
Understanding Software Approaches for GPGPU Reliability

Martin Dimitrov* Mike Mantor† Huiyang Zhou*

*University of Central Florida, Orlando †AMD, Orlando

 {dimitrov, zhou}@cs.ucf.edu.edu michael.mantor@amd.com

Abstract

Even though graphics processors (GPUs) are becoming
increasingly popular for general purpose computing, current
(and likely near future) generations of GPUs do not provide
hardware support for detecting soft/hard errors in
computation logic or memory storage cells since graphics
applications are inherently fault tolerant. As a result, if an
error occurs in GPUs during program execution, the results
could be silently corrupted, which is not acceptable for
general purpose computations. To improve the fidelity of
general purpose computation on GPUs (GPGPU), we
investigate software approaches to perform redundant
execution. In particular, we propose and study three
different, application-level techniques. The first technique
simply executes the GPU kernel program twice, and thus
achieves roughly half of the throughput of a non-redundant
execution. The next two techniques interleave redundant
execution with the original code in different ways to take
advantage of the parallelism between the original code and
its redundant copy. Furthermore, we evaluate the benefits of
providing hardware support, including ECC/parity
protection to on-chip and off-chip memories, for each of the
software techniques. Interestingly, our findings, based on
six commonly used applications, indicate that the benefits
of complex software approaches are both application and
architecture dependent. The simple approach, which
executes the kernel twice, is often sufficient and may even
outperform the complex ones. Moreover, we argue that the
cost is not justified to protect memories with ECC/parity
bits.
Categories and Subject Descriptors B.8.1 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance;
I.3.1 [Computer Graphics]: Hardware Architecture –
Graphics processors
General Terms Performance, Reliability
Keywords GPGPU, Reliability

1. Introduction

General purpose computing on graphics processor units
(GPGPU) becomes increasingly popular due to their

remarkable computational power, memory access
bandwidth and improved programmability. Current GPUs
contain hundreds of compute cores and support thousands
of light-weight threads, which hide memory latency and
provide massive throughput for parallel computations. New
programming models including CUDA from NVIDIA [3],
Brook+ from AMD/ATI [1], and under-development
OpenCL [7], facilitate programmers by allowing them to
write GPU code in a familiar C/C++ environment, instead
of forcing them to map general purpose computation to the
graphics domain. In these programming models, the GPU is
used as an accelerator to the CPU, from which memory-
intensive and compute-intensive tasks are offloaded.

However, current GPUs do not provide hardware
support for detecting soft or hard errors, which may occur
in computation logic or memory storage. For instance, the
off-chip storage of modern GPUs such as ATI Radeon HD
series uses graphics double data rate (GDDR) type
memories. The latest GDDR5 memory contains error
detection, however, only for transmission errors [4]. As a
result, any bit-flip in a memory cell may lead to silently
corrupted results, i.e., erroneous results which are not
detected. With soft-error rates predicted to grow
exponentially [16] [17] in future process generations and
permanent failures/hard errors such as gate-oxide
breakdown [15] gaining importance, future GPUs are
likely to be prone to hardware errors. This has an adverse
impact on GPGPU since many scientific, medical imaging
and financial applications require strict correctness
guarantees. Unfortunately, such reliability requirements are
not likely to be answered in current or near future GPU
generations. The reason is that even though GPGPU
applications are gaining popularity, modern GPU design
remains largely driven by the video games market, where
100% correct results are not strictly necessary. As observed
by Sheaffer et. al. [13], errors in video applications are
often masked because they affect a single or a few pixels, or
the corrupted image is promptly recomputed in the next
frame. As such, in order to overcome the GPU reliability
limitations, we need to develop reliability schemes for
GPGPU, which are software only, or require very few
hardware changes to the GPU hardware.

In this work, we first propose and evaluate three
different methodologies for providing redundancy entirely
in software. We implemented the redundancy methods at
the application level. In other words, we assume that the
programmer is responsible for writing redundant code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
GPGPU’09 March 8, 2009, Washington, DC, USA.
Copyright © 2009 ACM 978-1-60558-517-8/09/03…$5.00.

However, we believe that the approaches are relevant and
insightful to possible compiler implementations like [10]
due to their regular patterns. The first technique, which we
call R-Naïve, simply executes the GPU computation (or
GPU kernel) twice. This approach is simple, but naturally
leads to roughly half of the throughput compared to a non-
redundant version. The other two approaches, R-Scatter and
R-Thread, interleave redundant execution with the original
program code in different manners. R-Scatter takes
advantage of unused instruction-level parallelism, while R-
Thread utilizes available thread-level parallelism. The goal
of R-Scatter and R-Thread is to better utilize the vast
computational resources of the GPU and achieve lower
performance overhead by leveraging the inherent
parallelism between the original and redundant execution.
Note that although leveraging unused instruction or thread-
level parallelism has been proposed for central processing
units (CPU) redundancy [6] [8] [9] [11] [12], we adapt the
principle to GPUs and evaluate how well it may works for
GPGPU redundancy. For each of the three approaches, we
further consider whether adding hardware support,
including ECC/parity bits to on-chip static random access
memory (SRAM) and off-chip dynamic random access
memory (DRAM), is justifiable. Interestingly, our
experience with six commonly used applications on two
GPU architectures, indicate that the benefits of the R-
Scatter and R-Thread approaches are both application and
architecture dependent. In comparison, R-Naïve has
consistently predictable performance and may even
outperform R-Scatter or R-thread in some cases. Moreover,
we argue that the area and cost overhead of protecting
SRAM and DRAM memories with ECC/parity bits are not
justified, because they do not result in significant
performance improvements for our software redundancy
approaches.

The rest of this paper is organized as follows. In Section
2 we briefly review the basics of GPU architecture and
GPGPU programming. In Section 3, we describe the
proposed application-level software redundancy
approaches. In Sections 4 and 5, we discuss our
experimental methodology and results. Section 6 concludes
the paper and addresses the future work.

2. GPU Architecture and Programming

In this section, we provide a high-level overview of modern
GPU architectures and programming models. This
overview is sufficient for the reliability techniques
presented in this paper. More in-depth treatment of GPU
architectures and programming models can be found in
 [1] [3].

2.1. GPU Architectures

In this work, we experiment with two different GPU
architectures, namely NVIDIA G80 and AMD/ATI R670
architectures. We first describe G80, followed by R670,
highlighting their differences and similarities.

NVIDIA G80 contains 16 streaming multi-processors
(Compute Units) and each Compute Unit contains 8
steaming processors (SPs) or compute cores, for a total of
128 cores. In addition, each Compute Unit has an 8K-entry
(32kB) register file, 16kB read/write shared memory and
8kB read-only constant memory. Shared and constant
memories are on-chip, fast access SRAM, managed
explicitly by the programmer in software. The main
memory storage, or global memory, is off-chip DRAM and
takes hundreds of cycles to access. In order to hide global
memory access latency, Compute Units can be assigned a
large number of light-weight threads, up to 512 threads per
Compute Unit. Thus, while some threads are waiting for
global memory access, other threads can execute on the
Compute Unit and overlap memory latency. Creating more
threads is generally better for achieving high performance.
However, the programmer has to be aware of the hardware
limitations of the GPU. For instance, the number of
registers or shared memory that each thread requires may
limit the number of threads that can be created. If the
programmer wants to assign 512 threads to a Compute Unit,
then each thread should consume at most 16 registers (8k-
registers / 512 = 16). In G80, threads are scheduled for
execution in granularity of warps. Each warp consists of 32
threads. Threads within a warp share the same program
counter (PC), following the single-instruction multiple-data
(SIMD) mode. Different warps execute the same program
(kernel) but maintain their own PC, thus following the
single-program multiple-data (SPMD) mode.

The architecture of AMD/ATI R670 is similar to G80 in
many respects. R670 contains 320 compute cores. The
compute cores are organized into 4 Compute Units of 16x5
cores per Compute Unit. Similar to warps in G80, threads in
R670 are organized into wavefronts. Each wavefront
contains 64 threads and follows the SIMD mode, while
different wavefronts follow the SPMD mode. In contrast
from G80, in R670 instructions are grouped into VLIW
words of 5 instructions. Thus, in order to fully utilize the
computational resources of the machine, the compiler needs
to find enough instruction-level parallelism to fully pack the
VLIW words. R670 does not contain a shared memory.
However it has two levels hardware managed caches (32kB
L1 and 128kB L2 shared by all Compute Units) and a larger
(1MB total or 256kB per Compute Unit) register file.

2.2. GPGPU Programming Models

The NVIDIA programming model is called CUDA [3] and
the AMD/ATI programming model is called Brook+ [1]. In
both programming environments, the GPU is viewed as an
accelerator to the CPU. The overall process required to
write a GPGPU program for both environments is
summarized as follows. First, the programmer writes a
kernel function(s) in extended C/C++. The extensions to
C/C++ are necessary in order to control GPU specific
resources, such as thread ids, vector operations or shared-
memory variables. The kernel executes on the GPU and
forms the task that a single GPU thread has to complete.

Thus, following the SPMD mode, every thread on the GPU
will execute the same kernel, however depending on the
thread id (CUDA) or index (Brook+ 1.0) each thread will
work on a different portion of the data. Second, on the CPU
side, the programmer allocates and initializes the problem
data. Then the programmer writes code to transfer the data
from the CPU to the GPU. Finally, the programmer
invokes the GPU kernel and then copies the results back
from the GPU to the CPU. The memory transfer from CPU-
GPU-CPU is achieved using intrinsics such as
“streamRead/streamWrite” in Brook+ 1.0 and
“cudaMemCopy” in CUDA. In this work, for simplicity we
refer to the CPU-GPU-CPU memory transfer as memcopy.

While CUDA and Brook+ 1.0 share many similarities,
the most notable difference between the two is their thread
management model. In CUDA, threads are created
explicitly and arranged into a thread hierarchy. For
instance, threads are grouped into three dimensional thread
blocks. Thread blocks are further arranged into a two
dimensional grid. At runtime, each thread block will be
assigned to an available Compute Unit for execution. The
threads find their working data, by querying their thread id
and block id. In contrast, Brook+ 1.0 adopts a streaming
model, in which the kernel operates concurrently on each
data element of an input stream(s) and updates the
corresponding element of an output stream(s). Thus, thread
creation in Brook+ 1.0 is implicit. An implicit thread is
created for each streaming element, and the thread operates
on that element. The number of threads created depends on
the size of the data stream. Since the pure streaming model
is too restrictive, in Brook+ 1.0 there are exceptions which
allow for scatter/gather or random access streams. Scatter
and gather streams allow the kernel to access arbitrary
memory locations within a stream. However, some
restrictions still apply. In particular, at least one stream in
the kernel (either an input or an output stream) has to be
declared as a proper stream (i.e., not a scatter/gather
stream). This is because the proper stream drives the
implicit creation of threads. Similar to “thread id” in
CUDA, in Brook+ 1.0 we use “index of” to find out which
data element we are working on. Later versions of Brook+
(version 1.3) add flexibility for explicit thread creation.

3. Proposed Software Redundancy

Approaches

In this section we describe the three approaches that we
propose for software-only reliability. We also discuss how
each approach can be enhanced by adding ECC/parity
protection in off-chip global memory and on-chip memory.
The R-Naïve approach simply executes the kernel twice and
then compares the two results for discrepancy. The R-
Scatter and R-Thread approaches are motivated by the fact
that even a highly optimized GPGPU application is likely to
leave some unused instruction or thread-level parallelism.
These two approaches, attempt to take advantage of the
unused parallelism in order to reduce the performance
overhead of redundant execution. However, because the

two different architectures, G80 and R670, achieve high
performance in different ways, some of the reliability
approaches are more suitable to one architecture and not the
other. For example, in R670 instruction-level parallelism is
critical in order to fully pack the VLIW words with
operations, which can issue together. On the other hand, in
G80, instruction-level parallelism does not play such a large
role and the focus is shifted to thread-level parallelism.

In both architectures, our goal is to provide 100%
redundancy, and we only assume that the CPU is reliable,
i.e. any GPU component – global off-chip memory, on-chip
memory, ALUs, on-chip interconnect, etc, is considered
unreliable. While it is difficult to prove/guarantee that a
certain approach provides 100% error detection, we present
a best-effort approach. Moreover, the focus of our work is
to study if we can effectively reduce the performance
overhead by better utilizing resources.

3.1. R-Naive

In this approach, we duplicate both the memcopy (CPU-
GPU-CPU) and the kernel executions. By allocating two
copies of the data on the GPU, we provide spatial
redundancy for GPU memory. Executing the computation
kernels twice (once for each copy of the data) provides
temporal redundancy to computational logic and
communication links. In order to improve reliability further
and detect permanent defects, it is desirable for the original
and redundant input/output streams to use different
communication links and compute cores (i.e., to achieve
spatial redundancy). For some applications we can easily
achieve that by rearranging the input data appropriately. For
example, in matrix multiplication of two matrices M and N,
we can circular-shift the columns of M by 1 (the first
column becomes last) and the rows of N by 1 (the first row
becomes last). The resulting matrix multiplication will
produce the same result as before, however we have
ensured the input streams are different from the original. On
the other hand, rearranging the data to obtain identical
results may not as easy for other applications. In this case, it
would be desirable to have a software controllable interface
to assign the hardware resource. For example, if the
software can specify the Compute Unit where the first
thread block should be dispatched to, the original dispatch
and its redundant copy can be assigned to different
Compute Unit so that a permanent error will not affect both
of them in the same manner. Similarly we may use this
software interface to allocate redundant memory resources
at a user-defined offset from the original data in order to
detect permanent errors in memory. Since rearranging the
input and subsequently the output is most naturally done on
the CPU, while the data is initialized or consumed, we do
not include this overhead when evaluating the performance
on the GPU. We also duplicate the transfer of the results
from the GPU back to the CPU to account for any data
corruption which may occur during the transfer as well as to
check the results. Once the results are transmitted to
system’s memory (which is ECC protected) the CPU will

compare the results and use them if they are identical. In the
rare case that there is an error, the CPU may re-submit the
request to the GPU or perform more elaborate checks to
determine the cause of the error.

A pseudo code of implementing R-Naïve is presented in
Figure 1, where the redundant code is highlighted in bold.
The original version of the code is presented in Figure 1 (a)
and three different implementations of R-Naïve are
presented in Figure 1 (b), (c), and (d). In Figure 1 (b), we
first transfer the data to the GPU twice and then invoke the
computation kernels. Thus, there is no overlap between
CPU-GPU transfer and kernel computation. In Figure 1(c),
the redundant memory transfer is after the asynchronous
kernel invocation, which in theory means that
StreamRead(in_R) can be executed without the completion
of Kernel(in,out). However, in practice we did not observe
any performance difference between the two approaches.
We believe that this is a limitation of the programming
environments, which are still being refined, and not a
hardware limitation. In Figure 1 (d), the original code and
the redundant code run back-to-back. So, the original data
and its redundant copy do not need to reside in the device
memory at the same time. However, it may happen that the
redundant data are loaded to the same memory location as
original data. In this case, if the redundant data is not
rearranged (or allocated at an offset using a software
interface as mentioned above), we may lose the capability
to detect permanent memory errors. In terms of
performance, we did not observe any difference between
Figure 1 (d) and Figure 1 (b) or (c). Therefore, the approach
shown in Figure 1(c) is the preferred one as long as the
device memory can hold both the original data and its
redundant copy simultaneously.
StreamRead(in)

Kernel(in, out)

StreamWrite(out)

StreamRead(in)

StreamRead(in_R)

Kernel(in,out)

Kernel(in_R,out_R)

StreamWrite(out)

StreamWrite(out_R)

StreamRead(in)

Kernel(in,out)

StreamRead(in_R)

Kernel(in_R,out_R)

StreamWrite(out)

StreamWrite(out_R)

StreamRead(in)

Kernel(in,out)

StreamWrite(out)

StreamRead(in_R)

Kernel(in_R,out_R)

StreamWrite(out_R)

(a) Original

Code

(b) Redundant

code without

overlap

(c) Redundant

code with overlap

(d) Redundant

code back-to-back

Figure 1. Pseudo code for R-Naïve, with and without

overlapping memory transfers and kernel computation,

and back-to-back execution. Extra code added for

redundancy is in bold.

3.2. R-Scatter

In this approach, we try to take advantage of unused
instruction-level parallelism. Even though this approach has
some potential benefits for the G80 architectures, which we
describe shortly, it is more suitable to the VLIW model of
R670. The idea, as applied to R670, is illustrated in Figure
2. From Figure 2 (a), we can see that due to data
dependencies, the original VLIW schedule of the GPU
kernel is not fully packed, thus not utilizing the hardware.
On the other hand, since the redundant instructions are

inherently independent from the original code, we can
interleave them and create more compact schedules, as
shown in Figure 2 (b).

Figure 2. Original vs. R-Scatter VLIW instruction

schedules.

To see how a programmer can implement this approach,
we present a code sample from a simple matrix
multiplication kernel in Figure 3. We first show how this
approach can be implemented in Brook+ 1.0 and discuss
CUDA shortly. Brook+ 1.0 uses a streaming compute
model and an implicit thread is created for each proper
stream element. In Figure 3 (a), the output stream P is a
proper stream and the input streams M and N are gather
streams. We first obtain the position into the output stream,
using “indexof”. Then, in the for-loop, we use this position
to compute an index into the input matrices M and N and
perform the computation. Figure 3 (a) also demonstrates the
use of vector types and swizzle operations, which allow
access to the elements of a vector in any order. In Figure 3
(b), we show the code implementing R-Scatter. The
redundant code is highlighted in bold. We supply redundant
input and output streams to the kernel. We also duplicate
the computation within the for-loop and write the results to
a redundant output stream. The operations within the for-
loop are inherently independent, thus they may result in
better utilized VLIW instruction schedules, which is the
insight behind R-Scatter. In this particular example we have
7 VLIW words in the original and 11 VLIW words in the
R-scatter version, respectively. Moreover, in R-scatter code,
the input stream accesses of the original and redundant
execution are overlapped, achieving higher memory-level
parallelism in the kernel function.

Notice that in Figure 3 (b) we do not duplicate all the
kernel code. Instead, we reuse some kernel code for
redundant execution. For instance we reuse the for-loop and
the index computation, which leads to a reduced number of
redundant instructions compared to R-Naïve. However,
such reuse can compromise the reliability, since an error to
the variable “i” will affect both the original and redundant
computation. To prevent this from happening, we want the
kernel to compute different data elements in the original
and the redundant streams so that an error to “i” will cause
errors in different elements in the output data and its
redundant copy. Computing different data elements in the
original and the redundant streams can be implemented in
either of the following two ways. The first is to rearrange
the input data for redundant execution as discussed in
Section 3.1. The second is to use the same input data but
manipulate the thread index. The first approach is more
suitable for Brook+ 1.0 due to its relatively restrictive
streaming program model, in which the threads are
implicitly generated based on the proper stream. To make a
thread to process different data items in two output streams

(a) (b)

Original
operation
Redundant operation

requires gather and scatter streams, which have additional
restrictions. For example, in Brook+ 1.0, if we want to
update a different element of the redundant output stream
(scatter), the output stream has to be 128 bits wide. CUDA,
in comparison, supports explicit management of threads,
which makes the second approach easy to implement, as
shown in Figure 4. In the figure, the redundant code (b) is
interleaved with the original code (a) and the for-loop is
reused. We use explicit thread id management “tx_R =
(threadIdx.x + 1) % (Width)” to force the kernel to compute
on different elements of the original and the redundant
matrices. This way, each thread computes a different
redundant element from the same corresponding thread
block. Similarly, if the application uses multiple thread
blocks, we can also force each thread to compute the same
element from a different thread block. This is achieved by
re-using the thread id, but modifying the block id.

The performance benefit from R-scatter in CUDA, as
seen from the example in Figure 4, mainly comes from
reused instructions and overlapped memory accesses, a
degree of 4 in Figure 4 (b) compared to a degree of 2 in
Figure 4 (a). The tradeoff, however, is the extra
registers/shared memory to hold the loaded data. Such
increased register/shared memory pressure in the kernel
may affect thread-level parallelism or shared memory

utilization since all concurrent threads in a Compute Unit
share the register file and shared memory.

3.3. R-Thread

In this approach, we try to take advantage of unused thread-
level parallelism. Recall that threads are specified explicitly
only in CUDA and not in Brook+ 1.0. While it is possible
to create more threads in Brook+ 1.0, by combining the
original and the redundant stream into a single large stream,
the stream scatter restrictions of Brook+ 1.0 mentioned in
Section 3.2 prevent us from implementing this approach.
Thus we consider R-Thread only for CUDA. The idea of R-
Thread is as follows. Each thread does the same amount of
work as in the original kernel. However, we allocate double
the number of thread blocks per kernel. The extra thread
blocks will perform the redundant computations and are
scheduled for execution on the Compute Units together
with the original thread blocks. In case the original GPGPU
application does not utilize all the Compute Units of G80,
then the redundant thread blocks will be able to utilize those
otherwise idle Compute Units and reduce the redundancy
overhead. An example from the simplified version of
matrix multiplication is presented in Figure 5 to illustrate
R-thread. In this example, address computation is omitted
for clarity. The portion of the code, which is marked in

kernel void mat_mult(float width, float M[][], float N[][], out float P<>){

 float2 vPos = indexof(P).xy; // obtain position into the stream
 float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y);
 float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f);
 float sum = 0.0f;

 for(float i=0; i<width; i= i+1){
 sum += M[index.zw]*N[index.xy]; //accessing input stream
 index += step;
 }
 P = sum;
}

kernel void mat_mult(float width, float M[][], float M_R[][],
 float N[][], float N_R[][],out float P<>, out float P_R<>){
 float2 vPos = indexof(P).xy;
 float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y);
 float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f);
 float sum = 0.0f;
 float sum_R = 0.0f;
 for(float i=0; i<width; i= i+1){
 sum += M[index.zw]*N[index.xy]; //accessing input stream
 sum_R += M_R[index.zw]*N_R[index.xy]; //accessing input stream
 index += step;
 }
 P = sum;
 P_R = sum_R;
}

(a) Original code (b) R-Scatter Code
Figure 3. Simple matrix multiplication kernel code in Brook+ 1.0 for R-Scatter. Code added for redundancy is in

bold.
int tx,ty; // Obtain 2D thread id
tx = threadIdx.x;
ty = threadIdx.y;

int Pvalue = 0; // Store the computed elem

for (int k = 0; k<Width; ++k){
 float m = M[ty*Width + k]; // global memory access
 float n = N[k*Width + tx]; // global memory access

 Pvalue += m * n;

}
P[ty*Width + tx] = Pvalue

int tx,ty, tx_R, ty_R; // Obtain 2D thread id
tx = threadIdx.x;
ty = threadIdx.y;
tx_R = (threadIdx.x +1)%(Width) ;
ty_R = (threadIdx.y +1)%(Width);
int Pvalue = 0; // Store the computed elem
int Pvalue_R = 0;

for (int k = 0; k<Width; ++k){
 float m = M[ty*Width + k]; //global memory access
 float n = N[k*Width + tx]; //global memory access
 float m_R = M_R[ty_R*Width + k]; //global memory access
 float n_R = N_R[k*Width + tx_R]; //global memory access
 Pvalue += m * n;
 Pvalue_R += m_R * n_R;
}
P[ty*Width + tx] = Pvalue;
P_R[ty_R*Width + tx_R] = Pvalue_R;

(a) Original code (b) R-Scatter Code
Figure 4. Simple matrix multiplication kernel code in CUDA for R-Scatter. Extra code added for redundancy is in

bold. The global memory accesses are indicated with comments.

bold, belongs to R-Thread. Intuitively, in the bold portion
of the code, we check to see to which thread block the
current thread belongs. If this thread block is one of the
redundant thread blocks, then we simply re-direct the
memory pointers to point to the redundant copies of the
input and output matrices. The rest of the code remains the
same and the thread will automatically compute a redundant
element.

if(by >= NumBlocks){
 M = M_R;
 N = N_R;
 P = P_R;
 by = by - NumBlocks;
}
float Pvalue = 0;
 for (int k = 0; k < Block_Size; ++k){
 float m = M[addr_md];
 float n = N[addr_nd];
 Pvalue += m * n;
}
P[ty*Width + tx] = Pvalue;

Figure 5. Pseudo code of simple matrix multiplication

for R-Thread. Extra code added for redundancy is in

bold.

3.4. Hardware Support for Error Detection in

Off-Chip and On-Chip Memories

The three software approaches proposed in this work will
benefit from added hardware support for error
detection/correction to off-chip (global) memory and on-
chip (caches, constant, shared) memory. In G80, caching is
explicitly controlled in software, i.e. the programmer
specifies which data will be stored in constant or shared
memory. Thus, we can decide to protect either off-chip
memory only, or both off-chip and on-chip memory in
hardware. If off-chip memory is protected, then duplication
of the input data is not necessary and the redundant CPU-
GPU memory transfers may be eliminated. In R670 caching
is implicit, thus we may not separate off-chip and on-chip
hardware error protection. If we protect only off-chip
memory and keep only one copy of data in off-chip
memory, an on-chip, cached copy of the data may be
corrupted leading to incorrect computation in both original
and redundant execution. Thus, in Brook+ 1.0 we assume
that we can eliminate the redundant transfer from CPU-
GPU only if both off-chip and on-chip memory is
parity/ECC protected.

We may use either the CPU or GPU to perform result
comparison for error detection. If using CPU, we still need
to transfer the redundant computation results from GPU-
CPU. When using GPU, although the redundant GPU-CPU
transfer can be removed, there is a penalty on reliability as
an error may happen in the GPU when it is busy comparing
results. Thus, in this work we do not consider checking the
results using the GPU.

R-Naïve, R-Scatter and R-Thread can all benefit from
reduced CPU-GPU transfers. R-scatter on CUDA may
additionally benefit from on-chip memory protection. This
is because a thread block may fetch data into

shared/constant memory only once, and then the interleaved
original and redundant computation will use the same
cached data. For R-Naïve and R-Thread, the data sharing
among original and redundant codes is not applicable as
they are treated as separate and independent threads.

Hardware protection for off-chip and on-chip memories
is advocated by Sheaffer et al. [14] and they also propose
hardware protection for computation logic by using two
compute cores to perform the same computation. As
discussed in Section 1, such extra hardware investment and
reduced computation throughput may be hard to justify as
graphics applications are fault tolerant and hardware errors
are rare events. In our work, we analyze how much the
hardware memory protection benefits our software
redundancy approaches.

4. Experimental Methodology

We evaluate our proposed approaches by providing
redundancy to six commonly used applications from
different fields, as shown in Table 1. When available, we
used the source codes distributed with CUDA and Brook+
1.0 development samples, otherwise we coded and
optimized our own versions. Among Brook+ 1.0 codes,
matrix multiplication, black scholes, Mandelbrot and
bitonic sort are from the Brook+ 1.0 samples. Among
CUDA codes, black scholes is from the version in the
CUDA samples. The rest of the applications were coded
and optimized with our best effort. Our version of matrix
multiplication on CUDA [2] achieves 149 GFLOPS for
2kx2k matrices, significantly outperforming the carefully
tuned Nvidia CUBLAS library implementation as well as
the existing CUDA sample code for matrix multiplication.

The Brook+ experiments were conducted using Brook+
1.0 Alpha on a PC running Windows XP, with Intel Core2
Quad CPU at 2.4 Ghz with 3.25GBytes of RAM and an
ATI R670 card with 512MB memory and 825MHz core
clock frequency. The CUDA experiments were performed
using CUDA SDK 1.1 on a Linux workstation with quad
core Intel Xeon at 2.3 GHz and 2GBytes of RAM and an
Nvidia GTX 8800 card with 768 MB memory and 575MHz
core frequency. Both machines have PCIe x16 to provide
3.2 GB/s bandwidth between the GPU and CPU. Each
execution time is collected using an average of 100 runs of
the same code.

Table 1. Evaluated Applications
Benchmark Name Description Application

Domain

Matrix

Multiplication

Multiplying two 2k by 2k matrices Mathematics

Convolution Applying a 5x5 filter on a 2k by 2k

image

Graphics

Black Scholes Compute the pricing of 8 million stock

options

Finance

Mandelbrot Obtain a Mandelbrot set from a

quadratic recurrence equation

Mathematics

Bitonic Sort A parallel sorting algorithm. Sort 2^20

elements

Computer

Science

1D FFT Fast Furrier Transform on a 4K array Mathematics

5. Experimental Results

In this section, we evaluate our proposed approaches – R-
Naïve, R-Scatter and R-Thread. For each of them, we first
discuss the performance results and then address the impact
of hardware support for memory protection.

5.1. R-Naive

In this experiment, we evaluate the performance overheads
of providing redundant execution using R-Naïve. For each
benchmark, we present the original execution time, the R-
Naïve execution time, and the R-Naïve execution time with
hardware DRAM protection, all normalized to the original
execution time. Each execution time is also broken down to
kernel computation time and memory copy time and the
results are shown in Figure 6 (a) and (b) for NVIDIA G80
and AMD/ATI R670, respectively. The last set of bars in
the figure is the average across the six benchmarks, which
is computed as the arithmetic mean of the execution times
for each configuration and then normalized to the arithmetic
mean of original execution without redundancy.

The first observation that we can make from this is that
the execution time of R-Naïve is consistently close to 2x the
original execution time: 199% for both Brook+ 1.0 and
CUDA. This behavior is expected, since we duplicate both
memcopy as well as kernel executions. In some cases it is
possible for R-Naïve to incur less than 2x overhead. This
behavior is due to pipeline setup times in the GPU. Since in
R-Naïve, we issue two copies of the kernel so that some of
the pipeline setup overhead can be avoided.

The second observation is that protecting global memory
with ECC bits, thus eliminating one CPU-GPU memory
transfer as discussed in Section 3.4, helps some applications
much more than others. The reason is that some

applications spend a much larger fraction of their execution
time moving data between the CPU and GPU. For example,
in matrix multiplication memcopy accounts for 22% of the
total execution time on CUDA. On the other hand, the
memcopy time for the benchmark black scholes is as much
as 92% on CUDA, as seen from Figure 6. Thus eliminating
a memory transfer is much more important for some
applications than others. Another subtle issue that we
noticed was that the memcopy time from GPU back to the
CPU is longer than the memcopy time from CPU to GPU.
This effect is more pronounced in Brook+ 1.0 than CUDA,
due to the early development stage of the tool (in hardware
both G80 and R670 use high bandwidth PCIex16 bus to
communicate with the CPU). Since, we do not eliminate the
redundant memory transfer of results from the GPU back to
the CPU, the benefit of protecting global memory with ECC
is diminished. Furthermore, as obvious from Figure 6, some
applications such as mandelbrot, bitonic sort and fft do not
reap any performance benefit from protecting global
memory with ECC. For instance, the mandelbrot
application has small input data sets that result in large
output data that is always replicated. In bitonic sort and fft,
the application performs multiple passes, where the inputs
and outputs are toggled in each pass, i.e. the outputs of one
pass become the inputs of the next pass. Since the outputs
are always duplicated, this forces us to duplicate the inputs
as well even if the memory is protected. On average, the
execution time of R-Naïve with hardware protection is
192% and 194% of the original for Brook+ 1.0 and CUDA
respectively. Compared to non-memory-protection R-
Naïve, the performance gains (7% the original for Brook+
1.0 and 5% the original for CUDA) do not well justify the
hardware cost.

Figure 6. Execution time of R-Naïve for NVIDIA (A) and ATI (B). We show 3 bars for each application: Original,

R-Naïve, and R-Naïve with hardware DRAM protection. Execution time is normalized to Original.

5.2. R-Scatter

5.2.1. R-Scatter on ATI R670

For AMD/ATI R670, we found strong evidence that R-
Scatter results in better, more compact VLIW schedules as
shown in Table 2, which lists a summary of the number of
VLIW words, texture operations and general purpose
registers used in the original vs. the R-Scatter version of the
kernels.

From Table 2 we can see that R-Scatter results in
significantly better utilized schedules. Note that the number
of TEX operations is always double in R-scatter, which
shows that we perform each data input redundantly. Taking
the benchmark bitonic sort, as an example, the original
kernel has 39 VLIW words compared to only 46 VLIW
words in the R-Scatter version. Using the ATI Shader
Analyzer we verified that the significantly smaller number
of VLIW operations is due to the fact that most VLIW
words are much better packed in R-Scatter than the original
version. Figure 7 shows an extract of the VLIW schedules
for the original kernel (a) and the R-Scatter (b) kernel.
From the figure, we can see that only about 2-3 out of the 5
VLIW slots are populated in the original kernel, while the
redundant kernel populates the VLIW slots fully thus
utilizing the machine resources better. The kernel, which
benefits the most from R-Scatter, is 1D fft with 72 vs. 78
VLIW instructions in the original and redundant version
respectively. On the other hand, for other applications such
as matrix multiplication, we did not observe such large
improvements in the VLIW schedules. There are two
primary reasons why this may happen. First, if the original
scheduling is almost fully populated to begin with, this will
result in less opportunity to pack better. The second reason
is if the original scheduling contains a lot of control flow or
transcendental operations (sin, cos, log, etc.). Only 1
control path or 1 transcendental operation can be handled
per VLIW word. Thus, even if those operations are
independent of each other, we will not be able to construct a
better schedule. In the case of matrix multiplication, the
original schedule was relatively well populated, thus
limiting the benefit that we can achieve with R-Scatter.

Figure 8 shows the overall performance overhead of R-
Scatter compared to a non-redundant implementation. We
can see that generally those applications such as bitonic sort
and fft, which resulted in better VLIW schedules, as shown
in Table 2, perform significantly better, with redundant fft
having only 40% performance overhead over the original
execution. The performance of convolution is not
significantly improved by R-Scatter, because the

performance of convolution is dominated by CPU-GPU-
CPU memory transfer and thus improvements in the kernel
execution do not translate into overall speedup. Matrix
multiplication has a very well utilized schedule to begin
with and thus does not benefit much from R-scatter. In
addition, we had to reduce the number of output streams
used in the optimized matrix multiplication in order to
incorporate the redundant output streams, since Brook+ 1.0
has a restriction of 8 output streams per kernel. In
mandelbrot, there are too many branch instructions and R-
scatter was not able to create a more efficient schedule. On
average, the execution time of R-Scatter is 193% the
original execution time.
16 x: MUL_e ____, T1.w, T3.z
 y: FLOOR ____, T0.z
 z: SETGE ____, T0.y, |KC0[5].x|

17 x: CNDE T1.x, PV16.z, T0.y, T0.w
 y: FLOOR T1.y, PV16.x
 z: ADD T0.z, PV16.y, 0.0f

18 x: MOV T0.x, |PV17.y|
 y: ADD ____, |KC0[5].x|, PV17.x
 w: MOV/2 ____, |PV17.y|

19 z: TRUNC ____, PV18.w
 w: CNDGT ____, -T1.x, PV18

(a) Original code
16 x: SETGE ____, PS15, |KC0[5].x|
 y: ADD ____, T1.w, KC0[2].x
 z: MULADD T2.z, -T0.y, T2.x, T1.x
 w: ADD ____, -|KC0[5].x|, PS15
 t: ADD ____, T1.w, KC0[8].x
17 x: ADD ____, -|KC0[11].x|, PV16.z
 y: SETGE ____, PV16.z, |KC0[11].x|
 z: CNDE T3.z, PV16.x, T1.y, PV16.w
 w: FLOOR ____, PV16.y
 t: FLOOR ____, PS16
18 x: ADD R2.x, PV17.w, 0.0f
 y: ADD ____, |KC0[5].x|, PV17.z
 z: ADD R1.z, PS17, 0.0f
 w: CNDE T0.w, PV17.y, T2.z, PV17.x
 t: MUL_e ____, T1.w, T2.y
19 x: FLOOR R0.x, PS18
 y: MUL_e ____, T1.w, T3.x
 z: ADD ____, |KC0[11].x|, PV18.w
 w: CNDGT ____, -T3.z, PV18.y, T3.z
(b) R-Scatter code

Figure 7. An extract of VLIW instruction schedules for

bitonic sort on ATI R670. These schedules show VLIW

words from 16 to 19. Each VLIW word may contain up

to 5 instructions – x,y,z,w,t. The R-Scatter schedule

results in more fully packed VLIW words. The

instructions do not correspond exactly between the two

versions, because the compiler has reordered them.

Table 2. VLIW words, Texture operations and General Purpose Registers used in the original vs. R-Scatter kernel.
Benchmark Name Original VLIW Original TEX Original GPR R-Scatter VLIW R-Scatter TEX R-Scatter GPR

Matrix Multiplication 33 8 15 64 16 32

Convolution 21 3 8 29 6 12

Black Scholes 66 5 7 111 10 12

Mandelbrot 19 0 9 33 0 15

Bitonic Sort 39 2 4 46 4 5

1D FFT 72 4 6 78 8 8

In terms of hardware protection of off-chip and on-chip
memory, we did not observe a significant enough
improvement (184% the original execution time on average,
a 4.6% reduction compared to non-memory-protection R-
Scatter), even for applications which are highly dominated
by memcopy time such as convolution and black schools, to
justify the implementation of ECC. The reason is that using
Brook+ 1.0 it is much more expensive to transfer data from
the GPU back to the CPU, than it is from CPU to GPU, as
observed in Section 5.1. Since we always duplicate output
streams, and we sometimes duplicate input streams, we
conclude that it is not justified to include hardware support
for off-chip and on-chip memory protection in ATI R670.

5.2.2. R-Scatter on NVIDIA G80

The performance overhead of R-Scatter for CUDA is
presented in Figure 9. Interestingly, for all applications, the
performance of R-Scatter is the same or worse than the
simple R-Naïve. We observe the most evident increase in
execution time in matrix multiplication, up to 3x. The
reason for this behavior is that when we interleave the
redundant code with the original code, we also impact the
hardware resource usage in a negative way. The matrix
multiplication application is a highly optimized code with
large 16x256 tiles loaded in shared memory and registers,
combined with prefetching [2]. When we interleaved the
redundant code, we also increased the register and shared
memory usage. Thus we had to reduce the tile size to 8x64

as well as the number of prefetched elements in order to
satisfy the hardware limitations. Reducing the tile size and
prefetching, however, has a fairly negative impact on
performance.

One of the potential benefits of R-Scatter to CUDA, as
discussed in Section 3.2 is overlapping independent
memory accesses from the original and redundant code.
The reason why latency hiding did not benefit our
applications is because GPUs are much more efficient in
hiding memory latency using thread-level parallelism and
shared memory, than using memory-level parallelism
within each thread. Since our applications are sufficiently
well optimized, interleaving memory accesses using R-
Scatter does not benefit and may actually hurt in some
cases. To analyze this issue further, we dissect two
examples. In those examples we compare R-Scatter to R-
Naïve, because R-Naïve consistently incurs 2x overhead in
execution time. First, we look at how program
optimizations impact the benefit of R-Scatter. We evaluated
a well optimized matrix multiplication (with 8x64 tiles,
loop interchange and pre-fetching into registers, which
achieves 113 GFLOPS on G80 for 2kx2k matrix
multiplication) and a simple, un-optimized matrix
multiplication (which does not use shared memory and each
thread calculate one element in product matrix, which
achieves only 3.8 GFLOPS on G80 for 2kx2k matrix
multiplication). The un-optimized code is memory bound as
it does not reuse data in shared memory. As a result, the

Figure 8. Execution time of R-Scatter for ATI R670. We show 3 bars for each application: Original, R-Scatter, and

R-Scatter with hardware DRAM protection. Execution time is normalized to Original.

Figure 9. Execution time of R-Scatter for NVIDIA G80. We show 4 bars for each application: Original, R-Scatter, R-

Scatter with DRAM and R-Scatter with DRAM and shared memory protection. Exec. time is normalized to Original.

memory bandwidth is nearly saturated by the memory
requests from a large number of active threads. Adding
memory-level parallelism in the kernel function, R-Scatter
performs about 1% better than R-Naïve on this code. On the
other hand, R-Scatter performs about 17% worse on the
highly optimized code than R-Naïve as the optimized code
hides off-chip memory latency well using shared memory
and thread-level parallelism. Introducing additional
independent memory accesses to this code, does not help
but actually hurts performance. In our second example, we
limit the amount of thread-level parallelism available to the
highly optimized matrix multiplication. To do that, we
execute the kernel on a small input of only 64 x 64 elements
matrix, which requires only 4 thread blocks. To obtain
reliable timings, we looped around the kernel 100K times.
The outcome of this experiment was that R-Scatter
executed 15% faster than R-Naïve. The overlapping
memory accesses issued by R-Scatter helped, because there
was no sufficient thread-level parallelism to hide the
latency. In comparison, R-Scatter is 10% better than R-
Naïve on the simple version of matrix multiplication for
64x64 matrices since more memory bandwidth is available
for redundant memory accesses than large matrices.

As discussed in Section 3.4, protecting global memory
benefits applications in the same way as in R-naïve, by
eliminating a redundant CPU-GPU transfer. Furthermore,
R-Scatter benefits from protecting shared memory with an
average of 8% speedup compared to no shared memory
protection (the fourth bar of each benchmark in Figure 9).
However, only matrix multiplication and convolution were
able to take advantage of shared memory protection,
because the other applications do not make heavy use of
shared memory. However, even with shared memory
protected, the matrix multiplication kernel of R-Scatter is
still slower than R-Naïve. This is mainly due to the reduced
tile size and thread-level parallelism. Since the performance
of R-Scatter for CUDA was not superior to R-Naïve, and
since only R-Scatter may benefit from protecting shared
memory with ECC, we conclude that it is not desirable to
include hardware protection to shared memory in G80.

5.3. R-Thread

As discussed in Section 3.3, given limitations of Brook+
1.0, we were not able to apply this approach to R670 so we
study R-thread using CUDA on G80. The performance
results are shown in Figure 10.

As seen in Figure 10, the performance overhead of
redundant execution is uniformly close to 100% (with an
average of 97%), except for the benchmark fft. The reason
why performance overhead is close to 100% is because
those applications have sufficient thread-level parallelism
and adding more thread blocks does not improve the
overlap of memory latency. To illustrate this point better
and to understand why R-Thread performs so well for fft,
we examine the performance overhead of R-Thread on fft
for different input sizes, as shown in Figure 11. In the
figure, we also present the corresponding number of thread
blocks (including redundant blocks) required to process that
input size. Initially, when the input size is 4K, 8 thread
blocks are needed for original execution. Thus 8 of the
Compute Units (G80 has 16 Compute Units) are available
to process the redundant thread blocks. This results in a
complete overlap between original and redundant kernel
execution and thus the performance overhead of R-Thread
is small, mostly due to redundant memory transfer.
However, even as the number of thread blocks increases
beyond 16 and all the Compute Units are occupied, we still
see substantial benefit due to thread-level parallelism and
overlap of memory transfers. The reason is that the number
of registers used per thread block in fft is not large, which
allows the GPU to assign two thread blocks per Compute
Unit maintaining their state in the register file concurrently.
When one of the thread-blocks is stalled for memory
access, the other thread block is switched in, thus hiding
some of the latency. The amount of unused thread-level
parallelism clearly diminishes as we grow the input size and
the number of thread blocks increases. With a 64K input R-
thread incurs about 95% overhead over a non-redundant
execution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(1x4K matrix)

16 Thread

Blocks

(1x8K matrix)

32 Thread

Blocks

(1x16K matrix)

64 Thread

Blocks

(1x32K matrix)

128 Thread

Blocks

(1x64K matrix)

256 Thread

Blocks

P
e
r
fo
r
m
a
n
c
e
 O
v
e
r
h
e
a
d

Figure 11. Performance overhead of R-Thread for

various input sizes to 1D FFT.

Figure 10. Execution time of R-Thread for NVIDIA G80. We show 3 bars for each application: Original, R-Thread,

and R-Thread with hardware DRAM protection. Execution time is normalized to Original.

In R-Thread, protecting global memory benefits
applications in the same way as in R-Naïve, as discussed in
Section 3.4. Even though in CUDA memory transfer from
GPU-CPU is still slower than CPU-GPU, this effect is not
as pronounced as in Brook+ 1.0, likely due to the more
mature development phase of the tool. Thus applications
with large memory transfer times may benefit from
protecting off-chip memory in the NVIDIA G80, the
overhead of black scholes is reduced to only 40% compared
to 89% without off-chip protection. However, on average
the overhead relative to non-redundant execution is 92%
when off-chip memory is protected as shown in Figure 10,
which is still not significant enough to justify hardware
protection.

6. Conclusions

In this work, we propose and evaluate three software-only
methodologies for providing redundancy for general-
purpose computing on graphics processor. The first
technique, R-Naïve, simply duplicates the kernel
computations and naturally leads to roughly half of the
throughput compared to a non-redundant version. The other
two techniques, R-Scatter and R-Thread, interleave
redundant execution with the original program code. R-
Scatter takes advantage of unused instruction-level
parallelism, while R-Thread utilizes available thread-level
parallelism. Interestingly, we show that even though R-
Scatter and R-Thread are quite beneficial in some cases,
they also suffer from large performance overheads or
increased complexity in other cases due to intricate
tradeoffs among thread-level parallelism, instruction-level
parallelism, data reuse with shared memory, and other
factors. This means that we need to understand both the
application characteristics and the hardware platform before
applying software protection schemes. If the target kernel
has a low degree of instruction-level parallelism and low
register usage, R-scatter may be a good choice for R670.
For G80, additional features like shared memory usage
need to be taken into account to make sure R-Scatter will
not reduce the amount of memory reuse. On the other hand,
if an application does not have sufficient threads to keep all
compute cores busy, R-Thread may provide substantial
performance gains, especially when future GPUs feature
much higher number of compute cores (240 in Nvidia
GT200 and 800 for AMD R770). Detailed code analysis
like this, however, may be a burden to application
developers but can be done through automatic compiler
analysis as the compiler has all the related information.
Such compiler optimizations are left as our future work.

In addition to software redundancy, we further evaluated
whether adding hardware support like ECC/parity bits to
on-chip SRAM and off-chip DRAM is justifiable. Our
results show that protecting those memories in hardware
provides only limited performance benefit and thus is not
justified for our software redundancy approaches. One of
the reasons is that not all the applications are able to take
advantage of the hardware support if they have small input

data. Another reason is that even with hardware support, we
cannot eliminate all of the memory transfer overhead, the
GPU-CPU transfer is still required and takes a significant
portion of the overall data transfer time.

Acknowledgements

This research is supported by an NSF CAREER award
CCF- 0747062 and AMD grant and equipment donations.

References

[1] AMD Stream Computing,
http://ati.amd.com/technology/streamcomputing/index.html

[2] H. Gao, M. Dimitrov, J. Kong, and H. Zhou, “Experiencing Various
Massively Parallel Architectures and Programming Models for Data-
Intensive Applications”, Workshop on Computer Architecture
Education (WCAE-08), in conjunction with ISCA-35, 2008.

[3] Nvidia Developing with CUDA,
http://www.nvidia.com/object/cuda_develop.html

[4] Qimonda GDDR5 – White Paper, http://www.qimonda-
news.com/download/Qimonda_GDDR5_whitepaper.pdf

[5] Samsung Electronics: 256Mbit GDDR3 SDRAM: Revision 1.8,
April 2005

[6] J. S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin. “Compiler-Directed Instruction Duplication for Soft
Error Detection”. DATE, 2005Qimonda GDDR5 – White Paper,
http://www.qimonda-
news.com/download/Qimonda_GDDR5_whitepaper.pdf.

[7] A. Munshi, “OpenCL: Parallel computing o the GPU and CPU”,
tutorial, SIGGRAPH, 2008.

[8] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by
duplicating instruction in super-scalar processors”, IEEE Trans. on
Reliability, 2002.

[9] M. Qureshi, O. Mutlu, and Y. Patt, “Microarchitecture-Based
Introspection: A Technique for Transient-Fault Tolerance in
Microprocessors”, DSN, 2005

[10] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, “A
source-to-source compiler for generating dependable software”,
IEEE International Workshop on Source Code Analysis and
Manipulation, 2001.

[11] S. Reinhardt and S. Mukherjee, “Transient fault detection via
simultaneous multithreading”, ISCA 2000.

[12] A. Reis, et. al., “SWIFT: Software implemented fault tolerance”,
CGO 2005.

[13] J. Sheaffer, D. Luebke, and K. Skadron, “The visual vulnerability
spectrum: characterizing architectural vulnerability for graphics
hardware”, In Proceedings of Graphics Hardware 2006.

[14] J. Sheaffer, D. Luebke, and K. Skadron, “A Hardware Redundancy
and Recovery Mechanism for Reliable Scientific Computation on
Graphics Processors”, In Proceedings of Graphics Hardware 2007.

[15] J. Srinivasan, S. Adve, P. Bose and J. Rivers, “The Impact of
Technology Scaling on Lifetime Reliability”, DSN 2007.

[16] N. Wang and S. Patel, “ReStore: Symptom Based Soft Error
Detection in Microprocessors”, in DSN, 2005.

[17] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Techniques to
reduce the soft error rate of a high-performance microprocessor”,
ISCA-31, 2004

