
Exploring Deep Neural Networks for Branch Prediction
Yonghua Mao1, 3, Huiyang Zhou2, Xiaolin Gui1

 1.Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
2. Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA

3. Science, Xi’an Polytechnic University, Xi’an, China

Abstract—Recently, there have been significant ad-
vances in deep neural networks (DNNs) and they have
shown superior performance in audio and image pro-
cessing. In this paper, we explore DNNs to push the limit
for branch prediction. We treat branch prediction as a clas-
sification problem and explore both deep convolutional
neural networks (CNNs) and deep belief networks (DBNs)
for branch prediction. We analyze the impact of the length
of hashed program counter (PC), local history register
(LHR), global history register (GHR) and branch global
addresses (GA) of deep learning classifiers on the mispre-
diction rate. We compare the effectiveness of DNNs with
the state-of-the-art branch predictors, including the percep-
tron, the Multi-poTAGE+SC, and MTAGE+SC branch
predictors. The last two are the most recent winners of
championship branch prediction (CBP) contests in the cat-
egory with unlimited resources. Several interesting obser-
vations emerged from our study. The first is that for branch
prediction, the DBNs and CNNs outperform the perceptron
predictor while only deeper CNN models could outperform
Multi-poTAGE+SC and MTAGE+SC. Second, we ana-
lyze the impact of the depth of CNNs (i.e., the number of
convolutional layers and pooling layers) on the mispredic-
tion rates. The results show that deeper CNN structures
lead to lower misprediction rates.

Keywords—branch predictor, DBN, CNN, branch mis-
prediction rate; deep neural networks.

I. INTRODUCTION

In a processor pipeline, control hazards may occur if the
next fetched instruction differs from the outcome of a branch.
Because of the high frequency of branch instructions in a pro-
gram, branch prediction is widely used to eliminate the pipe-
line bubbles due to control hazards.

Given the importance, branch prediction has been studied
extensively. Among the proposed branch predictors in the re-
cent Championship Branch Prediction (CBP) competitions,
most are variants of the TAGE and/or perceptron branch pre-
dictors. The success of perceptron-based predictors confirms
that neural networks can be useful in branch prediction. How-
ever, only a few works explored more advanced machine
learning methods on branch prediction [1].Given the recent re-
markable advances in deep learning, deep neural networks in
particular, it is worthwhile to examine whether the more ad-
vanced deep neural networks can discover new possibility for
branch prediction.

This paper explores deep neural networks for branch pre-
diction by treating it as a classification problem. We explore
both deep belief networks (DBNs) and convolutional neural
networks (CNNs) for branch prediction. Note that, in this work,
we focus on pushing the limit of branch prediction and do not
consider the complexity of the predictors. It is consistent with
the CBP competition rules that “CBP will make no attempt to
assess the cost/complexity of the predictor algorithms for pre-
dictors with the unlimited storage budget.” We analyze the im-
pact of the length of hashed program counter (PC), local his-
tory register (LHR), global history register (GHR) and branch
global addresses (GA) of deep learning classifiers on the mis-
prediction rate. We compare the effectiveness of DNNs with
the state-of-the-art branch predictors, including the perceptron,
the Multi-poTAGE+SC, and MTAGE+SC branch predictors.
Several interesting observations emerged from our study. First,
we confirm that deep learning algorithms outperform the
perceptron predictor. Second, between DBNs and CNNs, we
find CNNs are a better choice for branch prediction. Third, we
analyze the impact of the depth of CNNs on misprediction
rates. Our experimental results show that deeper CNN
structures lead to lower misprediction rates. Fourth, we found
deep CNNs could achieve lower misprediction rates than state-
of-the-art branch predictors, Multi-poTAGE+SC and
MTAGE+SC, with the unlimited storage budget.

The rest of the paper is organized as follows: Section 2
discusses the state-of-the-art branch predictors, TAGE and
perceptron, in particular. Section 3 reviews DBNs and CNNs.
Section 4 describes our experimental methodology. In Section
5, we present the comparison results and analysis of DNNs and
other related predictors. Section 6 concludes and discusses the
future work.

II. THE STATE OF THE ART BRANCH PREDICTORS

The TAGE (TAgged GEometric history length) branch
predictor [2] is often considered as the most accurate branch
predictor. TAGE is derived from Seznec’s GEHLpredictor[3]
and Michaud’s tagged PPM-like predictors [4]. One key
advantage of TAGE predictors over other predictors is to use
a geometric series of history lengths for prediction. It enables
the predictor to explore the correlation between branches in
very long history lengths, while allocating most of the
hardware resource to the short-length prediction components.
Another key aspect of TAGE is that it uses tag-matches when
accessing each prediction component to reduce aliases.

TAGE predictors have also been enhanced by adding
prediction components targeting specific types of hard-to-
predict branches. For example, TAGE-SC-L [5][6] improves
the TAGE predictor by adding a statistical corrector predictor
and a loop predictor. The idea of a statistical corrector
predictor is to revert the prediction of the TAGE predictor
when it statistically mispredicted in similar branch
circumstances. The loop predictor targets at loop branches and
uses loop counts to make accurate predictions.

This study was partly supported by the National Natural Science Foun-

dation of China (61472316), the grant Basic Research Program of Shaanxi
Province (2016 ZDJC-05), and the key Research and Development Program
of Shaanxi Province (2017ZDXM-GY-011).

Corresponding Author: Xiaolin Gui, xlgui@mail.xjtu.edu.cn

2

Recently, Seznec and Michaud further improved the
TAGE prediction accuracy via a Multi-poTAGE+SC predictor
[7]. It combines multiple TAGE predictors and the final
prediction is selected from these predictors via a combined
output lookup table (COLT) predictor [8]. Each TAGE
component takes a different combination of history, including
both global and local history as inputs. This colossal multiple-
TAGE predictor and its further fine-tuned version
MTAGE+SC [9] are not meant for practical usage and are
mainly for pushing the lower bound of misprediction rate of
branch predictors, similar to the purpose of this work.

Another type of the state-of-the-art branch predictors is
the perceptron predictor [10]. It uses a single-layer perceptron,
one of the simplest neural networks to learn the correlation
between the branch history and branch outcomes. The
predictor builds a perceptron table, which is indexed by the
branch program counter (PC). Each entry in the table consists
of a set of weights. When making a prediction, the predictor
first computes the output as the dot product of the input (i.e.,
history bits) and the indexed weights. Then the sign of the
output provides the final prediction. After the branch is
resolved, if it is mispredicted or the output is smaller than a
pre-defined threshold, the selected weights will be trained. It
trains each weight via adding the product of the corresponding
input bit and the branch outcome. This training policy
effectively strengthens the weights corresponding to the inputs
with strong correlation to the outcome. Unfortunately, such a
naïve single-layer perceptron is only capable of learning
linear-separable branches. In order to overcome this
shortcoming, different variations have been proposed. The
piecewise perceptron [11] adds one more dimension to the
perceptron table – global history address corresponding to the
instruction address of each bit in the global history. However,
both perceptron and piecewise perceptron predictors imply
that a weight can only be assigned to a single history bit or
history address. It means the complexity of the output
computation grows linearly with the number of bits in the
global history. Tarjan et al. [12] proposed that this side effect
could be eliminated by a hashed perceptron [13], in which
multiple history bits are hashed to a single weight.

III. DEEP LEARNING AND CONVOLUTION NEURAL NETWORKS

(CNNS)

Perceptron is one of the simplest neural network models.
It is a linear classifier algorithm for supervised classification.
A perceptron model is presented in Fig. 1. Many branch
predictors achieve low misprediction rate by such correlative

perceptron classifiers [10, 12, 14]. With recent advances in
deep learning showing highly impressive misclassification rate
for image or audio based processing, we aim to further push
the lower bound of misprediction rates by applying these
algorithms to branch prediction.

Deep learning is a set of algorithms to train and utilize
multi-layer neural networks. The deep hierarchical
architecture tries to extract and represent the high-order
features of the training data. However, traditional machine
learning algorithms such as back-propagation were inadequate
in training such a deep architecture because of the high
probability of falling into poor local optima.

To deal with the complexity of training deep networks,
Hinton et al. [15] proposed the Deep Belief Networks (DBN)
and an efficient way to train the network [16]. A DBN is
composed of several stacked restricted Boltzmann machines
(RBMs). It first uses unlabeled data to pre-train the network
layer by layer using contrastive divergence learning on every
RBM . This step is a way of unsupervised feature learning.
After pre-training, global training algorithms, such as back
propagation, are used to fine-tune the weights in the network.
A commonly used DBN structure with four RBM layers and
an output layer is shown in Fig.2. The number of neurons in
Layer 1 is around 1/3 ~ 2/3 of the inputs. Similarly, the number
of neurons in Layer 2 is around 1/3 ~ 2/3 of Layer 1. Layer 3
has the same size as Layer 1, and Layer 4 has the same size as

   Input

Convolutions
Convolutions

Pooling
Pooling

fc fc

Fig. 3. The convolution neural network structure.

...

...

...

...

...

1w 2w 2
Tw 1

Tw

Input 1Layer Output 2Layer 3Layer 4Layer

RBM

RBM

RBM

RBM

Fig. 2. A popular DBN structure (WN is the weight between two layers).

...

Fig. 1. The structure of a perceptron model.

3

the input layer. The last layer is the output layer, which is
constructed as a simple single-layer neural network, i.e., a
perceptron. Although the network has 4 RBM layers, the
training process is not exceedingly complex. Only the weights
W1 and W2 will be trained. W3 and W4 are the transpose of W2
and W1, as in shown Fig. 2. The basic idea of DBN is that
through layer-wise training the neural network, the input data
is reconstructed in the last RBM layer (Layer 4 in Fig. 2) with
the minimum reconstruction error. In an ideal case, if Layer 4
keeps all the information of the input data, which means the
system does not introduce any information distortion, any
inner layer between the input layer and output layer is another
representation of the input. In other words, inner layers
automatically extract some high-order features of the data
since they have less neurons than the input vector. However,
in reality, the information will distort layer-by-layer during the
training process. From the input layer to Layer 2, the number
of neurons reduces exponentially. This enforces Layer 2 to lose
some information of the original data. From Layer 2 to Layer
4, the original data is reconstructed from low-dimensional
layers while keeping the reconstruction error small. As a result,
only the feature information, which is necessary to reconstruct
the original data, will be preserved.

Locally connected networks with the longest history
information, such as convolution neural networks (CNNs)
[17], are likely to be a better choice for branch prediction as
most branches show high correlation with nearby history.
CNNs [18] are deep feedforward neural networks. The vital
components of a CNN architecture are convolution layers and
pooling layers, as shown in Fig. 3. They exploit the high
correlation in local groups of data. The convolution layer [19]
is used to detect the local conjunctions of features from the
previous layer, and the pooling layer combines similar local
features. A CNN typically has multiple stages of convolutional
and pooling layers stacked one after the other, followed by a
fully-connected (fc) layer. Backward propagation through a
CNN is used to update the weights during the training phase,
the same as training regular deep network layers.

IV. EVALUATION METHODOLOGY

In order to evaluate various algorithms for branch
prediction, we leverage the simulation framework provided in
the 4th Championship Branch Prediction (CBP-4). The
framework is based on trace-driven simulation and features 20
benchmarks, which are grouped into four categories: I
(integer), F (floating point), M (multimedia) and S (server). In
this work, we focus on the conditional branches from each
trace as listed in Table I. The more recent CBP-5 has 233
traces, which would have resulted in impractical time spent on
training the DNNs. Therefore, we focus on CBP-4 in this work.

In this paper, the problem of branch prediction is treated as
a binary classification problem. We use an offline training
method with a training set of first 90% branches, a validation
set of next 5% branches and a testing set of last 5% branches.
This way, the causality of data is maintained, meaning that
future data are not used to train the network to produce a
current prediction. We also use a random approach to select
the training, validation, and test set. The training set is used to
train the networks. The validation set is used to estimate how
good a network has been trained in the training progress. If the
network is good enough, meaning that the cost function on the
validation set does not decrease between two continuous
iteration epochs, the training process will stop. Then, the test
set is used to evaluate the final classification error rate after the
network has been trained. We specialize the network for each

TABLE I.

BENCHMARKS

Bench-
marks

Dynamic Condi-
tional Branches

Bench-
marks

Dynamic Condi-
tional Branches

F1 2213673 M1 2229289
F2 1792835 M2 3809780
F3 1546797 M3 3014850
F4 895842 M4 4874888
F5 2422049 M5 2563897
I1 4184792 S1 3660616

I2 2866495 S2 3537562

I3 3771697 S3 3811906
I4 2069894 S4 4266796
I5 3755315 S5 4291964

TABLE II
CONFIGURATIONS OF DIFFERENT DBN STRUCTURES

Part
Architec-

tures
Input info.

bits
Source of bits

Configurations
GA info. PC (bits) GHR (bits) LHR (bits)

A

DBN 1 140 none

32

100 8 140 – 96 – 40 – 96 – 140 – 1

DBN 2 280 prior 32 bits PC 200
16

280 – 140 – 85 – 140 – 280 – 1

DBN 3 592 prior 32 bits PC 512 592 – 260 – 130 – 260 – 592 – 1

B

DBN pc1 140

none

32

100 8

Same to DBN1

DBN pc2 124 16 124 – 88 – 60 – 88 – 124 – 1

DBN pc3 116 8 116 – 65 – 30 – 65 – 116 – 1

C

DBN L1 124

none 16 100

8 Same to DBN pc2

DBN L2 128 12 128 – 90 – 40 – 90 – 128 – 1

DBN L3 132 16 132 – 90 – 40 – 90 – 132 – 1

D

DBN G1 132

none 16

100

16

Same to DBN L3

DBN G2 232 200 232 – 160 – 110 – 160 – 232 – 1

DBN G3 544 512 544 – 325 – 190 – 325 – 544-1

E

DBN GA0 132 none

16 100 16

Same to DBN L3 & G1

DBN GA1 260 16 8-bit 260 – 180 – 110 – 180 – 260 – 1

DBN GA2 388 32 8-bit 388 – 225 – 140 – 225 – 388 – 1

DBN GA3 516 48 8-bit 516 – 305 – 195 – 305 – 516 – 1

F DBN L 944 48 8-bit 32 512 16 944-630-270-630-944-1

4

trace separately. Our DNNs are constructed, trained, and tested
using the Caffe framework [20].

Table II shows the input sizes, which include branch PCs,
GHRs, LHRs, and GAs. In perceptron and our DNNs, Every
bit is an input to a neuron of the input layer of a DNN. For
example, a input data sample has a size of 944 bits, which
includes a 32-bit PC, 16-bit LHR, 512-bit GHR, and 48 8-bit
GAS (global addresses), as shown in Fig. 4.

We have tested DBNs and CNNs with various
configurations, and have observed consistent results. To
provide instances for discussion, we describe one DBN and
two CNN models for branch prediction. The other DBN
configurations are shown in Table II.

DBN. Based on a popular DBN structure, the numbers of
neurons of the layer 1 and of the layer 2 are selected from a
thorough search in the large design space of their structures,
which is shown in last row of Table II. as shown in Fig. 5.
Layer 3 has the same size as Layer 1 and Layer 4 is the same
size as the input layer. The last layer is the output layer, which
is constructed as a simple single-layer neural network. The
notation ‘fc’ means fully-connected.

CNN1. The CNN1 configuration is inspired by the LeNet
[17]. As shown in Fig. 6, it contains two convolutional layers

and two fully-connected layers. The convolution layers have
1×8 filters. The network ends with a fully-connected layer with
logistic regression. The configuration of the first fully-
connected layer (i.e., 500) is also selected from a thorough
search in the large design space of their structures.

CNN2. CNN2 configuration is based on the AlexNet [18],
as shown in Fig. 7, We delete one fully-connected layer, and
adapt the filters to branch data. The network contains five
convolutional layers and two fully-connected layers. Its two
fully-connected layers have the same configuration as in
CNN1.

From comparison, we also report the prediction accuracy
of multi-poTAGE+SC and MTAGE+SC predictors. While, the
predictors are updated for all branch outcomes in a trace, we
report the prediction accuracy of the branches in the same test
set.

V. RESULTS AND DISCUSSION

The misprediction rate of the test set is our primary
concern, so all results are on the testing sets. We report the
misprediction rate as (#mispredictions / #predictions * 100) for
all the prediction algorithms.

A. Comparing perceptron with popular DBN

Fig. 8 presents the misprediction rate of DBN and percep-
tron. The misprediction rates of the perceptron predictors with
different history lengths are labeled ‘pcptrn -140’, ‘pcptrn -
280’, and ‘pcptrn -592’, respectively; the misprediction rates
of the corresponding DBNs are labeled ‘DBN1’. ‘DBN2’, and
‘DBN3’. From the Fig. 8, we can see that DBNs outperform
perceptron consistently. On the benchmark ‘I3’, the DBN1
predictor reduces the mispredictioin rate by 9.81% compared
to the perceptron with the same history length. Compared to
perceptron, the average misprediction rate of the
corresponding DBN predictor is 3.77%. This confirms that the
DNNs could reduce the misprediction rates for the branches
whose outcomes are separable in non-linear ways. If the
branch outcomes of a benchmark are linearly separable, such

1 0 ... 1 0 1 ... 1

PC-32 bits GHR-512 bits

0 0 ... 1

LHR-16 bits

0 1 ... 0

GA‐48*8 bits

944 bits
Fig. 4. The data organization from branch traces.

1 0 ... 1 0 1 ... 1 0 ... 1 0

944 bits

fc, 630

fc, 270

fc, 630

fc, 944

fc, 1

Fig. 5. The DBN architecture for branch prediction (fc: fully-connected)

1 0 ... 1 0 1 ... 1 0 ... 1 0

944 bits

1×8 conv, 20

pool, /2

1×8 conv, 50

pool, /2

fc, 500

fc, 1

Fig. 6. CNN1 Architecture for branch prediction

1 0 ... 1 0 1 ... 1 0 ... 1 0

944 bits

1×11 conv, 96

pool, /3

1×5 conv, 256

pool, /3

fc, 500

fc, 1

1×5 conv, 384

1×3 conv, 384

1×3 conv, 256

pool, /3

Fig. 7. CNN2 Architecture for branch prediction

5

as those in the benchmarks ‘F3’, ‘F4’, ‘F5’, and ‘I5’, the
perceptron and DBN have similar misprediction rates. On the
contrary, the branch outcomes of a benchmark are not linearly
separable, such as ‘I2-I4’, ‘M1-M2’, and ‘S1-S5’, the DBNs
show their potential to greatly reduce the misprediction rate.
The multiple layers of the DNNs are able to learn complex
nonlinear functions more concisely, therefore they could work
well on the nonlinearly separable branches.

From Fig. 8, we can also see the impact of the history
length on the perceptron predictors. There are 19 benchmarks,
for which the perceptron with 280-bit length has lower mispre-
diction rates than the one with the 140-bit length. There are 17
benchmarks, for which the perceptron with the 592-bit length
has lower misprediction rates than the one with the 280-bit
length. As a result, we can see that although longer history
lengths help to reduce misprediction rates, it is not always the
case for any benchmark. This observation confirms the finding
from the prior work [14], which shows that the longest match
may not be the best for branch prediction. Fig. 8 also shows
there are 19 benchmarks where the 592-bit input is better than
the 140-bit input. This indicates that adding global addresses
is profitable in perceptron predictors. We discuss the effect of

PCs, LHRs, GHRs, and GAs in the DBN models separately
next.

B. Comparing deep learning in the different lengths of
hashed PC, LHR, GHR, and GA

Fig.9 shows the effect of the length of the hashed PC. DBN
pc1, DBN pc2, and DBN pc3 use 32-bit raw PC, 16-bit hashed
PC, and 8-bit hashed PC, respectively. The LHR and the GHR
information are the same over the three structures, as shown
in Table 2. Comparing the raw PC with the 16-bit hashed PC,
most benchmarks show lower misprediction rates than the lat-
ter. Comparing DBN pc 2 and DBN pc3 (i.e., 16-bit PC vs. 8-
bit PC), only 1 benchmark shows higher misprediction rate
when 16-bit PC is used. Among the three configurations, the
DBN with the raw 32-bit PC (i.e., DBN pc1) shows the lowest
average misprediction rate.

Fig. 10 shows the effect of the length of the LHR. DBN L1,
DBN L2, and DBN L3 use 8-bit, 12-bit, and 16-bit LHRs, re-
spectively. The hashed PC and the length of GHR are 16 bits
and 100 bits, respectively. There are 12 benchmarks, for
which the DBN with the 12-bit LHR has lower misprediction

Fig. 8. The misprediction rate of perceptron and DBN on the testing set of the CBP-4 traces (the higher the better)

Fig.9. The effect of the hashed PC of DBN branch misprediction rate on CBP-4 traces

Fig.10. The effect of the length of the LHR of DBN branch misprediction rate on CBP-4 traces

Fig.11. The effect of the length of the GHR of DBN branch misprediction rate on the testing set of CBP-4 traces

Fig.12. The effect of the length of the GA of DBN branch misprediction rate on the testing set of CBP-4 traces

0

5

10

15

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

140-pcptrn DBN 1 280-pcptrn DBN 2 592-pcptrn DBN 3

0

5

10

15

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

DBN PC1 DBN PC2 DBN PC3

0
4
8

12

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

DBN L1 DBN L2 DBN L3

0
4
8

12

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

DBN G1 DBN G2 DBN G3

0
4
8

12

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

DBN GA0 pieceWise DBN GA1 DBN GA2 DBN GA3

6

rates than the DBN with the 8-bit LHR, and 10 benchmark,
for which the DBN with the 16-bit LHR has lower mirepdic-
tion rate than the one with the 12-bit LHR. There are only 5
benchmarks showing that the misprediction rate consistently
reduces with an increase in the LHR length. There are also 2
benchmarks whose misprediction rates increase with longer
LHRs. It indicates that the longest LHRs may not be the best
for the DBN on every benchmarks.

Fig. 11 shows the influence of different GHR lengths in
DBN G1, DBN G2, and DBN G3 structures as shown Table
II. The lengths of the GHRs are 100 bits, 200 bits, and 512
bits respectively. The hashed PC address and LHR length are
the same over three structures. There are only 12 benchmarks
where the misprediction rate drops when the GHR length in-
creases. Therefore, we could not conclude that, the longer
GHR lengths, the lower the misprediction rate on all bench-
marks. It implies that an adaptive GHR length is desired for
different benchmarks.

To study the impact of GA, Fig. 12 shows the misprediction
rate of the piecewise perceptron [11] and DBNs with 16, 32,
and 48 8-bit GAs. Here 16/32/48 8-bit GAs mean 16/32/48
prior branch addresses with 8 bits for each address. In the
DBN GA0, no GA is used. The Hashed PC, LHR, and GHR
are consistent among the structures.

From Fig. 12, it can be seen that all DBN classification
models outperform the piecewise perceptron for most of the
benchmarks except the DBN G1, which does not contain any
GA. Compared to non-GA, the impact from GA is significant
in ‘M5’, ‘I2’, ‘S1-S5’. Especially in ‘S2’, the reduction is as
high as 7.01% between DBN GA0 (non-GA) and DBN GA
3(48 8-bit GA).

Another interesting observation is the impact of the GA
length. There are 13 benchmarks for which the DBN with the
48-GA has lower misprediction rate than the one with the 32-
GA, and 15 benchmarks for which the DBN with the 48-GA
has lower misprediction rate than the one with the 16-GA.
Therefore, we cannot reach a conclusion that a longer GA is
always better than a short one.

As discussed above, the GHR length, the LHR length, and
the GA length have significant impact on branch misprediction
rates. Although not always longer the better, the misprediction

rate correlates positively to the history length for over half of
the benchmarks. Therefore, the best performing DBN (labeled
as DBN-L) is the one the longest history information as shown
in Table II.

In Fig. 13, we compare DBN L with a prior work, the AIP
[14] perceptron predictors. We can see the misprediction rate
of the DBN L is lower than AIP [14] for 15 benchmarks while
the misprediction rate of the DBN1 is higher than AIP for 16
benchmarks.

C. Comparing CNN and DBN with the state-of-the-art
branch predictors

In this part, all NNs have the same input with the size of
944 bits. Fig.14 shows the misprediction rates of the DBN L,
CNN, and TAGE. Between DBNs and CNNs, our results show
that CNN1 and DBN L have similar misprediction rates while
CNN2 has much lower misprediction rates than DBN L or
CNN1. CNN1 contains two convolution layers whereas CNN2
contains six convolution layers. This shows that for branch
prediction, only deep CNNs are more effective than DBN, and
a higher number of convolution layers and pooling layers
could lead to lower misprediction rates.

The multi-poTAGE+SC predictor [8], which is labeled
‘TAGE1’ in Fig.14, is the winner of CBP-4 in the unlimited
hardware resource category. The MTAGE+SC [10], which is
labeled ‘TAGE2’ in Fig.14, is the winner in CBP-5. Between
MTAGE+SC and multi-poTAGE+SC, the average reduction
is 0.008%. They represent the state-of-the-art in achieving the
upper bound of branch prediction. From Fig.14, we can see that
there is only 1 trace on which the DBN and CNN1 have lower
misprediction rates than multi-poTAGE+SC; but there are 16
benchmarks on which the CNN2 model has lower
misprediction rates than multi-poTAGE+SC. The average of
misprediction rate of the CNN2 model is 0.173% and 0.164%
lower than multi-poTAGE+SC and MTAGE+SC,
respectively. As a result, we can see that the CNN approaches
have the potential to further reduce the lower bound of the
branch misprediction rates. The deep convolution layers help
to extract the local features which have same history
information but different results in some branches, just like the
separation of homonyms.

Fig.13. The branch misprediction rate of DBN1, the prior work[14], and DBN on the testing set of CBP-4 traces.

Fig.14. The branch misprediction rate of DBN Last, CNN1, CNN2, TAGE1, and TAGE2 on the testing set of CBP-4 traces

0
3
6
9

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 I1 I2 I3 I4 I5 S1 S2 S3 S4 S5 AVG

%

branch misprediction rate

DBN 1 prior work DBN Last

0

3

6

9

F-1 F-2 F-3 F-4 F-5 M-1 M-2 M-3 M-4 M-5 I-1 I-2 I-3 I-4 I-5 S-1 S-2 S-3 S-4 S-5 AVG

%

branch misprediction rate

DBN Last CNN1 CNN2 TAGE1 TAGE2

7

VI. CONCLUSIONS

This paper takes a binary classification perspective on the
branch prediction problem. We utilize deep neural networks as
a classifier and we explore both DBNs and CNNs to push the
lower bound of branch misprediction rates. We made the
following observations from our experiments: (1) deep neural
networks significantly outperform simple perceptron
classifiers; (2) deep CNNs outperform DBNs; and (3) only
deep CNNs could outperform state-of-the-art TAGE-like
branch predictors.

This paper treats branch prediction as a pure binary
classification stochastic problem. To simplify the problem, we
only implemented offline training. However, in order to apply
deep learning for branch prediction, an online training
algorithm needs to be employed. In addition, since most of the
state-or-the-art branch predictors integrate several standalone
predictors, it is also worthwhile to explore the influence of
incorporating such complementary predictors into the deep
CNNs.

REFERENCE
[1] D. Gope, M.H. Lipasti, “Bias-Free Neural Predictor”, Proceedings of the

47th Annual IEEE/ACM International Symposium on microarchitecture,
MICRO-47, IEEE, pages 521 – 532, Dec.2014.

[2] A. Seznec; P. Michaud, “A case for (partially) TAgged GEometric history
length branch prediction”, Journal of Instruction-Level Parallelism, vol. 8,
pages 1-23, 2006.

[3] A. Seznec, Analysis of the O-GEometric History Length Branch Predictor,
ISCA-32, pages 394-405, 2005.

[4] P. Michaud, “A PPM-like, tag-based branch predictor”, Journal of Instruc-
tion-Level Parallelism, vol.7, pages 1-10, 2005.

[5] A. Seznec, “TAGE-SC-L Branch Predictors”, In Proceedings of the 4th
Championship on Branch Prediction, ISCA-41, June 2014.

[6] A. Seznec, “A new case for the TAGE branch predictor”, In Proceedings
of the MICRO 44, pages 117-127, Dec. 2011.

[7] A. Seznec,P. Michaud, “Pushing the branch predictability limits with the
multi-poTAGE+SC predictor”, In Proceedings of the 4th Championship
on Branch Prediction, ISCA-41, June 2014.

[8] G. H. Loh, D. S. Henry, “Predicting conditional branches with fusion-
based hybrid predictors”. In Proc. of the Int. Conf. on Parallel Architec-
tures and Compilation Techniques, pages 165-176, Sept. 2002.

[9] A. Seznec, “Exploring branch predictability limits with the MTAGE + SC
predictor”, 5th JILP Workshop on Computer Architecture Competitions
(JWAC-5): Championship Branch Prediction, ISCA-43, June 2016.

[10] D. A. Jimenez, C. Lin, “Dynamic branch prediction with perceptrons”,
IEEE High-Performance Computer Architecture Symposium Proceedings,
pages 197-206, Aug.2001.

[11] D. A. Jimenez. “Piecewise linear branch prediction”. 32nd International
Symposium on Computer Architecture (ISCA'05), pages 382-393, June
2005

[12] D. Tarjan, K. Skadron, “Merging path and g-share indexing in perceptron
branch prediction”, ACM Transactions on Architecture & Code Optimi-
zation, vol.2, no.3, pages 80-300, 2005.

[13] A. Seznec, Revisiting the perceptron predictor. Technical Report PI-1620,
IRISA Report, May 2004.

[14] H. Gao, H. Zhou, “Adaptive Information Processing: An Effective Way to
Improve Perceptron Branch Predictors”, Journal of Instruction-Level Par-
allelism (JILP), vol.7, pages 1-10, 2005.

[15] G. E. Hinton, S. Osindero, et al., “A fast learning algorithm for deep belief
nets”, Neural Computation, vol.18, no.7, pages1527-1554, 2006.

[16] G. E. Hinton, R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks”, Science, vol.313, no.5786, pages 504–507, 2006.

[17] Y. LeCun, L. Bottou, et al., “Gradient-based learning applied to document
recognition”, Proceedings of the IEEE, vol.86, no.11, pages 2278–2324,
1998.

[18] K. He, X. Zhang, et al., “Deep Residual Learning for Image Recognition”,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770 – 778, June 2016.

[19] A. Krizhevsky, I. Sutskever, et al., “ImageNet Classification with Deep
Convolutional Neural Networks”. Advances in Neural Information Pro-
cessing Systems, vol. 25, no. 2, pages 1097 – 1105, 2012.

[20] Q. Jia, E. Shelhamer, et al., “Caffe: Convolutional Architecture for Fast
Feature Embedding”, ACM International Conference on Multimedia,
pages 675-678, June 2014.

[21] M. Qureshi. CBP start. 4th JILP Workshop on Computer Architecture
Competitions, 2014.

