernel of R-Scatter is 
still slower than R-Naïve. This is mainly due to the reduced 
tile size and thread-level parallelism. Since the performance 
of R-Scatter for CUDA was not superior to R-Naïve, and 
since only R-Scatter may benefit from protecting shared 
memory with ECC, we conclude that it is not desirable to 
include hardware protection to shared memory in G80.  

5.3. R-Thread 

As discussed in Section 3.3, given limitations of Brook+ 
1.0, we were not able to apply this approach to R670 so we 
study R-thread using CUDA on G80. The performance 
results are shown in Figure 10. 

As seen in Figure 10, the performance overhead of 
redundant execution is uniformly close to 100% (with an 
average of 97%), except for the benchmark fft. The reason 
why performance overhead is close to 100% is because 
those applications have sufficient thread-level parallelism 
and adding more thread blocks does not improve the 
overlap of memory latency. To illustrate this point better 
and to understand why R-Thread performs so well for fft, 
we examine the performance overhead of R-Thread on fft 
for different input sizes, as shown in Figure 11. In the 
figure, we also present the corresponding number of thread 
blocks (including redundant blocks) required to process that 
input size. Initially, when the input size is 4K, 8 thread 
blocks are needed for original execution. Thus 8 of the 
Compute Units (G80 has 16 Compute Units) are available 
to process the redundant thread blocks. This results in a 
complete overlap between original and redundant kernel 
execution and thus the performance overhead of R-Thread 
is small, mostly due to redundant memory transfer. 
However, even as the number of thread blocks increases 
beyond 16 and all the Compute Units are occupied, we still 
see substantial benefit due to thread-level parallelism and 
overlap of memory transfers. The reason is that the number 
of registers used per thread block in fft is not large, which 
allows the GPU to assign two thread blocks per Compute 
Unit maintaining their state in the register file concurrently. 
When one of the thread-blocks is stalled for memory 
access, the other thread block is switched in, thus hiding 
some of the latency. The amount of unused thread-level 
parallelism clearly diminishes as we grow the input size and 
the number of thread blocks increases. With a 64K input R-
thread incurs about 95% overhead over a non-redundant 
execution.  
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Figure 11. Performance overhead of R-Thread for 

various input sizes to 1D FFT. 

 
Figure 10. Execution time of R-Thread for NVIDIA G80. We show 3 bars for each application: Original, R-Thread, 

and R-Thread with hardware DRAM protection. Execution time is normalized to Original.  



In R-Thread, protecting global memory benefits 
applications in the same way as in R-Naïve, as discussed in 
Section 3.4. Even though in CUDA memory transfer from 
GPU-CPU is still slower than CPU-GPU, this effect is not 
as pronounced as in Brook+ 1.0, likely due to the more 
mature development phase of the tool. Thus applications 
with large memory transfer times may benefit from 
protecting off-chip memory in the NVIDIA G80, the 
overhead of black scholes is reduced to only 40% compared 
to 89% without off-chip protection. However, on average 
the overhead relative to non-redundant execution is 92% 
when off-chip memory is protected as shown in Figure 10, 
which is still not significant enough to justify hardware 
protection.   

6. Conclusions 

In this work, we propose and evaluate three software-only 
methodologies for providing redundancy for general-
purpose computing on graphics processor. The first 
technique, R-Naïve, simply duplicates the kernel 
computations and naturally leads to roughly half of the 
throughput compared to a non-redundant version. The other 
two techniques, R-Scatter and R-Thread, interleave 
redundant execution with the original program code. R-
Scatter takes advantage of unused instruction-level 
parallelism, while R-Thread utilizes available thread-level 
parallelism. Interestingly, we show that even though R-
Scatter and R-Thread are quite beneficial in some cases, 
they also suffer from large performance overheads or 
increased complexity in other cases due to intricate 
tradeoffs among thread-level parallelism, instruction-level 
parallelism, data reuse with shared memory, and other 
factors. This means that we need to understand both the 
application characteristics and the hardware platform before 
applying software protection schemes. If the target kernel 
has a low degree of instruction-level parallelism and low 
register usage, R-scatter may be a good choice for R670. 
For G80, additional features like shared memory usage 
need to be taken into account to make sure R-Scatter will 
not reduce the amount of memory reuse. On the other hand, 
if an application does not have sufficient threads to keep all 
compute cores busy, R-Thread may provide substantial 
performance gains, especially when future GPUs feature 
much higher number of compute cores (240 in Nvidia 
GT200 and 800 for AMD R770). Detailed code analysis 
like this, however, may be a burden to application 
developers but can be done through automatic compiler 
analysis as the compiler has all the related information. 
Such compiler optimizations are left as our future work.  

In addition to software redundancy, we further evaluated 
whether adding hardware support like ECC/parity bits to 
on-chip SRAM and off-chip DRAM is justifiable. Our 
results show that protecting those memories in hardware 
provides only limited performance benefit and thus is not 
justified for our software redundancy approaches. One of 
the reasons is that not all the applications are able to take 
advantage of the hardware support if they have small input 

data. Another reason is that even with hardware support, we 
cannot eliminate all of the memory transfer overhead, the 
GPU-CPU transfer is still required and takes a significant 
portion of the overall data transfer time.  
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