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Abstract  
Although graphics processing units (GPUs) rely on thread-
level parallelism to hide long off-chip memory access 
latency, judicious utilization of on-chip memory resources, 
including register files, shared memory, and data caches, is 
critical to application performance. However, explicitly 
managing GPU on-chip memory resources is a non-trivial 
task for application developers. More importantly, as on-
chip memory resources vary among different GPU 
generations, performance portability has become a daunting 
challenge.   

In this paper, we tackle this problem with compiler-
driven automatic data placement. We focus on programs 
that have already been reasonably optimized either 
manually by programmers or automatically by compiler 
tools. Our proposed compiler algorithms refine these 
programs by revising data placement across different types 
of GPU on-chip resources to achieve both performance 
enhancement and performance portability. Among 12 
benchmarks in our study, our proposed compiler algorithm 
improves the performance by 1.76x on average on Nvidia 
GTX480, and by 1.61x on average on GTX680. 

1. Introduction 
Throughput-oriented architecture, such as graphic 
processing units (GPUs), has been widely used to 
accelerate many general-purpose computation workloads. 
Although general purpose computation on GPUs (GPGPU) 
achieves high throughput mainly by employing a large 
bundle of threads to overlap computations with long-
latency memory accesses, off-chip memory bandwidth and 
latency remain a performance as well as energy-efficiency 
bottleneck. Furthermore, the current trend of GPGPU 
evolution scales the computational throughput much faster 
than off-chip memory access bandwidth. For example, 
Nvidia GTX480 GPUs based on the FERMI architecture 
[17]  have an arithmetic throughput of 1.35 TFLOPSs with 
the memory bandwidth of 178 GB/s. In comparison, 
GTX680 GPUs based on the KEPLER architecture [18] 
have an arithmetic throughput 3.09 TFLOPS (2.3X increase 
over GTX480) with the memory bandwidth of 192 GB/s 
(7.8% increase over GTX480). To alleviate the off-chip 

bandwidth bottleneck and reduce memory access latency, 
GPUs are equipped with a multiple-level on-chip memory 
hierarchy including register files, L1 data caches (D-cache), 
shared memory, and L2 caches. As expected, how to 
effectively utilize such on-chip memory resources has a 
significant impact on application performance. However, it 
is non-trivial for application developers to explicitly 
manage these on-chip memory resources as the trade-offs 
among these resources are complex and sometimes non-
intuitive [14]. More importantly, as on-chip resources have 
been changing significantly for different generations of 
GPUs, an optimized kernel upon one generation becomes 
suboptimal on another one. Thus performance portability is 
a daunting challenge for application developers.  

In this paper, we propose compiler-driven automatic 
data placement as our solution. We focus on GPGPU 
programs that have already been reasonably optimized 
either manually by programmers or automatically by some 
compiler tools. In other words, our input programs already 
employ classical loop optimizations such as tiling and 
allocate important data, either for communication among 
threads or for data reuses, in shared memory. Our proposed 
compiler algorithm refines these programs by revising data 
placement across different types of GPU on-chip memory 
resources.  

Our compiler algorithm places data into different types 
of on-chip memory resources using the following 
systematic way. First, it analyzes the usage patterns of all 
shared memory variables in an input kernel program and 
tries to promote those shared memory variables into 
registers if they are not used for communication among 
threads. Second, if the shared memory usage becomes the 
bottleneck for thread-level parallelism (TLP), it checks 
whether it is profitable to move some shared memory 
variables into either global or local memory so as to 
implicitly exploit the L1 D-cache. Third, it detects 
redundant accesses to both global memory and shared 
memory across different threads. Then, it aims to reduce 
such redundant accesses by compacting multiple threads 
into one, thus converting redundant shared/global memory 
accesses among threads into data sharing/reuse of registers. 
To find the most profitable data (re)placements, an auto-



 

 

tuning process is used to select the optimal parameters in 
the optimization process. The first two steps of our 
compiler algorithm focus on replacing shared memory 
variables with registers or global/local memory variables. 
The key reason is due to the evolution trend of GPU on-
chip memory resources. In early generations such as the 
Nvidia G80 and GT200 architecture, the ratio of the 
register file size to the shared memory size is 2 and 4, 
respectively. In comparison, in the FERMI and KEPLER 
architecture, the ratio becomes 2.7 and 5.3, respectively. As 
a result, the code optimized for G80 or FERMI tends to 
over-utilize shared memory while underutilizing the 
register file when it runs on GT200 or KEPLER GPUs. As 
a result of such underutilization, it is proposed in prior 
works [1] to turn off significant portions of the register file 
to reduce static power consumption. 

We evaluate our proposed automatic data replacement 
algorithm using a diverse set of applications from different 
GPGPU benchmark suites that have been manually 
optimized. Our results show that our compiler algorithm 
improves the performance by up to 4.14X and an average 
1.76X on the FERMI architecture, and by up to 3.30X and 
an average of 1.61X on the KEPLER architecture. 

The remainder of the paper is organized as follows. 
Section 2 presents a brief background on GPU architecture 
with an emphasis on on-chip memory resources. Section 3 
presents in detail our proposed automatic data placement 
algorithm. Section 4 and 5 discuss our experimental 
methodology and the experimental results. Section 6 
addresses the related work. Section 7 concludes our paper. 

2. Background and Motivation 
2.1 GPGPU Architecture and Programming Model 

State-of-art GPUs employs many-core architecture, on 
which the cores are organized in a two-level hierarchy. 
Each GPU contains a cluster of streaming multiprocessors 
(SM) in Nvidia GPUs, or computing units in AMD GPUs. 
Each SM in turn consists of multiple streaming processors 
(SPs). To amortize the overhead of instruction fetch and 
decode, an array of SPs executes one scalar program in the 
single-instruction multiple-data (SIMD) manner. A group 
of threads running on such an array of SPs and sharing the 
same program counter (PC) is referred to as a warp of 
threads.  Multiple warps of threads are grouped into a 
thread block (TB) and a number of thread blocks are 
organized into a thread grid.  

2.2 GPU Memory Resources 

The GPU off-chip memory space consists of texture 
memory, constant memory, local memory, and global 
memory. Texture memory and constant memory are for 
read-only data which can be accessed by all threads. Global 
memory can be read or written by all threads in a kernel. In 
contrast, local memory is private to each thread.  

In order to reduce the latency and improve the 
bandwidth of off-chip memory accesses, three types of on-
chip memory including shared memory, data caches, and a 
register file, are introduced in each SM. Texture caches and 
constant caches are also on-chip memory but they are used 
for read-only data and not our focus in this study.  

Among three types of on-chip memory, the register file 
has the shortest access latency and highest throughput. 
Furthermore, the register file is larger than the L1 D-cache 
and shared memory as shown in Table 1. The register file is 
private to each thread, which means data in registers can 
only be accessed by a single thread, except for the latest 
Nvidia KEPLER architecture, which introduces a new 
instruction “__shfl” [18] to enable a thread to access the 
registers in other threads within the same warp. The 
maximum number of registers per thread is ISA-dependent 
and varies in different architectures. Exceedingly heavy 
usage of registers per thread will result in register spills into 
its local memory, which may be captured in L1 D-cache. 

Compared to register files, shared memory has lower 
throughput and smaller capacity. As shown in Table 1, a 
GTX 680 GPU has a 256KB register file and 48KB shared 
memory. As shared memory is accessible to all threads in a 
TB and has low access latency, prior works have been 
focused on using shared memory to achieve memory 
coalescing, to provide data communication, and to store 
data for temporal reuses. L1 D-cache shares the same 
hardware resource as shared memory on FERMI or 
KEPLER architecture, In contrast to shared memory, which 
is explicitly managed by kernel code, L1 D-caches are 
hidden from developers and are implicitly managed by 
hardware to keep the most recently accessed data. 
Furthermore, while the intensive usage of shard memory or 
registers can limit the number of threads running on each 
SM, the usage of L1 D-cache does not. However, too many 
threads in a SM would compete with each other for the 
limited L1 D-cache capacity, which may result in poor 
performance due to cache contention [10]. 

2.3 Architecture Evolutions 

GPUs evolve at a fast pace. Taking Nvidia GPUs as an 
example, from the first generations of unified shader G80 
to the state-of-art KEPLER architecture. A comparison of 
them is shown in Table 1. Several observations can be 
made from the table. First, there is a higher increase in 
computational throughput than off-chip memory 
bandwidth. For example, from the FERMI architecture to 
the KEPLER architecture, the computation throughput 
increases by up to 229% while the memory bandwidth 
increases by only 8.3%. As a result, we need to more 
carefully manage on-chip resource to effectively utilize the 
computational resources. Second, among GPU on-chip 
memory resources, the register file size and D-cache/shared 
memory have been changing across different generations. 



 

 

For example, From G80 to GT200, the register file size is 
doubled while the shared memory capacity remains the 
same. The same trend is present when comparing the 
FERMI architecture and the KEPLER architecture. 
Consequently, the code optimized for early GPU 
generations tend to use shared memory more heavily. This 
leads to a serious challenge for performance portability for 
such optimized code running on different GPUs.    

Table 1. A comparison of hardware characteristics across 
different GPU generations. 

 
G80 

(GTX 
8800) 

GT200 
(GTX 
280) 

FERMI 
(GTX 
480) 

KEPLER
(GTX 
680) 

KEPLER
 (K20c) 

Arithmetic  throughput 
(Gflops/S) 504 933 1345 3090 3950 

Memory Bandwidth 
(GB/S) 57 141 177 192 250 

Shared memory 
size(KB) 16 16 48 48 48 

Register file size(KB) 32 64 128 256 256

In summary, the main challenges for application 
developers to manually manage the on-chip memory 
resources include: 1) GPUs have three types on-chip 
memory and, although critical to performance, it is difficult 
to decide the proper on-chip resource for a particular data 
element in an application, and 2) the resource evolution is 
not linear across different GPU generations, and optimal 
on-chip resource usage varies for different GPU 
generations.  

3. Automatic Data Placement  into 
On-chip Memory Resources 
To automatically manage on-chip memory resources and 
achieve performance portability, in this section, we 
describe in detail our proposed compiler algorithm for 
automatic data placement. We first present our analysis of 
possible data placement patterns among different types of 
on-chip memory resources. Then, we construct our 
compiler algorithm using the profitable patterns.  

3.1 Data Placement Patterns 

As discussed in Section 2, we focus on three types of on-
chip memory: register files, shared memory, and L1 D-
caches. We propose to move data from one type of on-chip 
memory to another to achieve optimal resource utilization. 
As shown in Figure 1, there are six possible directions of 
moving data variables or six ways of data (re)placement. 
Data placement between register variables and local 
memory variables, i.e., direction 3 and 6, is determined by 
the compiler of the GPU vendors. With the Nvidia GPU 
compiler NVCC [3], we determine that the array variables 
accessed with non-constant indices, e.g., A[k] where k is a 
run-time variable, are allocated in local memory. Both 
scalars and array variables with constant indices are 
candidates for register allocation. Moving data from 
register files and D-caches (i.e., local/global variables) into 

shared memory, i.e., direction 4 and 5, requires significant 
code changes besides synchronization. Also, the current 
trend of GPU evolution is that the register files are much 
larger than shared memory and the existing compiler tools 
already can make use of shared memory for data reuse and 
communication. Therefore, we focus on placement 1, 2, 
and 3, and leave further investigation on placement 4 and 5 
as future work.    

3.1.1 Pattern 1: Promote variables from shared 
memory to registers 

Shared memory can be used to exchange data among 
threads in a TB. Also, as a low-latency on-chip resource, 
many applications use shared memory as software-
managed cache to hold important (private) data for each 
thread. There are three reasons why it may be profitable to 
promote a shared memory variable into registers. First, the 
shared memory usage may limit the number of concurrent 
TBs on an SM, i.e., TLP, and promoting shared memory 
variables into registers can alleviate the pressure on this 
critical resource. Second, shared memory has longer access 
latency and lower bandwidth than register files. Third, 
accessing shared memory variables is associated with 
instruction overhead for address computations. Therefore, 
higher performance may be expected when promoting 

Register 
variables 

Shared memory 
variables 

Local/global 
variables in L1 D-
caches 

1 

2 

3 

4 

5 

6 

Figure 1. Data placements among three types of on-chip 
memory. 
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__global__ void dynproc_kernel(…){ 
__shared__ float prev[256]; 
__shared__ float result [256]; 
int tx=threadIdx.x ;  
for (int i=0; i<iteration ; i++){ 

…. shortest = minum( prev[tx-1], prev[tx],prev[tx+1]); 
  result[tx] = shortest + gpuWall[index];  __syncthreads();   

prev[tx]= result[tx];  __syncthreads();} 
  gpuResults[xidx]=result[tx];  

}                               a) Baseline 
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__global__ void dynproc_kernel(…){ 
__shared__ float prev[256]; 
float result; 
int tx=threadIdx.x ; 
for (int i=0; i<iteration ; i++){ 

… shortest = minum( prev[tx-1], prev[tx],prev[tx+1]); 
  result = shortest + gpuWall[index];  syncthreads();   

prev[tx]= result; __syncthreads();} 
gpuResults[xidx]=result; 

}                             b) Optimized Code 

Figure 2. A code example of PathFinder. 



 

 

shared memory variables into registers. 
We show a benchmark, PathFinder, as an example, in 

Figure 2. Path-Finder makes use of two shared memory 
arrays, ‘prev’ and ‘result’, as shown in Figure 2. Its TB 
dimension is 256x1 and its thread grid size is 19x1. As a 
result, the sizes of these two shared-memory arrays are 
small (256x4=1kB) and such shared memory usage is 
actually not a bottleneck for the number of concurrent TBs 
on each SM. For the shared-memory array ‘prev’, its 
accesses in the kernel code, ‘prev[tx-1]’ and 
‘prev[tx+1]’indicate that the data in this array are indeed 
shared among different threads. As shown in line 7 in 
Figure 2a, the ‘result’ array is accessed by each thread 
multiple times in a loop. As each thread only accesses the 
array result using its own thread id as shown in line 8 and 
line 9 in the figure, there is no communication using the 
‘result’ array across threads. Since each thread only 
accesses its individual part of the array, it is safe to simply 
replace ‘result[tx]’ with a register. Further, as the variable 
is only defined and used in the same thread, we can safely 
remove the synchronization instruction ‘__syncthread()’ 
after the statement updating the variable ‘result’ (line 7). 
The resulting code is shown in Figure 2b. 

In our study, we found that shared memory is used very 
often in many benchmarks. Therefore, there are usually 
multiple shared memory arrays that can be replaced with 
registers. In this case, we may not have enough registers to 
promote all the shared memory arrays, and need to decide 
which shared memory array should be replaced with 
registers to maximize the performance benefits. Our 
framework handles this problem by counting the references 
of each shared memory array, and gives higher priority to 
the one with larger reference counts (Section 3.3).  

3.1.2 Pattern 2: Promote variables from shared 
memory into L1 D-caches 

As discussed above, the register file cannot be used for an 
array variable with a dynamically determined index (e.g., 
A[x]) and intensive usage of registers for shared memory 
promotion can also limit TLP. The local memory or global 
memory, which implicitly utilizes the L1 D-cache to 
achieve the high performance, does not have such 
drawbacks. Therefore, promoting variables from shared 
memory into local memory / global memory (L1 D-cache) 
is a better choice when (1) replacing shared memory arrays 
with dynamic indices or (2) the shared memory array to be 
promoted has a large size (e.g., an array of structures). 
Furthermore, if a shared memory variable is used for 
communication among threads, a global memory variable 
can be used to replace it since global memory is visible for 
all threads. 

Figure 3a, using the benchmark, Marching-Cube (MC), 
from CUDA SDK [19] as an example, shows that two 
shared memory arrays ‘vertlist’ and ‘normlist’ are used in 

the kernel. Each thread only accesses part of these two 
arrays, and the total size of these two arrays is 9216 bytes 
for each TB. As a result, each SM can run 5 TBs 
concurrently even when the shared memory is configured 
to be 48KB. As we can see from the figure, the value of 
variable ‘edge’ in line 11 of Figure 3a can only be 
determined in the runtime, and therefore the array ‘vertlist’ 
cannot be allocated in the registers. We choose to promote 
these two arrays into local memory instead of global 
memory to minimize the code change since for global 
memory, we have to modify the CPU code to allocate a 
global memory array and insert it as a parameter of the 
kernel invocation. The resulting code is shown in Figure 
3b. Since the code in Figure 3b does not use shared 
memory any more, each SM can run up to 16 TBs in the 
KEPLER GPUs and 8 TBs in the FERMI GPUs. Such 
improved TLP leads to higher performance for MC. In 
many cases, an application may intensively use shared 
memory to communicate among threads. Then, the global 
memory has to be used to replace the shared memory 
variables to maintain such communication so that we can 
both overcome the TLP bottleneck imposed by shared 
memory usage and keep inter-thread data communication. 
Note that although promoting variables from shared 
memory into L1 D-cache can significantly improve the 
TLP (or occupancy) otherwise limited by shared memory 
capacity, it doesn’t mean that more TLP will always lead to 
higher performance. In some scenarios, more concurrent 
TBs may increase cache and/or network contentions and 
adversely affect the performance [10]. Thus, our compiler 

__global__ void generateTriangles(…) { 
__shared__ float3 vertlist[12*NTHREADS]; //NTHREADS = 32 
__shared__ float3 normlist[12*NTHREADS]; 
    //defines to the shared memory array  
  vertexInterp2(..., vertlist[threadIdx.x], normlist[threadIdx.x])); 
  vertexInterp2(…,vertlist[threadIdx.x+NTHREADS],  

    normlist[threadIdx.x+NTHREADS]); 
  …edge = tech1Dfetch(triTex,..); 
  //uses of the shared memory array 
  pos[index] =       
     make_float4(vertlist[(edge*NTHREADS)+threadIdx.x], 1.0f);
    … 
}

__global__ void generateTriangles(…) { 
  float3 vertlist[12];  
  float3 normlist[12]; 
  //defines to the local memory array 
  vertexInterp2(.., vertlist[0], normlist[0]); 
  vertexInterp2(…,vertlist[1], normlist[1]);     
  … edge = tech1Dfetch(triTex,..); 
  //uses of the local memory array 
  pos[index] = 
    make_float4 (vertlist[edge], 1.0f); 
  … 
}

(a) 

(b) 

1
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13

1
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12

Figure 3. A code segment of the benchmark Matching 
Cube (MC). (a) The shared-memory version, (b) the L1  
D-cache version.  



 

 

uses an auto-tuning process to determine (1) how many 
variables should be promoted and (2) whether they are 
promoted into local memory or global memory, so as to 
achieve optimal data placement in balancing trade-offs 
between TLP and network/memory pressure. 

3.1.3 Pattern 3: Promote variables from shared 
memory / global memory into registers to achieve 
register tiling 

A common side effect of single-program multiple-data 
(SPMD) parallelization is redundant computations and 
memory accesses. In GPU kernels, there often exist 
redundant accesses to either shared memory data or global 
memory data across different threads. This redundant 
shared/global memory reference can be promoted into 
register usage to further save bandwidth. 

We use the benchmark SRAD as an example to illustrate 
this behaviour. Figure 4a shows a code segment from the 
SRAD kernel code. The TB dimension of the SRAD kernel 
is configured as <16,16>, i.e., 256 threads per TB. 
Therefore, tx (i.e., threadIdx.x) ranges from 0 to 15 for all 
the warps in a TB; and ty (i.e., threadIdx.y) will be 0~1 for 
the first warp, 2~3 for the second warp, and so on. Before 
computation, a tile of data will be loaded from the global 
memory array ‘c_cuda’ into the shared memory array 
‘south_c’ as shown in line 8 of Figure 4a.  We can see that 
the index variable ‘index_s’ is dependent on tx, bx (i.e., 

blockIdx.x) and by (i.e., blockIdx.y) but not on ty. It means 
that when the 8 warps of a TB actually load the same block 
of global memory data, there are 7 redundant global 
memory accesses in each TB since all the warps share the 
same tx, bx, and by, i.e., the same memory reference index.  

All three types of on-chip memory can be potentially 
used to reduce the overhead of such redundant global 
memory accesses across warps. First, the L1 D-cache is 
utilized implicitly when redundant global memory accesses 
hit in the L1 D-cache but such data reuse cannot be assured 
as the data may be evicted by other data requests. Second, 
we can choose to let only the first warp load the data into 
shared memory, and other warps then access the data from 
shared memory. However, this way incurs overhead due to 
operations moving data from/into register into/from shared 
memory [14]. Additional control flow is also needed to 
ensure that the global memory data are loaded only once 
and a synchronization is necessary to eliminate potential 
data races. Third, although the register file has a large size 
and the lowest latency, it cannot be shared among warps. In 
order to take advantage of the register file, we need to first 
compact multiple warps/threads into a single warp/thread, 
and then promote shared/global memory variables into 
registers. This way, the register variables after thread 
compaction can be shared among different threads before 
compaction. Such thread compaction is also referred to as 
thread merge [26] and thread coarsening [11]. Compared to 
the prior works on thread merge/coarsening/fusion 
[26][15][22], our approach specifically leverages this 
optimization technique for register tiling, i.e., use register 
reuse to eliminate redundant shared/global memory 
accesses. A key question for such register tiling is how 
many threads to be compacted so as to maximize register 
reuse while restricting the register pressure on TLP. We 
introduce the compaction factor C_Factor in our compiler 
algorithm to determine the most profitable version of data 
placement using automatic tuning. 

The optimized code after compaction is shown in Figure 
4b. The number of original threads/warps to be compacted 
is defined as a run-time constant, C_Factor. First, the 
thread block dimension is adjusted from <16,16> to 
<16,16/C_Factor>. Second, the global memory read 
accesses on line 6 of Figure 4a are replaced with a single 
global memory access on line 6 of Figure 4b, which loads 
the data from global memory to the register variable 
‘tmp_1’. Third, since multiple threads/warps of Figure 4a 
are compacted into a single thread/warp in Figure 4b, we 
can reuse the register ‘tmp_1’ as shown in line 11. 
Similarly, the memory access of ‘c_cuda’ under the 
conditional statement (line 8 of Figure 4a) can be processed 
in the same way by introducing another register ‘tmp_2’ as 
shown in Figure 4b. The if statement in line 7 of Figure 4a 
sometimes may also need to be replicated to guard this 
‘c_cuda’ access to avoid potential out-of bound accesses.  

__global__ void srad_kernel(int [] c_cuda…){ 
int index_s = cols * BLOCK_SIZE * by + BLOCK_SIZE * bx  
  + cols * BLOCK_SIZE + tx; //BLOCK_SIZE = 16; 
__shared__ float south_c[BLOCK_SIZE][BLOCK_SIZE]; 
…. 
south_c[ty][tx] = c_cuda[index_s] 
if ( by == gridDim.y - 1 ){ 
    south_c[ty][tx] = c_cuda[cols * BLOCK_SIZE *  
        (gridDim.y - 1) + BLOCK_SIZE * bx +  
        cols * ( BLOCK_SIZE - 1 ) + tx]; 
} 
__syncthreads(); 
…} 

__global__ void srad_kernel(int [] c_cuda…){ 
  int index_s = cols * BLOCK_SIZE * by + BLOCK_SIZE * bx     
     + cols * BLOCK_SIZE + tx;  //BLOCK_SIZE = 16; 
  __shared__ float south_c[BLOCK_SIZE][BLOCK_SIZE]; 
  …. 
  int tmp_1= c_cuda[index_s]; 
  //if(by == gridDim.y – 1)  
  tmp_2= c_cuda[cols *  BLOCK_SIZE * (gridDim.y - 1)  
    + BLOCK_SIZE * bx + cols * ( BLOCK_SIZE - 1 ) + tx]; 
  #pragma unroll 
  for(int m=0;m<C_Factor; m++)  
    south_c[ty+ m*blockDim.y/C_Factor][tx] = tmp_1; 

if ( by == gridDim.y - 1 ){ 
  for(int m=0;m<C_Factor; m++)  
    south_c[ty+m*blockDim.y/C_Factor][tx] =tmp_2; 

  } 
  __syncthreads();  
…}
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Figure 4. A code segment of the benchmark SRAD. (a) 
The global memory version, (b) The register version. 



 

 

3.2 Compiler Algorithms and Implementation 

Although the data placement patterns discussed in Section 
3.1 can be used to guide programmers to manually optimize 
their GPU programs, it will quickly become un-manageable 
if a non-trivial number of data variables are to be analyzed. 
In this section, we present our source-to-source compiler 
framework which implements these three data placement 
patterns using an automatic compiler optimization 
algorithm. The goal of the compiler algorithm is to generate 
the code which utilizes on-chip resource efficiently without 
effort from application developers. The key feature is that 
the compiler framework can intelligently re-assign the 
memory types of variables of a GPU program to maximize 
the benefit of on-chip resources. Our compiler algorithm 
has two passes: one for data placement pattern 1 and 
pattern 2 and the other one for data placement pattern 3.  

 Either compiler pass has three stages: the identifying 
stage, the processing stage, and the auto-tuning stage, as 
detailed in Figures 5 and 6. The identifying stage will scan 
all the memory variables, and generate a list of candidate 
variables which can be promoted by collecting the 
architecture features and analyzing the memory accesses of 
the target kernel. The processing stage implements the data 
placement patterns by revising the data types and their 
access indices of these candidate variables. The auto-tuning 
stage constructs the search spaces, decides which variables 
to be processed and selects the optimal code versions.  

3.2.1 Compiler pass 1 

The algorithm of the compiler pass for promoting shared 
memory variables to register files/local memory/global 
memory is shown in Figure 5. The identifying stage (line 
5~15) collects all shared memory variables through their 
‘__shared__’ keyword. For shared memory variables, we 
mark an access as a combination of the array name and the 
access index. The compiler checks access indices to 
determine (a) whether an access is across different threads 
or private to a single thread, and (b) whether an index has 
to be determined at the runtime. Meanwhile, the reference 
count of the variable is also recorded. If an access is inside 
a loop, we weight this access number by timing a loop 
count in line 10. In some cases, the loop count in a one-
level loop or multiple loop counts in nested loops may 
associate with a run-time value, leading to some unknown 
reference counts. In such cases, we resort to either profiling 
or simple heuristics (Section 3.2.4). The output of the 
identifying stage is arrays, a list of candidate variables. 

For all the candidate variables in arrays, the processing 
stage (line 18 ~24) applies data placement patterns by first 
selecting the shared memory variable with the largest 
reference counts. Then, if a shared memory variable is not 
shared across threads and is not accessed with run-time 
determined indices, it is promoted to the register file. 
Otherwise, it is replaced with a global memory variable if 

is used for inter-thread communication in line 23~24; or it 
will be replaced with a local memory variable if it is 
accessed through indices at line 21~22. Each replacement 
will result in substituting both the variable definition and 
reference indices throughout the kernel code from original 
one to the promoted type. 

3.2.2 Compiler pass 2 

The second compiler pass implements the third data 
placement pattern, i.e. promoting redundant shared/global 
memory accesses into register accesses, as shown in Figure 
6. In the identifying stage (line 5~13), the compiler 
analyzes each shared or global memory array. It checks 
whether an array index is independent upon the thread id in 
either the X or Y dimension. If it is independent upon both 
dimensions, it sets the flag is_redundant_2d. Otherwise, if 
it is independent upon one direction, it sets the flag 
is_redundant_1d. During each index check, the compiler 
also inserts the expressions associated with the index into 
the exprs list, which will be used in the processing stage. 
After the identification stage, it outputs exprs, the list of 
candidate expressions that exhibit data access redundancy, 
and the corresponding flags that indicates the type of 
redundancy type, i.e., one-dimension or two-dimension. 

In the processing stage (line 16~27), the compiler first 
adjusts the thread block dimension for each different 

Kernel shared_to_register_or_local_or_global (Kernel kernel) { 
Kernel best_kernel = kernel; 
float exe_time = eval(kernel); //collect the execution time of kernel;

    /**Identification Stage**/ 
    List arrays; 

for (each shared memory array sma in kernel) { 
     sma.is_overlap = false; sma.is_index = false; 

         sma.access_count = 0;  sma.size = allocation_size; 
    for (each access acc of array sma) { 
        sma.access_count += (acc in loop)?loop_count::1; 
        if (acc is overlapped across threads)     
            sam.is_overlap = true; 
        else if (the address of acc is calculated in the runtime)  
           sma.is_index = true ;} 
  if (sma.access_count >0) {arrays.add(sma);} }    //end for 

   while (arrays is not usage empty)  { 
       /**Processing Stage**/ 
       sma = array with largest access_count in arrays, pop it out; 

   if (!sma.is_index and !sma.is_overlap) 
         replace sma with register file; 
   else  if (sma.is_index and !sma.is_overlap) 
         replace sma with local memory; 
   else  

              replace sma with global memory; 
        /**Auto-tuning Stage**/ 

   generate a new kernel nkernel  
   exe_time1=eval(nkernel) //the execution time of nkernel 
   if (exe_time1< exe_time) { // the new kernel is better 
        best_kernel = nkernel; 
        exe_time = exe_time ;} 
   else 

             return best_kernel; // found the best kernel  }   //end while 
}
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Figure 5. The compiler algorithm to promote variables 
from shared memory to the register file/D-cache. 



 

 

compact factor (C_Factor) in line 16. Then, it constructs an 
unroll-able loop to perform the workloads of the threads to 
be compacted. The loop body contains all the expressions 
including the associated computational operations and 
memory accesses in the thread index dependence chain, as 
shown in line 18~19 and line 23~25. The exception is the 
expressions in the expr lists collected in the identification 
stage. These global/shared memory accesses in the expr list 
are performed only once by loading data into a destination 
register as shown in line 20~21 and 26~27 and the 
destination register will be reused in the newly constructed 
loop, as illustrated in Figure 4. This C_Factor is a tunable 
parameter to indicate how many threads/warps will be 
compacted into one. The C_Factor can be a scalar or a two-
dimension vector depending on the redundancy type 
generated from the identifying stage. 

3.2.3 Auto-tuning 

In the auto-tuning stage, the compiler first generates a 
search space based on all the tunable parameters, then 
measures the execution time, compares them, and finally 
selects the best performing version. Totally, three search 
spaces will be generated associated with each data 

placement policy. The first search space is to decide how 
many and which shared memory variables to be promoted 
into the register file; the second search space is which 
shared memory variables to be promoted into global/local 
memory; the third search space is to determine the 
compaction factor.  

To manage the cost of auto-tuning, we prune the first 
search space by promoting shared memory variables 
incrementally, starting from the one with the highest 
reference counts, assuming that this one will benefit most 
when being promoted into registers. If one version has 
lower performance than the previous one, it means that 
promoting one more shared memory variable may lead to 
too much register usage and hurt the performance. 
Therefore, it stops further promotions. For the second 
search space, we prune it by using a greedy strategy to 
promote shared memory variables that occupy the largest 
space, so that it will release the resource pressure on TLP in 
a fast and incremental way. For the compaction factor, we 
observe that, the thread block in GPU computing 
workloads is typically a multiple of 32. Therefore, we 
constrain the compaction factor as a number of 2’s power. 
Compared to the previous sophisticated methods for 
pruning the search space such as generic algorithm [5] and 
machine learning techniques [20], our heuristics are simple 
and practical on GPU kernels. In Section 5, our results also 
show that for our workloads, our iterative space pruning 
approach is effective in reducing search space and finding 
the optimal/near optimal version. 

The auto-tuning part for compiler pass 1 is listed as line 
27 to line 32 in Figure 5. During auto-tuning, if a newly 
generated kernel has worse performance than the previous 
version, the compiler will consider further optimization is 
not helpful and the previous version is chosen as the best 
one as shown in line 32. In Figure 6, the code lines from 29 
to 35 show the auto-tuning part for compiler pass 2. The 
compiler evaluates the new kernel generated by previous 
steps in line 30. If the new kernel has better performance, 
then the compiler increases the C_Factor and continues 
with more aggressive thread compaction. Otherwise, the 
compiler stops at line 35.  

3.2.4 Preprocessor 

In our implementation, our compiler framework takes a 
pre-processing step on the program and regulates 
expression representation for successive analysis and 
optimization. First, the index for an array access is 
interpreted as an affine function of the thread index. The 
scaling factor in the affine function may involve a subset of 
the kernel launch parameters, macro/constant values, run-
time parameters, and loop iterators if the memory 
expression is inside a loop. Second, an array access may 
reside inside a condition or loop statement. The reference 
count of such an array depends on the loop bound and the 

Kernel  shared_or_global_access_to_register (Kernel kernel) { 
 Kernel best_kernel = kernel;   
 float  exe_time = eval(kernel); 
/**Identification Stage**/ 
List exprs;  
bool is_redundant_1d = false, is_redundant_2d = false; 
for (each shared/global memory array sma in kernel) { 

for (each access acc of array sma in expression expr) { 
        if (acc is independent of one thread dimension)    

 { is_redundant_1d = true; exprs.add (expr);} 
       if (is_redundant_1d && acc is independent of the other  
            thread dimension in expression expr)  
          {is_redundant_2d = true; exprs.add (expr);} } }//end for 

for (each C_Factor in search spaces ){  
       /**Processing Stage**/ 
     Adjust Thread Block Dimension. 
     if(is_redundant_1d) { 

  construct a one-loop with loop bound C_Factor  to       
perform the workload for compacted threads 

convert expr in exprs to from inter-thread  memory  usage  
                into register array. 
        } else if(is_redundant_2d){   
           construct an 2-level loop with loop bound C_Factor .x,  
               and C_Factor . y to perform the workload  
               for  compacted threads 
            convert expr in exprs to from inter-thread  memory  
                  usage into register array usage; } 
        /**Auto-tuning Stage**/ 
       generate a new kernel nkernel from best_kernel; 
       exe_time1=eval(nkernel) //the execution time of nkernel 
       if (exe_time1< exe_time) {   // the new kernel is better 
             best_kernel = nkernel; 
             exe_time = exe_time; } 
      else  

         return best_kernel;     } //  end for 
} 
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Figure 6. The compiler algorithm to promote shared or 
global memory to registers to be shared among threads.



 

 

condition. If the loop bound and the condition can only be 
determined at run-time, we choose to either let the user to 
provide such information through profiling or use the 
following simple heuristics. We assume that for a nested 
loop in a kernel, each level has a loop count of 4 and the 
condition is true half of the times. The reason for such a 
default loop count is that our observation from the 
benchmarks shows that when a nested loop is parallelized 
into GPU threads, the levels with large loops counts are 
used to generate thread grids and the thread body typically 
contains loops with smaller counts. Lastly, the preprocessor 
collects the data structure declaration and annotate array 
accesses with the data type. For the vector data type such as 
int2, float4, the memory access index is processed the same 
as the scalar data type. For the struct type, the array index 
and the addresses of its elements are identified separately.  

4. Experimental Methodology 
We implemented our compiler algorithms using Cetus [13], 
a source-to-source compiler infrastructure for C programs. 
The CUDA syntax support is ported from MCUDA [21]. 

Table 2. Parameters used in experiments. 
Parameter GTX480 GTX680 K20c

<Shared memory 
size, L1 D-cache 

size> 

<16kB, 
48kB>, 
<48kB, 
16kB> 

<16kB, 48kB>, 
<32kB, 32kB>, 
<48kB, 16kB> 

<16kB, 
48kB>, 
<32kB, 
32kB>, 

<48kB, 16kB>
Register file size 128kB 256kB 256kB
Max number of 
threads per SM  512 1024 1536 

Max number of 
registers per thread 64 64 256 

Compaction Factor 2,4,8,16 2,4,8,16 2,4,8,16

To evaluate our proposed compiler optimizations, we 
perform our experiments on Nvidia GTX480 (FERMI) 
GPUs, GTX680 (KEPLER) GPUs, and Telsa K20C GPUs. 
The parameters are presented in Table 2. 

Most of the benchmark kernels used in our experiments 
are from Rodinia [4] and CUDA SDK [19] since they have 
already been manually optimized. Among them, HotSpot, 
Back Propagation, SRAD, Pathfinder, B+tree, LU 
Decomposition are from the latest Rodinia suite. Matrix 
Multiplication and MarchingCubes are from CUDA SDK. 
NQU is from GPGPUsim benchmark suite [2]. As Back 
Propagation, SRAD and B+tree, contain two GPU kernels, 
we use BackPropagation1, BackPropagation2, SRAD1, 
SRAD2, B+tree1, B+tree2 to differentiate them. In Table 3, 
from left to right, we show the benchmark name, the input, 
as well as the resource usage including the number of 
registers per thread and the size of shared memory (bytes) 
per SM on GTX 480, GTX 680, and Telsa K20c, 
respectively. We use the default input released with the 
code. For each benchmark, the shared memory usage is the 
same for different GPUs because it is determined by 
programmer’s explicit definition. The register usage is 

statically allocated and the maximum available registers per 
thread vary on different GPUs.  

5. Experimental Results 
In our first experiment, we measure the execution time of 
both the original kernel and the optimized kernel generated 
from our compiler algorithm on GTX480, GTX680 and 
Telsa K20c separately. On each GPU, we tried all different 
shared memory/L1 D-cache configurations and selected the 
one with the best performance for the original kernels. 
Also, for each optimized kernel, the compiler will generate 
the best data placement to accommodate the specific 
architecture so as to achieve optimization portability. Each 
benchmark has been run one-hundred times to obtain the 
stable execution times. Figure 7 shows performance 
comparisons between original kernels and our optimized 
ones across different GPUs.  

 
Figure 7. Performance speedups achieved by automatic 
data placement for all benchmarks on three different GPUs.  

From Figure 7, we can see that across all the 
benchmarks, the optimized kernels exhibit significantly 
higher performance than the original ones on all the three 
GPUs. The benchmark SR1 achieves the highest speedup 
(4.14X) over the original kernel on GTX480. This is 
because most global memory accesses in this kernel are 
redundant, not only among different warps but also among 
threads in a warp. By promoting those redundant global 
memory accesses into register accesses, the access time to 
all input data sets is highly reduced. Similar global or 
shared memory redundancy also exists in HS, BP1, BP2, 
MM, BT1, BT2, and LUD. For HS, PF and NQU. Many 
shared memory variables in these kernels have no data 
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Table 3. Benchmarks and their resource usage.
GTX480 GTX680 K20C 

Benchmark Input reg smem regsmem reg smem
HotSpot (HS) height 2 35 3072 36 3072 39 3072 
Back Prop1 (BP1) 65536 layer 13 1088 11 1088 12 1088 
Back Prop 2 (BP2) 65536 layer 22 0 20 0 21 0 
SRAD1 (SR1) 2048*2048 20 0 20 0 26 0 
SRAD2 (SR2) 2048*2048 19 0 20 0 20 0 
Matrix Multiply (MM) 2048*2048 23 8192 26 8192 25 8192 
Path Finder (PF) 409600 steps 16 2048 18 2048 17 2048 
N-Queue (NQU) N=8 15 15744 19 15744 16 15744
Marching Cubes (MC) 32768 voxels 63 9216 63 9216 76 9216 
B+tree1 (BT1) qrSize=6000 18 0 19 0 21 0 
B+tree2 (BT2) qrSize=6000 23 0 28 0 30 0 
Lu-Decompose (LUD) 2048.dat 15 2048 17 2048 17 2048 



 

 

exchanges among threads, thus these shared memory 
variables are candidates for register promotion. In NQU, 
there are five shared memory variables and four of them are 
promoted, leading to a high performance speed-up of 3.3x 
on GTX680. For PF, _syncthreads() can be safely removed. 
However, even though it is not removed, the optimized 
code (e.g., on GTX480) can still achieve 7% performance 
improvement. For MC, shared memory variables holding 
two on-chip working sets can be promoted into local 
memory arrays so as to remove the resources limitation on 
the number of concurrent TBs, thereby achieving higher 
performance. Overall, using the geometric mean as an 
average, the kernels optimized on GTX480 can achieve up 
to 4.14x speedup and an average of 1.76x speedup 
compared to the original benchmarks, up to 3.30x speedup 
and an average of 1.61x speedup on GTX680, and up to 
2.44x speedup and an average of 1.48x speedup on K20c. 

In our second experiment, we first breakdown the 
effectiveness of each placement pattern. Figure 8a and 8b 
shows the benchmarks that can be applicable to compiler 
pass 1 and pass 2. Among them, only HS benefits from 
both pattern 1 and pattern 3 (the total improvement of 
64.2%: breakdown into 4.8% from pattern 1 and 59.4% 
from pattern 3), while other benchmarks only benefit from 
one in three patterns: MC benefits from pattern 2; PF, NQU 
benefit from pattern 1, and others benefit from pattern 3. 

 
(a)  Optimization using compiler pass 1 

 
(b)  Optimization using compiler pass 2 

Figure 8. Auto-tuning of our automatic data-placement for 
all benchmarks on GTX680 (Performance normalized to 
original kernel).  

We further evaluate the effectiveness of our auto-tuning 
process for each benchmark. As shown in Figure 8a, the 
benchmarks NQU, PF, HS and MC benefit from promoting 
shared memory arrays into register/local/global memory. 
The search space is how many shared memory variables 
can be promoted into registers or L1 D-cache using our 
compiler pass 1 in Section 3.2.1.  For all the cases, 
promoting more shared memory variables into registers or 
L1 D-cache will lead to higher performance. For the 
benchmark kernels benefiting from reduced redundant 

shared/global memory accesses, Figure 8b shows the 
impact of the search parameter C_Factor in our compiler 
pass 2 in Section 3.2.2. From Figure 8b, we can see that the 
best C_Factor varies across different benchmarks. For 
SR1, the best performing version is achieved when 
C_Factor is 16.  However for BP1, the best performing one 
is obtained when C_Factor is 2, and further increasing 
C_Factor to 4 degrades the performance as it reduces the 
number of active warps in a thread block. Such reduced 
TLP subsequently degrades the latency hidden ability for 
off-chip memory accesses, offsetting the profit from 
reducing redundant accesses. Therefore, auto-tuning is 
stopped when such a performance drop is observed. We can 
see that if C_Factor is increased to 8 for BP1, the 
performance will degrade even more. This validates the 
effectiveness of our auto-tuning policy, which searches 
C_Factor in an incremental manner. The same scenario has 
also been observed in the compiler pass 1 from Figure 8a 
when searching for the appropriate shared memory 
variables to be promoted in MC. 

 

Figure 9. The optimal parameter, the number of shared 
memory array to be promoted and the C-Factor, determined 
for different GPUs. 

Third, in Figure 9, we present the optimal parameters 
determined by our auto-tuning process on the different 
GPUs. For PF, NQU and MC, the y-axis means how many 
variables should be promoted while for others, the y-axis 
denote  the optimal C_Factor values on different GPUs. 
Our compiler can intelligently generate the optimized 
kernel for specific architecture to achieve optimization 
portability. We can see that the different architecture 
features of these GPUs lead to different optimal 
parameters. For example, NQU achieves best performance 
when its four shared memory variables are promoted on 
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Table 4. The auto-tuning time on GTX 680

 
Original 
search space 

Pruned  
search space 

Auto-tuning 
time (ms) 

HS 48 8 42.873 
BP1 16 3 11.361 
BP2 16 4 15.755 
SR1 16 5 24.133 
SR2 16 5 21.941 
MM 32 5 210.876 
PF 1 1 8.88 
NQU 45 12 48.124 
MC 9 6 23.986 
BT1 3 3 12.183 
BT2 3 3 14.343 
LUD 16 4 129.531 



 

 

GTX680, while on K20C, the best performance is achieved 
when three shared memory variables are promoted. 

Fourth, our auto-tuning process has a low overhead on 
searching the optimal parameters.  We report the cost of the 
auto-tuning function in Table 4. From the left to right, we 
report the search space, i.e., the number of all possible 
values to be tried, in the original search if there is no 
pruning strategy in searching, the search space after 
applying our pruning strategies in our compiler passes, and 
the total execution time of our auto-tuning process for 
generating the optimal kernel for each benchmark. We can 
see that the search space is reduced significantly by our 
pruning strategy. We also validated that the optimized one 
from our pruned space can achieve the same performance 
as the one from the original search space. 

 
Figure 10. Performance speedup of optimized kernels in 
Marching Cubes with different input sizes. 

Finally, besides the kernel code itself, we also consider 
how the problem input of a workload affects our proposed 
optimization process. For our first compiler pass, the shared 
memory array sizes are fixed with constants or macro 
variables which are independent of input sizes. The reason 
is that the benchmark code has been already optimized to 
process the inputs as tiled working sets. For the second 
pass, the input size will impact on the number of thread 
blocks in a grid and each thread block usually has a pre-
defined size to work on a tile of input elements. Thus, the 
variation of the input size will not affect the steps of our 
compiler analysis and optimizations. Provided that the 
performance is in general correlated with the input size, our 
performance improvement will higher when the problem 
size is larger. Because the larger inputs will often lead to 
more frequent on-chip memory resource accesses to 
process them and our optimized kernel will in turn benefit 
more from the optimized access patterns. Figure 10 shows 
the effect of increased input size, from 8K Voxels to 512K 
Voxels, on Marching Cubes. As the input problem size 
increases, the performance improvement of our optimized 
kernel from compiler also increases from 1.179x to 1.446x.  

6. Related work 
In recent years, GPUs have been widely used for general-
purpose computation due to their high computational 
throughput. However, achieving high performance on 
GPUs is not easy, and one of reasons is the intricate on-
chip memory resources. Among on-chip resources, shared 
memory is controlled by users, and many highly optimized 
applications or algorithms on GPUs utilize shared memory 

carefully [12][23][24][27] so as to enjoy the low-access 
access latency and high bandwidth. Besides them, [12] 
analyses the upper performance bound of SGEMM on 
GPUs and optimizes the kernel through register blocking 
by reusing data in registers as much as possible for 
maximal throughput. However, none of these works 
considers the overhead of intensive usage of shared 
memory and the impacts of varying on-chip resources 
across different GPU generations.  

To relieve the burden of optimizing GPU programs from 
the programmers, many auto-tuning frameworks 
[15][16][22][25][26] have been developed to automatically 
optimize the GPU programs to achieve high performance. 
For example, a polyhedral model is used in [16] for 
optimizing global memory accesses. In [27], the shared 
memory is time multiplexed to reduce the pressure on 
limited shared memory capacity. In [25], language and  
compiler support are proposed to leverage nested 
parallelism inside the GPU programs. However, most of 
these works focuses on optimizing memory accesses and 
managing thread-level parallelism using compiler 
techniques. Management of different types of on-chip 
memory, especially the varying on-chip memory across 
different GPU generations, has not been the focus. To the 
best of our knowledge, our work is the first compiler 
algorithm to automatically optimize data placement across 
different on-chip memory resources in a systematic way.   

We also observed that vendor’s compiler may promote 
the variables in shared memory to register file. The way to 
avoid such an optimization is to use the ‘__volatile__’ 
keyword when declaring a shared memory array. However, 
as we verified from the assembly codes, we found that the 
vendor’s compiler does not apply such optimizations on the 
benchmarks used in our work.  

Current studies on on-chip memory resources mainly 
focus on identifying resources limitation and boosting the 
performance by improving architecture design [6][7] or 
compiler support [9][27]. On-chip data cache may lead to 
cache contention and [9] proposes a compiler algorithm to 
automatically turn on/off the D-cache by predicting how 
cache will affect the performance. The register usage 
pattern is studied in [6] and the register file accesses are 
reduced by proposing a register file cache. However, these 
works target on optimizing one specific resource to conquer 
their limitations instead of balancing on-chip resources. 

The trade-offs between software-managed shared 
memory and hardware-managed D-cache on GPUs have 
been studied in [14]. Gebhart et al. [7] made the 
observation that different applications have different needs 
for various memory resources. They proposed unified local 
memory that can dynamically change the partition among 
registers, cache, and shared memory according to each 
application’s needs. Hayes and Zhang [8] proposed unified 
on-chip memory allocation which uses shared memory to 
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offload register pressure. In comparison, our work focuses 
on re-assigning data across all on-chip memory resources.   

7. Conclusions 
Judicious utilization of the on-chip memory resources has a 
significant impact on application performance. However, 
how to manage these intricate on-chip memory resources is 
non-trivial for application developers. More importantly, 
the varying on-chip resource across different GPU 
generations makes performance portability a daunting 
challenge. In this paper, we propose compiler-driven 
automatic data placement as our solution. We focus on 
GPGPU programs that have already been reasonably 
optimized either manually by programmers or 
automatically by existing compiler tools. Our proposed 
compiler algorithms refine these programs by altering data 
placement among different on-chip resources to achieve 
both performance enhancement and performance 
portability. In particular, we leverage three data placement 
patterns. First, we explore shared memory variables to 
promote them into registers. Second, we explore the 
opportunities to utilize the L1 D-cache by promoting 
variables from shared memory into global/local memory if 
shared memory is a resource bottleneck. Third, we 
eliminate redundant shared/global memory accesses across 
different threads. To achieve performance portability, our 
compiler performs auto-tuning on different GPUs to 
achieve optimal performance. Among the benchmarks in 
our study, our proposed compiler algorithms significantly 
improve the performance by up to 4.14x and 1.76x on 
average on Nvidia GTX480 (i.e., FERMI) GPUs, and by up 
to 3.30x and 1.61x on average on GTX680 (i.e. KEPLER) 
GPUs, and up to 2.44x speedup and an average of 1.48x 
speedup on K20c GPUs. Our compiler-optimized kernel 
can also save up to 74.3% energy and save an average of 
40.3% energy overall measured on GTX680 GPUs. 
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