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Abstract—Recently, there have been significant ad-
vances in deep neural networks (DNNs) and they have 
shown superior performance in audio and image pro-
cessing. In this paper, we explore DNNs to push the limit 
for branch prediction. We treat branch prediction as a clas-
sification problem and explore both deep convolutional 
neural networks (CNNs) and deep belief networks (DBNs) 
for branch prediction. We analyze the impact of the length 
of hashed program counter (PC), local history register 
(LHR), global history register (GHR) and branch global 
addresses (GA) of deep learning classifiers on the mispre-
diction rate. We compare the effectiveness of DNNs with 
the state-of-the-art branch predictors, including the percep-
tron, the Multi-poTAGE+SC, and MTAGE+SC branch 
predictors. The last two are the most recent winners of 
championship branch prediction (CBP) contests in the cat-
egory with unlimited resources. Several interesting obser-
vations emerged from our study. The first is that for branch 
prediction, the DBNs and CNNs outperform the perceptron 
predictor while only deeper CNN models could outperform 
Multi-poTAGE+SC and MTAGE+SC. Second, we ana-
lyze the impact of the depth of CNNs (i.e., the number of 
convolutional layers and pooling layers) on the mispredic-
tion rates. The results show that deeper CNN structures 
lead to lower misprediction rates. 

Keywords—branch predictor, DBN, CNN, branch mis-
prediction rate; deep neural networks. 

I. INTRODUCTION 

In a processor pipeline, control hazards may occur if the 
next fetched instruction differs from the outcome of a branch. 
Because of the high frequency of branch instructions in a pro-
gram, branch prediction is widely used to eliminate the pipe-
line bubbles due to control hazards. 

Given the importance, branch prediction has been studied 
extensively. Among the proposed branch predictors in the re-
cent Championship Branch Prediction (CBP) competitions, 
most are variants of the TAGE and/or perceptron branch pre-
dictors. The success of perceptron-based predictors confirms 
that neural networks can be useful in branch prediction. How-
ever, only a few works explored more advanced machine 
learning methods on branch prediction [1].Given the recent re-
markable advances in deep learning, deep neural networks in 
particular, it is worthwhile to examine whether the more ad-
vanced deep neural networks can discover new possibility for 
branch prediction. 

This paper explores deep neural networks for branch pre-
diction by treating it as a classification problem. We explore 
both deep belief networks (DBNs) and convolutional neural 
networks (CNNs) for branch prediction. Note that, in this work, 
we focus on pushing the limit of branch prediction and do not 
consider the complexity of the predictors. It is consistent with 
the CBP competition rules that “CBP will make no attempt to 
assess the cost/complexity of the predictor algorithms for pre-
dictors with the unlimited storage budget.” We analyze the im-
pact of the length of hashed program counter (PC), local his-
tory register (LHR), global history register (GHR) and branch 
global addresses (GA) of deep learning classifiers on the mis-
prediction rate. We compare the effectiveness of DNNs with 
the state-of-the-art branch predictors, including the perceptron, 
the Multi-poTAGE+SC, and MTAGE+SC branch predictors. 
Several interesting observations emerged from our study. First, 
we confirm that deep learning algorithms outperform the 
perceptron predictor. Second, between DBNs and CNNs, we 
find CNNs are a better choice for branch prediction. Third, we 
analyze the impact of the depth of CNNs on misprediction 
rates. Our experimental results show that deeper CNN 
structures lead to lower misprediction rates. Fourth, we found 
deep CNNs could achieve lower misprediction rates than state-
of-the-art branch predictors, Multi-poTAGE+SC and 
MTAGE+SC, with the unlimited storage budget. 

The rest of the paper is organized as follows: Section 2 
discusses the state-of-the-art branch predictors, TAGE and 
perceptron, in particular. Section 3 reviews DBNs and CNNs. 
Section 4 describes our experimental methodology. In Section 
5, we present the comparison results and analysis of DNNs and 
other related predictors. Section 6 concludes and discusses the 
future work. 

II. THE STATE OF THE ART BRANCH PREDICTORS 

The TAGE (TAgged GEometric history length) branch 
predictor [2] is often considered as the most accurate branch 
predictor. TAGE is derived from Seznec’s GEHLpredictor[3] 
and Michaud’s tagged PPM-like predictors [4]. One key 
advantage of TAGE predictors over other predictors is to use 
a geometric series of history lengths for prediction. It enables 
the predictor to explore the correlation between branches in 
very long history lengths, while allocating most of the 
hardware resource to the short-length prediction components. 
Another key aspect of TAGE is that it uses tag-matches when 
accessing each prediction component to reduce aliases. 

TAGE predictors have also been enhanced by adding 
prediction components targeting specific types of hard-to-
predict branches. For example, TAGE-SC-L [5][6] improves 
the TAGE predictor by adding a statistical corrector predictor 
and a loop predictor. The idea of a statistical corrector 
predictor is to revert the prediction of the TAGE predictor 
when it statistically mispredicted in similar branch 
circumstances. The loop predictor targets at loop branches and 
uses loop counts to make accurate predictions. 

 
This study was partly supported by the National Natural Science Foun-

dation of China (61472316), the grant Basic Research Program of Shaanxi 
Province (2016 ZDJC-05), and the key Research and Development Program 
of Shaanxi Province (2017ZDXM-GY-011). 

Corresponding Author: Xiaolin Gui, xlgui@mail.xjtu.edu.cn 



2 

 

Recently, Seznec and Michaud further improved the 
TAGE prediction accuracy via a Multi-poTAGE+SC predictor 
[7]. It combines multiple TAGE predictors and the final 
prediction is selected from these predictors via a combined 
output lookup table (COLT) predictor [8]. Each TAGE 
component takes a different combination of history, including 
both global and local history as inputs. This colossal multiple-
TAGE predictor and its further fine-tuned version 
MTAGE+SC [9] are not meant for practical usage and are 
mainly for pushing the lower bound of misprediction rate of 
branch predictors, similar to the purpose of this work. 

Another type of the state-of-the-art branch predictors is 
the perceptron predictor [10]. It uses a single-layer perceptron, 
one of the simplest neural networks to learn the correlation 
between the branch history and branch outcomes. The 
predictor builds a perceptron table, which is indexed by the 
branch program counter (PC). Each entry in the table consists 
of a set of weights. When making a prediction, the predictor 
first computes the output as the dot product of the input (i.e., 
history bits) and the indexed weights. Then the sign of the 
output provides the final prediction. After the branch is 
resolved, if it is mispredicted or the output is smaller than a 
pre-defined threshold, the selected weights will be trained. It 
trains each weight via adding the product of the corresponding 
input bit and the branch outcome. This training policy 
effectively strengthens the weights corresponding to the inputs 
with strong correlation to the outcome. Unfortunately, such a 
naïve single-layer perceptron is only capable of learning 
linear-separable branches. In order to overcome this 
shortcoming, different variations have been proposed. The 
piecewise perceptron [11] adds one more dimension to the 
perceptron table – global history address corresponding to the 
instruction address of each bit in the global history. However, 
both perceptron and piecewise perceptron predictors imply 
that a weight can only be assigned to a single history bit or 
history address. It means the complexity of the output 
computation grows linearly with the number of bits in the 
global history. Tarjan et al. [12] proposed that this side effect 
could be eliminated by a hashed perceptron [13], in which 
multiple history bits are hashed to a single weight.  

III. DEEP LEARNING AND CONVOLUTION NEURAL NETWORKS 

(CNNS) 

Perceptron is one of the simplest neural network models. 
It is a linear classifier algorithm for supervised classification. 
A perceptron model is presented in Fig. 1. Many branch 
predictors achieve low misprediction rate by such correlative 

perceptron classifiers [10, 12, 14]. With recent advances in 
deep learning showing highly impressive misclassification rate 
for image or audio based processing, we aim to further push 
the lower bound of misprediction rates by applying these 
algorithms to branch prediction.  

Deep learning is a set of algorithms to train and utilize 
multi-layer neural networks. The deep hierarchical 
architecture tries to extract and represent the high-order 
features of the training data. However, traditional machine 
learning algorithms such as back-propagation were inadequate 
in training such a deep architecture because of the high 
probability of falling into poor local optima. 

To deal with the complexity of training deep networks, 
Hinton et al. [15] proposed the Deep Belief Networks (DBN) 
and an efficient way to train the network [16]. A DBN is 
composed of several stacked restricted Boltzmann machines 
(RBMs). It first uses unlabeled data to pre-train the network 
layer by layer using contrastive divergence learning on every 
RBM . This step is a way of unsupervised feature learning. 
After pre-training, global training algorithms, such as back 
propagation, are used to fine-tune the weights in the network. 
A commonly used DBN structure with four RBM layers and 
an output layer is shown in Fig.2. The number of neurons in 
Layer 1 is around 1/3 ~ 2/3 of the inputs. Similarly, the number 
of neurons in Layer 2 is around 1/3 ~ 2/3 of Layer 1. Layer 3 
has the same size as Layer 1, and Layer 4 has the same size as 
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Fig. 3.   The convolution neural network structure.  
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Fig. 2.  A popular DBN structure (WN is the weight between two layers).  
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Fig. 1. The structure of a perceptron model. 
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the input layer. The last layer is the output layer, which is 
constructed as a simple single-layer neural network, i.e., a 
perceptron. Although the network has 4 RBM layers, the 
training process is not exceedingly complex. Only the weights 
W1 and W2 will be trained. W3 and W4 are the transpose of W2 
and W1, as in shown Fig. 2. The basic idea of DBN is that 
through layer-wise training the neural network, the input data 
is reconstructed in the last RBM layer (Layer 4 in Fig. 2) with 
the minimum reconstruction error. In an ideal case, if Layer 4 
keeps all the information of the input data, which means the 
system does not introduce any information distortion, any 
inner layer between the input layer and output layer is another 
representation of the input. In other words, inner layers 
automatically extract some high-order features of the data 
since they have less neurons than the input vector. However, 
in reality, the information will distort layer-by-layer during the 
training process. From the input layer to Layer 2, the number 
of neurons reduces exponentially. This enforces Layer 2 to lose 
some information of the original data. From Layer 2 to Layer 
4, the original data is reconstructed from low-dimensional 
layers while keeping the reconstruction error small. As a result, 
only the feature information, which is necessary to reconstruct 
the original data, will be preserved. 

Locally connected networks with the longest history 
information, such as convolution neural networks (CNNs) 
[17], are likely to be a better choice for branch prediction as 
most branches show high correlation with nearby history. 
CNNs [18] are deep feedforward neural networks. The vital 
components of a CNN architecture are convolution layers and 
pooling layers, as shown in Fig. 3. They exploit the high 
correlation in local groups of data. The convolution layer [19] 
is used to detect the local conjunctions of features from the 
previous layer, and the pooling layer combines similar local 
features. A CNN typically has multiple stages of convolutional 
and pooling layers stacked one after the other, followed by a 
fully-connected (fc) layer. Backward propagation through a 
CNN is used to update the weights during the training phase, 
the same as training regular deep network layers. 

IV. EVALUATION METHODOLOGY 

In order to evaluate various algorithms for branch 
prediction, we leverage the simulation framework provided in 
the 4th Championship Branch Prediction (CBP-4). The 
framework is based on trace-driven simulation and features 20 
benchmarks, which are grouped into four categories: I 
(integer), F (floating point), M (multimedia) and S (server). In 
this work, we focus on the conditional branches from each 
trace as listed in Table I. The more recent CBP-5 has 233 
traces, which would have resulted in impractical time spent on 
training the DNNs. Therefore, we focus on CBP-4 in this work. 

In this paper, the problem of branch prediction is treated as 
a binary classification problem. We use an offline training 
method with a training set of first 90% branches, a validation 
set of next 5% branches and a testing set of last 5% branches. 
This way, the causality of data is maintained, meaning that 
future data are not used to train the network to produce a 
current prediction. We also use a random approach to select 
the training, validation, and test set. The training set is used to 
train the networks. The validation set is used to estimate how 
good a network has been trained in the training progress. If the 
network is good enough, meaning that the cost function on the 
validation set does not decrease between two continuous 
iteration epochs, the training process will stop. Then, the test 
set is used to evaluate the final classification error rate after the 
network has been trained. We specialize the network for each 

TABLE I. 

BENCHMARKS 

Bench-
marks 

Dynamic Condi-
tional Branches 

Bench-
marks 

Dynamic Condi-
tional Branches 

F1 2213673 M1 2229289 
F2 1792835 M2 3809780 
F3 1546797 M3 3014850 
F4 895842 M4 4874888 
F5 2422049 M5 2563897 
I1 4184792 S1 3660616 

I2 2866495 S2 3537562 

I3 3771697 S3 3811906 
I4 2069894 S4 4266796 
I5 3755315 S5 4291964 

TABLE II 
CONFIGURATIONS OF DIFFERENT DBN STRUCTURES 

Part 
Architec-

tures 
Input info. 

bits 
Source of bits 

Configurations 
GA info. PC (bits) GHR (bits) LHR (bits) 

A 

DBN 1 140 none 

32 

100 8 140 – 96 – 40 – 96 – 140 – 1 

DBN 2 280 prior 32 bits PC 200 
16 

280 – 140 – 85 – 140 – 280 – 1 

DBN 3 592 prior 32 bits PC 512 592 – 260 – 130 – 260 – 592 – 1 

B 

DBN pc1 140 

none 

32 

100 8 

Same to DBN1 

DBN pc2 124 16 124 – 88 – 60 – 88 – 124 – 1 

DBN pc3 116 8 116 – 65 – 30 – 65 – 116 – 1 

C 

DBN L1 124 

none 16 100 

8 Same to DBN pc2 

DBN L2 128 12 128 – 90 – 40 – 90 – 128 – 1 

DBN L3 132 16 132 – 90 – 40 – 90 – 132 – 1 

D 

DBN G1 132 

none 16 

100 

16 

Same to DBN L3 

DBN G2 232 200 232 – 160 – 110 – 160 – 232 – 1 

DBN G3 544 512 544 – 325 – 190 – 325 – 544-1 

E 

DBN GA0 132 none 

16 100 16 

Same to DBN L3 & G1 

DBN GA1 260 16 8-bit  260 – 180 – 110 – 180 – 260 – 1 

DBN GA2 388 32 8-bit  388 – 225 – 140 – 225 – 388 – 1 

DBN GA3 516 48 8-bit  516 – 305 – 195 – 305 – 516 – 1 

F DBN L 944 48 8-bit 32 512 16 944-630-270-630-944-1 



4 

 

trace separately. Our DNNs are constructed, trained, and tested 
using the Caffe framework [20].  

Table II shows the input sizes, which include branch PCs, 
GHRs, LHRs, and GAs. In perceptron and our DNNs, Every 
bit is an input to a neuron of the input layer of a DNN. For 
example, a input data sample has a size of 944 bits, which 
includes a 32-bit PC, 16-bit LHR, 512-bit GHR, and 48 8-bit 
GAS (global addresses), as shown in Fig. 4. 

We have tested DBNs and CNNs with various 
configurations, and have observed consistent results. To 
provide instances for discussion, we describe one DBN and 
two CNN models for branch prediction. The other DBN 
configurations are shown in Table II. 

DBN. Based on a popular DBN structure, the numbers of 
neurons of the layer 1 and of the layer 2 are selected from a 
thorough search in the large design space of their structures, 
which is shown in last row of Table II. as shown in Fig. 5. 
Layer 3 has the same size as Layer 1 and Layer 4 is the same 
size as the input layer. The last layer is the output layer, which 
is constructed as a simple single-layer neural network. The 
notation ‘fc’ means fully-connected. 

CNN1. The CNN1 configuration is inspired by the LeNet 
[17]. As shown in Fig. 6, it contains two convolutional layers 

and two fully-connected layers. The convolution layers have 
1×8 filters. The network ends with a fully-connected layer with 
logistic regression. The configuration of the first fully-
connected layer (i.e., 500) is also selected from a thorough 
search in the large design space of their structures. 

CNN2. CNN2 configuration is based on the AlexNet [18], 
as shown in Fig. 7, We delete one fully-connected layer, and 
adapt the filters to branch data. The network contains five 
convolutional layers and two fully-connected layers. Its two 
fully-connected layers have the same configuration as in 
CNN1.  

From comparison, we also report the prediction accuracy 
of multi-poTAGE+SC and MTAGE+SC predictors. While, the 
predictors are updated for all branch outcomes in a trace, we 
report the prediction accuracy of the branches in the same test 
set.   

V. RESULTS AND DISCUSSION 

The misprediction rate of the test set is our primary 
concern, so all results are on the testing sets. We report the 
misprediction rate as (#mispredictions / #predictions * 100) for 
all the prediction algorithms. 

A. Comparing perceptron with popular DBN 

Fig. 8 presents the misprediction rate of DBN and percep-
tron. The misprediction rates of the perceptron predictors with 
different history lengths are labeled ‘pcptrn -140’, ‘pcptrn -
280’, and  ‘pcptrn -592’, respectively; the misprediction rates 
of the corresponding DBNs are labeled ‘DBN1’. ‘DBN2’, and 
‘DBN3’. From the Fig. 8, we can see that DBNs outperform 
perceptron consistently. On the benchmark ‘I3’, the DBN1 
predictor reduces the mispredictioin rate by 9.81% compared 
to the perceptron with the same history length. Compared to 
perceptron, the average misprediction rate of the 
corresponding DBN predictor is 3.77%. This confirms that the 
DNNs could reduce the misprediction rates for the branches 
whose outcomes are separable in non-linear ways. If the 
branch outcomes of a benchmark are linearly separable, such 

1 0 ... 1 0 1 ... 1

PC-32 bits GHR-512 bits 

0 0 ... 1

LHR-16 bits 

0 1 ... 0

GA‐48*8 bits 

944 bits   
Fig. 4.  The data organization from branch traces. 
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Fig. 5.  The DBN architecture for branch prediction (fc: fully-connected)  
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Fig. 6. CNN1 Architecture for branch prediction 
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Fig. 7.  CNN2 Architecture for branch prediction 
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as those in the benchmarks ‘F3’, ‘F4’, ‘F5’, and ‘I5’, the 
perceptron and DBN have similar misprediction rates. On the 
contrary, the branch outcomes of a benchmark are not linearly 
separable, such as ‘I2-I4’, ‘M1-M2’, and ‘S1-S5’, the DBNs 
show their potential to greatly reduce the misprediction rate. 
The multiple layers of the DNNs are able to learn complex 
nonlinear functions more concisely, therefore they could work 
well on the nonlinearly separable branches. 

From Fig. 8, we can also see the impact of the history 
length on the perceptron predictors. There are 19 benchmarks, 
for which the perceptron with 280-bit length has lower mispre-
diction rates than the one with the 140-bit length. There are 17 
benchmarks, for which the perceptron with the 592-bit length 
has lower misprediction rates than the one with the 280-bit 
length. As a result, we can see that although longer history 
lengths help to reduce misprediction rates, it is not always the 
case for any benchmark. This observation confirms the finding 
from the prior work [14], which shows that the longest match 
may not be the best for branch prediction. Fig. 8 also shows 
there are 19 benchmarks where the 592-bit input is better than 
the 140-bit input. This indicates that adding global addresses 
is profitable in perceptron predictors. We discuss the effect of 

PCs, LHRs, GHRs, and GAs in the DBN models separately 
next. 

B. Comparing deep learning in the different lengths of 
hashed PC, LHR, GHR, and GA 

Fig.9 shows the effect of the length of the hashed PC. DBN 
pc1, DBN pc2, and DBN pc3 use 32-bit raw PC, 16-bit hashed 
PC, and 8-bit hashed PC, respectively. The LHR and the GHR 
information are the same over the three structures, as shown 
in Table 2. Comparing the raw PC with the 16-bit hashed PC, 
most benchmarks show lower misprediction rates than the lat-
ter. Comparing DBN pc 2 and DBN pc3 (i.e., 16-bit PC vs. 8-
bit PC), only 1 benchmark shows higher misprediction rate 
when 16-bit PC is used. Among the three configurations, the 
DBN with the raw 32-bit PC (i.e., DBN pc1) shows the lowest 
average misprediction rate.  

Fig. 10 shows the effect of the length of the LHR. DBN L1, 
DBN L2, and DBN L3 use 8-bit, 12-bit, and 16-bit LHRs, re-
spectively. The hashed PC and the length of GHR are 16 bits  
and 100 bits, respectively. There are 12 benchmarks, for 
which the DBN with the 12-bit LHR has lower misprediction 

Fig. 8. The misprediction rate of perceptron and DBN on the testing set of the CBP-4 traces (the higher the better) 

Fig.9.   The effect of the hashed PC of DBN branch misprediction rate on CBP-4 traces 

 
Fig.10.   The effect of the length of the LHR of DBN branch misprediction rate on CBP-4 traces 

 

Fig.11.   The effect of the length of the GHR of DBN branch misprediction rate on the testing set of CBP-4 traces 

 
Fig.12.   The effect of the length of the GA of DBN branch misprediction rate on the testing set of CBP-4 traces 
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rates than the DBN with the 8-bit LHR, and 10 benchmark, 
for which the DBN with the 16-bit LHR has lower mirepdic-
tion rate than the one with the 12-bit LHR. There are only 5 
benchmarks showing that the misprediction rate consistently 
reduces with an increase in the LHR length. There are also 2 
benchmarks whose misprediction rates increase with longer 
LHRs. It indicates that the longest LHRs may not be the best 
for the DBN on every benchmarks. 

Fig. 11 shows the influence of different GHR lengths in 
DBN G1, DBN G2, and DBN G3 structures as shown Table 
II. The lengths of the GHRs are 100 bits, 200 bits, and 512 
bits respectively. The hashed PC address and LHR length are 
the same over three structures. There are only 12 benchmarks 
where the misprediction rate drops when the GHR length in-
creases. Therefore, we could not conclude that, the longer 
GHR lengths, the lower the misprediction rate on all bench-
marks. It implies that an adaptive GHR length is desired for 
different benchmarks. 

To study the impact of GA, Fig. 12 shows the misprediction 
rate of the piecewise perceptron [11] and DBNs with 16, 32, 
and 48 8-bit GAs. Here 16/32/48 8-bit GAs mean 16/32/48 
prior branch addresses with 8 bits for each address. In the 
DBN GA0, no GA is used. The Hashed PC, LHR, and GHR 
are consistent among the structures. 

From Fig. 12, it can be seen that all DBN classification 
models outperform the piecewise perceptron for most of the 
benchmarks except the DBN G1, which does not contain any 
GA. Compared to non-GA, the impact from GA is significant 
in ‘M5’, ‘I2’, ‘S1-S5’. Especially in ‘S2’, the reduction is as 
high as 7.01% between DBN GA0 (non-GA) and DBN GA 
3(48 8-bit GA).  

Another interesting observation is the impact of the GA 
length. There are 13 benchmarks for which the DBN with the 
48-GA has lower misprediction rate than the one with the 32-
GA, and 15 benchmarks for which the DBN with the 48-GA 
has lower misprediction rate than the one with the 16-GA.  
Therefore, we cannot reach a conclusion that a longer GA is 
always better than a short one.  

As discussed above, the GHR length, the LHR length, and 
the GA length have significant impact on branch misprediction 
rates. Although not always longer the better, the misprediction 

rate correlates positively to the history length for over half of 
the benchmarks. Therefore, the best performing DBN (labeled 
as DBN-L) is the one the longest history information as shown 
in Table II. 

In Fig. 13, we compare DBN L with a prior work, the AIP 
[14] perceptron predictors. We can see the misprediction rate 
of the DBN L is lower than AIP [14] for 15 benchmarks while 
the misprediction rate of the DBN1 is higher than AIP for 16 
benchmarks.  

C. Comparing CNN and DBN with the state-of-the-art 
branch predictors 

In this part, all NNs have the same input with the size of 
944 bits. Fig.14 shows the misprediction rates of the DBN L, 
CNN, and TAGE. Between DBNs and CNNs, our results show 
that CNN1 and DBN L have similar misprediction rates while 
CNN2 has much lower misprediction rates than DBN L or 
CNN1. CNN1 contains two convolution layers whereas CNN2 
contains six convolution layers. This shows that for branch 
prediction, only deep CNNs are more effective than DBN, and 
a higher number of convolution layers and pooling layers 
could lead to lower misprediction rates. 

The multi-poTAGE+SC predictor [8], which is labeled 
‘TAGE1’ in Fig.14, is the winner of CBP-4 in the unlimited 
hardware resource category. The MTAGE+SC [10], which is 
labeled ‘TAGE2’ in Fig.14, is the winner in CBP-5. Between 
MTAGE+SC and multi-poTAGE+SC, the average reduction 
is 0.008%. They represent the state-of-the-art in achieving the 
upper bound of branch prediction. From Fig.14, we can see that 
there is only 1 trace on which the DBN and CNN1 have lower 
misprediction rates than multi-poTAGE+SC; but there are 16 
benchmarks on which the CNN2 model has lower 
misprediction rates than multi-poTAGE+SC. The average of 
misprediction rate of the CNN2 model is 0.173% and 0.164% 
lower than multi-poTAGE+SC and MTAGE+SC, 
respectively. As a result, we can see that the CNN approaches 
have the potential to further reduce the lower bound of the 
branch misprediction rates. The deep convolution layers help 
to extract the local features which have same history 
information but different results in some branches, just like the 
separation of homonyms. 

 

Fig.13.   The branch misprediction rate of DBN1, the prior work[14], and DBN on the testing set of CBP-4 traces.  

 

Fig.14.   The branch misprediction rate of DBN Last, CNN1, CNN2, TAGE1, and TAGE2 on the testing set of CBP-4 traces  
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VI. CONCLUSIONS 

This paper takes a binary classification perspective on the 
branch prediction problem. We utilize deep neural networks as 
a classifier and we explore both DBNs and CNNs to push the 
lower bound of branch misprediction rates. We made the 
following observations from our experiments: (1) deep neural 
networks significantly outperform simple perceptron 
classifiers; (2) deep CNNs outperform DBNs; and (3) only 
deep CNNs could outperform state-of-the-art TAGE-like 
branch predictors. 

This paper treats branch prediction as a pure binary 
classification stochastic problem. To simplify the problem, we 
only implemented offline training. However, in order to apply 
deep learning for branch prediction, an online training 
algorithm needs to be employed. In addition, since most of the 
state-or-the-art branch predictors integrate several standalone 
predictors, it is also worthwhile to explore the influence of 
incorporating such complementary predictors into the deep 
CNNs. 
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