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Abstract
In this paper, we propose quantum circuits for runtime as-
sertions, which can be used for both software debugging and
error detection. Runtime assertion is challenging in quantum
computing for two key reasons. First, a quantum bit (qubit)
cannot be copied, which is known as the non-cloning the-
orem. Second, when a qubit is measured, its superposition
state collapses into a classical state, losing the inherent paral-
lel information. In this paper, we overcome these challenges
with runtime computation through ancilla qubits, which are
used to indirectly collect the information of the qubits of
interest. We design quantum circuits to assert classical states,
entanglement, and superposition states. Our experimental
results show that they are effective in debugging as well as
improving the success rate for various quantum algorithms
on IBM Q quantum computers.
CCS Concepts. • Hardware→ Quantum technologies.
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1 Introduction
Quantum computing features unique advantages over clas-
sical computing and recent advances in quantum computer
hardware raise high hopes to realize the remarkable potential
of quantum computing. However, there are important hur-
dles to overcome to make quantum computing mainstream.
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The first is the difficulty of developing and debugging quan-
tum programs. The second is that the quantum computers
are highly susceptible to errors and quantum error correc-
tion incurs very high overhead. To tackle the first problem,
prior work by Huang et al. [17] shows that many bugs in
quantum programs can be detected using assertions. Asser-
tions, especially dynamic ones, during quantum program
execution are challenging for two key reasons. The first is
the non-cloning theorem, which means that it is impossible
to copy a quantum bit (qubit) with an arbitrary state. The
second is that any measurement on a qubit in a superposi-
tion state will project it into a classical state. As a result, in a
recent work by Huang et al. [18], statistical assertions, mean-
ing statistical analysis on multiple measurement results, are
proposed to debug quantum programs. The key limitation
of this approach is that each measurement stops program
execution and the assertions require ensembles of runs when
the actual computation results are to be measured.
In this paper, we propose quantum circuits to overcome

this limitation and to enable dynamic assertions for quan-
tum programs. We also propose to leverage assertion for
opportunistic error detection such that we can increase the
success rate of the quantum computer without error correc-
tion. Our proposed quantum circuits for dynamic assertions
are inspired from quantum error correction and nondestruc-
tive discrimination. As qubits cannot be copied and cannot
be measured directly, our approach for dynamic assertions
is to indirectly verify the desired condition to be checked.
In comparison, quantum error correction shares the same
constraints and the various previously proposed quantum
error correction codes [13][25] introduce ancilla qubits and
encode the information of the qubits to be protected in the
ancilla qubits, which are checked and used to correct the
qubits if they are corrupted. Similarly, we also introduce
ancilla qubits for assertions but the difference is that we
only need to check for assertions and our proposed quantum
circuits for assertions are much simpler than those for error
correction, which incurs very high overhead in the number
of ancilla qubits and the associated quantum circuits. Non-
destructive discrimination (NDD) is mainly used in secure
quantum communication. Several NDD protocols [14, 15, 19]
have been proposed to discriminate entangled states such as
Bell states in quantum information processing. We can lever-
age these NDD protocols to assert the target quantum states
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without disturbing the qubits under test while our proposed
quantum circuits are simpler than the NDD protocols as we
do not need to discriminate all the entangled states.
According to the previous work by Huang et al. [18],

three types of possible assertions are essential for debug-
ging quantum programs: classical assertions, superposition
assertions, and entanglement assertions. Classical assertions
check quantum variables with classical values to see whether
they match the desired ones; superposition assertions check
whether a quantum variable is in a desired superposition
state; and entanglement assertions check whether the en-
tangled quantum variables exhibit the desired correlation.
In this paper, we propose circuits for these three types of
assertions. In addition, we also enable superposition asser-
tion with a desired phase, which cannot be asserted with
the statistical approach. Besides debugging, we show how
these assertion circuits can be used to improve success rate
via post measurement selection, meaning that we ignore the
measurement results which fail the assertion checks. In our
evaluation, we perform experiments on an actual quantum
computer, IBM Q, to show the effectiveness of our proposed
schemes.

The key novelty of this work is (a) quantum circuits for dy-
namic assertions, which are used as primitives for quantum
program debugging, (b) the use of the circuits for opportunis-
tic error detection so as to improve success rates on noisy
intermediate scale quantum (NISQ) systems, (c) an analysis
of the impact from our proposed assertion circuits on the
circuits under test, and (d) a detailed evaluation on a variety
of quantum algorithms.

2 Background and Related Work
Qubits are the foundation of quantum computing. Executing
a quantum program means performing a sequence of oper-
ations upon the qubits. A qubit can be in a classical state,
i.e., the |0⟩ state or |1⟩ state, which can be viewed as the
classical 0 or 1 states. Besides classical states, a qubit can
be in a superposition state, which is a linear combination
of classical states, i.e., |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ where 𝑎 and 𝑏 are
complex numbers and |𝑎 |2 + |𝑏 |2 = 1. When a qubit in the
superposition state is measured, the superposition state is
projected into a classical state with the probability of |𝑎 |2
being state |0⟩ and |𝑏 |2 being state |1⟩. Superposition states
are the reason for quantum parallelism, as 𝑛 qubits can be in
a mixture of 2𝑛 states while in classical computing an 𝑛-bit
variable takes one of the 2𝑛 states at a time.

The state of multiple qubits can be described as the ten-
sor product between the individual qubit state vectors. For
example, the state of the two qubit, |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ and
|𝛿⟩ = 𝑐 |0⟩ + 𝑑 |1⟩, can be described as |Ψ⟩ ⊗ |𝛿⟩ = 𝑎𝑐 |00⟩ +
𝑎𝑑 |01⟩+𝑏𝑐 |10⟩+𝑏𝑑 |11⟩, where |00⟩ is |0⟩⊗ |0⟩, |01⟩ is |0⟩⊗ |1⟩,
etc. Two or more qubits can be entangled, meaning that their

measurements results will be correlated and their state can-
not be expressed as the tensor product of individual qubits.
One implication is that among the entangled qubits, if one
of them is measured (i.e., projected to a classical state), the
rest will also collapse into a compatible state, losing some or
all of their superposition states.

A quantum program is a sequence of quantum operations
(gates) performed upon a collection of qubits. There are
single-qubit gates such as Hadamard (H) gate, phase (S) gate,
and the Pauli gates (X, Y, and Z), andmulti-qubit gates such as
controlled-NOT (CNOT) gate. Barenco et al. [5] has proved
that single-qubit gates and CNOT gates are universal for
quantum computation. As we mainly use H gates and CNOT
gates in this paper, we present their logic relationship in
Figure 1.

Figure 1. Logic functions of Hadamard gate and CNOT gate.

Both superposition and entanglement are used extensively
in quantum programs, and they are the fundamental reason
for the computational advantage of quantum computing
over classical computing. However, they do not have corre-
spondence in classical computing, which makes them hard
to reason about. The development of quantum programs
remains a difficult task and debugging them is also very chal-
lenging. In the prior work, Huang et al.[18] analyzed a set of
quantum programs and identified that the following three
types of assertions are needed in quantum programs: asser-
tions for classical values, assertions for superposition states,
and assertions for entangled states. They proposed a statis-
tical approach to realize these assertions by measuring the
qubits many times. The limitation is that each measurement
collapses the superposition state and projects the entangled
qubits. As a result, such measurements stop the execution of
the quantum program. When the execution is performed and
the results are measured, such intermediate assertions could
not be enforced. Another limitation is that direct measure-
ment results cannot reveal the phase information of qubits.
Quantum property testing studies [8][24] aim to design

algorithms that can distinguish whether a large object has
a certain property or not. Aharonov et al. [2] introduced a
technique for testing whether a shared bipartite quantum
state is the maximally entangled state. Harrow et al. [16]
proposed a test that can distinguish the product states and
the states that are far from the product states. The difference



between quantum property testings and our proposed asser-
tion circuit is that quantum property testings usually handle
very large objects and they do not require preserving the
state after the test. For the purpose of assertion, our circuit
should measure the states nondestructively.

Nondestructive discrimination (NDD) plays an important
role in a number of quantum computational protocols such
as entanglement concentration protocols [4] and secret quan-
tum conversation [19]. It is used to discriminate entangled
states without destroying the information. Gupta et al. [14]
proposed nondestructivemeasurement scheme for Bell states.
Mitali et al. [30] experimentally realised Gupta et al.’s scheme
on a 5-qubit quantum computer. Manu et al. [22] describes
an algorithm for arbitrary set of orthogonal quantum states
nondestructive discrimination based on phase estimation.
Satyajit et al. [28] defined a new set of highly entangled
orthogonal states as Z-states and demonstrate their discrimi-
nation using IBM’s 5-qubit quantum computer. Our dynamic
assertion circuits are related to NDD as our circuits also non-
destructively measure the qubits under test. The difference
lies in what information we assert, which determines the
complexity of the quantum circuits, and how we use them
for. In a sense, we repurpose NDD for program debugging
and error detection, although our proposed circuit is not the
same as (usually simpler than) the NDD circuits.

3 Quantum Circuits for Dynamic
Assertions

Our key approach to enabling dynamic assertion is to intro-
duce additional quantum bits, aka ancilla qubits, to collect
information about the qubits under test, and to measure the
ancilla qubits rather than directly measuring the qubits under
test. This way, we do not need to disrupt the program exe-
cution while the assertion is checked. However, care needs
to be taken to ensure that measuring the ancilla qubits will
not affect the original quantum circuit. Next, we describe
our proposed circuits for each type of assertion. For all the
circuits, a measurement of the ancilla qubit being |1⟩ means
an assertion error. This rule is helpful as it alleviates the
decoherence and readout error in assertion circuits. When
the assertion circuits are used on real quantum computers
to improve success rates, we check to ensure no additional
SWAP gates are inserted due to our assertion circuits.

3.1 Dynamic Assertion for Classical Values
To ensure that the qubits are initialized to the correct values
or some intermediate classical results should satisfy some
conditions such as (|Ψ⟩ == |0⟩)), we can resort to assertions
for classical values.We propose to introduce one ancilla qubit
and a CNOT gate to achieve classical-value assertion for one
qubit, as shown in Figure 2. In the figure, the qubit |Ψ⟩ is to
be checked for (|Ψ⟩ == |0⟩). The ancilla qubit is initialized

to |0⟩ and measured after the CNOT gate. If we initialize the
ancilla qubit to be |1⟩, the same circuit asserts (|Ψ⟩ == |1⟩).

Figure 2. Circuit for asserting classical values (|Ψ⟩ == |0⟩).

Proof. In Figure 2, the state |Ψ1⟩ = |Ψ⟩ ⊗ |0⟩.
The state after the CNOT gate |Ψ2⟩ = |Ψ⟩ ⊗ |Ψ ⊕ 0⟩ =

|Ψ⟩ ⊗ |Ψ⟩.
If |Ψ⟩ is in a classical state, either |0⟩ or |1⟩, then |Ψ1⟩ is

either |00⟩ or |10⟩ and |Ψ2⟩ is either |00⟩ or |11⟩, correspond-
ingly. As a result, when the ancilla qubit is measured, if it is
|0⟩, it means that |Ψ⟩ must be |0⟩; if it is |1⟩, |Ψ⟩ must be |1⟩,
i.e., an assertion error.
If the qubit |Ψ⟩ is in a superposition state due to a bug

or a runtime error, |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩. |Ψ1⟩ is 𝑎 |00⟩ + 𝑏 |10⟩
and |Ψ2⟩ becomes 𝑎 |00⟩ + 𝑏 |11⟩, which is an entangled state.
Due to such entanglement, after the measurement of the
ancilla qubit, if the measurement result is |0⟩ (i.e., no asser-
tion error), the qubit under test will be projected into the
classical state |0⟩, i.e., |Ψ′⟩ = |0⟩. If the measurement result
is |1⟩ (i.e., an assertion error), it is projected into the classical
state |1⟩. It means that when we perform an assertion check
(|Ψ⟩ == |0⟩), if there is no assertion error, the proposed
circuit may have automatically corrected the qubit if it is
in a superposition state. If it cannot correct the qubit into
the expected classical state, an assertion error occurs. Since
the probability of the measurement result being |0⟩ and |1⟩
is |𝑎 |2 and |𝑏 |2, respectively, the probability distribution of
assertion errors over repeated runs (and measurements) can
be used to estimate 𝑎 and 𝑏, if needed.

3.2 Dynamic Assertion for Entanglement
To assert that two or more qubits are in the entangled state
of 𝑎 |00⟩ + 𝑏 |11⟩ or 𝑎 |01⟩ + 𝑏 |10⟩, we propose to leverage
parity computation. Figure 3 shows the proposed circuit for
computing the parity of two qubits. If checking whether the
two qubits are entangled in the state of 𝑎 |00⟩ + 𝑏 |11⟩, the
ancilla qubit is initialized to |0⟩. If asserting that the two
qubits are in the state of 𝑎 |01⟩ + 𝑏 |10⟩, the ancilla should be
initialized to |1⟩.

Proof. In Figure 3, if the input qubits are in the state of
𝑎 |00⟩ + 𝑏 |11⟩, i.e., |Ψ⟩ = 𝑎 |00⟩ + 𝑏 |11⟩.

Then, the state |Ψ1⟩ = (𝑎 |00⟩ + 𝑏 |11⟩) ⊗ |0⟩ = 𝑎 |000⟩ +
𝑏 |110⟩.

The state |Ψ2⟩ = (𝑎 |000⟩ + 𝑏 |111⟩), i.e., the ancilla qubit is
entangled as well after the CNOT gate.



Figure 3. Circuit for asserting entanglement.

The state |Ψ3⟩ = 𝑎 |000⟩ + 𝑏 |110⟩ = (𝑎 |00⟩ + 𝑏 |11⟩) ⊗ |0⟩,
which means that the ancilla qubit is un-entangled from the
two qubits under test and should be |0⟩. The qubits state |Ψ⟩
is unaffected for subsequent computations.

If the input qubits are not entangled as expected, i.e., |Ψ⟩ =
𝑎 |00⟩ + 𝑏 |11⟩ + 𝑐 |10⟩ + 𝑑 |01⟩, then |Ψ1⟩ = 𝑎 |000⟩ + 𝑏 |110⟩ +
𝑐 |100⟩ +𝑑 |010⟩, |Ψ2⟩ = 𝑎 |000⟩ +𝑏 |111⟩ + 𝑐 |101⟩ +𝑑 |010⟩, and
|Ψ3⟩ = 𝑎 |000⟩ +𝑏 |110⟩ +𝑐 |101⟩ +𝑑 |011⟩. When measuring the
ancilla qubit, the result can be either |0⟩ or |1⟩. If |0⟩, |Ψ3⟩ is
projected to 𝑎′ |000⟩+𝑏 ′ |110⟩ = (𝑎′ |00⟩+𝑏 ′ |11⟩) ⊗ |0⟩, i.e., the
input qubits are forced into the desired entangled state. If |1⟩,
|Ψ3⟩ is projected to 𝑐 ′ |101⟩ +𝑑 ′ |011⟩ = (𝑐 ′ |10⟩ +𝑑 ′ |01⟩) ⊗ |1⟩,
i.e., another entangled state, while the assertion error is
reported. The probability of measurement results being |0⟩
or |1⟩ can be used to compute the coefficients 𝑎, 𝑏, 𝑐 , 𝑑 , if
needed. This parity circuit is also a subset of the circuits for
Bell state NDD [15]. Note that our parity-based assertion
circuit can be scaled to assert more than two qubits. The
assertion circuit can assert multi-qubit entanglement states
with odd or even numbers of ones. For example, the circuit
in Figure 4 asserts for 3-qubit entanglement state with even
number of ones: |𝜓 ⟩ = 𝑎 |000⟩ + 𝑏 |011⟩ + 𝑐 |101⟩ + 𝑑 |110⟩.

Figure 4. Circuit for asserting three qubits are entangled.

3.3 Dynamic Assertion for Superposition
Superposition is a linear combination of classical states. In
Section 3.3.1, we propose our assertion circuit for uniform
superposition state. In Section 3.3.2, we introduce assertion
circuits for arbitrary superposition states.

3.3.1 Dynamic Assertion for Uniform Superposition
State. In quantum computing, it is common to useHadamard
gates to set the input qubits in the uniform superposition
state, |+⟩ = 1√

2
|0⟩ + 1√

2
|1⟩, in order to take advantage of

quantum parallelism. To assert such operations are correctly
performed, we propose the circuit as shown in Figure 5.

Figure 5. Circuit for asserting uniform superposition.

Proof. In Figure 5, the state |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩. If it is in
the uniform superposition state, i.e., |Ψ⟩ = |+⟩ or 𝑎 = 𝑏 = 1√

2
,

the state |Ψ1⟩ = (𝑎 |0⟩ + 𝑏 |1⟩) ⊗ |0⟩ = 𝑎 |00⟩ + 𝑏 |10⟩, and
|Ψ2⟩ = 𝑎 |00⟩ + 𝑏 |11⟩.
The state |Ψ3⟩ = 𝑎

|0⟩+ |1⟩√
2

⊗ |0⟩+ |1⟩√
2

+ 𝑏
|0⟩−|1⟩√

2
⊗ |0⟩−|1⟩√

2
=

1
2 [𝑎( |00⟩ + |01⟩ + |10⟩ + |11⟩) + 𝑏 ( |00⟩ − |01⟩ − |10⟩ + |11⟩)].
The state |Ψ4⟩ = 1

2 [𝑎( |00⟩+|01⟩+|11⟩+|10⟩)+𝑏 ( |00⟩−|01⟩−
|11⟩ + |10⟩)] = 1

2 [(𝑎 +𝑏) |00⟩ + (𝑎−𝑏) |01⟩ + (𝑎 +𝑏) |10⟩ + (𝑎−
𝑏) |11⟩] = 1

2 {|0⟩ ⊗ [(𝑎+𝑏) |0⟩+ (𝑎−𝑏) |1⟩] + |1⟩ ⊗ [(𝑎+𝑏) |0⟩+
(𝑎 − 𝑏) |1⟩]} = 1

2 {(|0⟩ + |1⟩) ⊗ [(𝑎 + 𝑏) |0⟩ + (𝑎 − 𝑏) |1⟩]} =
1√
2
{|+⟩ ⊗ [(𝑎 + 𝑏) |0⟩ + (𝑎 − 𝑏) |1⟩]}. Therefore, after the

assertion circuit, the qubit under test is always in the |+⟩ state
and the ancilla qubit is un-entangled from it. The subsequent
computation is not affected by themeasurement of the ancilla
qubit.
If |Ψ⟩ = |+⟩ or 𝑎 = 𝑏 = 1√

2
, then |Ψ4⟩ = |+⟩ ⊗ |0⟩. This

means that the ancilla qubit should always be |0⟩, and it is
un-entangled from the qubit under test.

If |Ψ⟩ = |−⟩ or 𝑎 = 1√
2
and 𝑏 = − 1√

2
, then |Ψ4⟩ = |+⟩ ⊗ |1⟩.

This means that the ancilla qubit should always be |1⟩, and
it is un-entangled from the qubit under test.
If |Ψ⟩! = |+⟩ or |−⟩, the ancilla qubit and the qubit under

test are un-entangled and we can derive the probability of
the measurement result on the ancilla qubit being |0⟩ or |1⟩.
The probability of the measurement result being |0⟩ can be
computed as |𝑎 +𝑏 |2/(|𝑎 +𝑏 |2 + |𝑎 −𝑏 |2) = |𝑎 +𝑏 |2/2. If both
𝑎 and 𝑏 are real, then the probability becomes (𝑎2 + 2𝑎𝑏 +
𝑏2)/2 = (1 + 2𝑎𝑏)/2. Similarly, we can derive the probability
of the measurement result on the ancilla qubit being |1⟩ as
|𝑎 − 𝑏 |2/(|𝑎 + 𝑏 |2 + |𝑎 − 𝑏 |2) = |𝑎 − 𝑏 |2/2, which becomes
(𝑎2 − 2𝑎𝑏 + 𝑏2)/2 = (1 − 2𝑎𝑏)/2 if both a and b are real. The
probabilities of the measurement result of the ancilla qubit
being |0⟩ or |1⟩ can be used to compute the magnitude of
the original coefficients 𝑎 and 𝑏. In the case of |Ψ⟩ being
in a classical state, i.e., 𝑎 = 0 and 𝑏 = 1 or 𝑎 = 1 and 𝑏 = 0,
the measurement result on the ancilla qubit has the equal
probability of 50% being |0⟩ or |1⟩.

3.3.2 DynamicAssertion forArbitrary Superposition
State. In quantum computing, it is also common for a qubit



to stay in an arbitrary superposition state in the middle
of computation. This state can be represented as a point
on the Bloch sphere. Given an orthonormal basis |0⟩ and
|1⟩, an arbitrary superposition state |Ψ⟩ of a qubit can be
written as a superposition of the basis vectors |0⟩ and |1⟩:
|Ψ⟩ = 𝑐𝑜𝑠 ( 𝜃2 ) |0⟩ + 𝑒𝑖𝜑𝑠𝑖𝑛( 𝜃2 ) |1⟩. Here, we use the terms 𝜃
and 𝜑 instead of coefficients 𝑎 and 𝑏 in the previous section.
Manu and Kumar [22] described an algorithm for NDD of
arbitrary orthogonal quantum states. Here, we adapt this al-
gorithm to construct circuits for asserting the superposition
state |Φ⟩ = 𝑐𝑜𝑠 ( 𝜃2 ) |0⟩ + 𝑒𝑖𝜑𝑠𝑖𝑛( 𝜃2 ) |1⟩.

Figure 6. Circuit for asserting arbitrary superposition

Figure 6 shows the circuit to assert a qubit with an arbi-
trary superposition state. It consists of a controlled-U gate
and two Hadamard gates. The U gate is constructed from
the superposition state |Φ⟩ we want to assert.

𝑈 = 𝑉 ×𝑀 ×𝑉 −1 (1)

𝑉 is the matrix formed by column vectors,𝑉 = [|Φ⟩|Φ′⟩]. We
assign eigenvalue 1 for |Φ⟩ and -1 for |Φ′⟩. The corresponding
matrix𝑀 is

𝑀 =

[
1 0
0 −1

]
(2)

For the superposition state |Φ⟩ = 𝑐𝑜𝑠 ( 𝜃2 ) |0⟩ +𝑒
𝑖𝜑𝑠𝑖𝑛( 𝜃2 ) |1⟩

that we want to assert, its orthogonal state is its antipodal
point on Bloch sphere: |Φ′⟩ = 𝑠𝑖𝑛( 𝜃2 ) |0⟩ − 𝑒𝑖𝜑𝑐𝑜𝑠 ( 𝜃2 ) |1⟩. The
V matrix is:

𝑉 =

[
𝑐𝑜𝑠 ( 𝜃2 ) 𝑠𝑖𝑛( 𝜃2 )

𝑒𝑖𝜑𝑠𝑖𝑛( 𝜃2 ) −𝑒𝑖𝜑𝑐𝑜𝑠 ( 𝜃2 )

]
(3)

and 𝑉 −1 is

𝑉 −1 =

[
𝑐𝑜𝑠 ( 𝜃2 ) 𝑒−𝑖𝜑𝑠𝑖𝑛( 𝜃2 )
𝑠𝑖𝑛( 𝜃2 ) −𝑒−𝑖𝜑𝑐𝑜𝑠 ( 𝜃2 )

]
(4)

then

𝑈 =

[
𝑐𝑜𝑠 (𝜃 ) 𝑒−𝑖𝜑𝑠𝑖𝑛(𝜃 )

𝑒𝑖𝜑𝑠𝑖𝑛(𝜃 ) −𝑐𝑜𝑠 (𝜃 )

]
(5)

Proof. In Figure 6, |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, the state |Ψ1⟩ =

|Ψ⟩ ⊗ |0⟩ and |Ψ2⟩ = |Ψ⟩ ⊗ |0⟩+ |1⟩√
2

.

After the controlled-U gate, the state |Ψ3⟩ = 1√
2
[|Ψ⟩ ⊗ |0⟩+

𝑈 |Ψ⟩ ⊗ |1⟩].
If the input state |Ψ⟩ is the superposition state |Φ⟩ that

we want to assert, it is an eigenvector of the unitary matrix

U and the corresponding eigenvalue is 1, i.e., 𝑈 |Φ⟩ = |Φ⟩.
Therefore, |Ψ3⟩ = 1√

2
[|Φ⟩ ⊗ |0⟩ + |Φ⟩ ⊗ |1⟩] = |Φ⟩ ⊗ |0⟩+ |1⟩√

2
.

Afte another H gate, the state |Ψ4⟩ = |Φ⟩ ⊗ |0⟩, which means
that the ancilla qubit is un-entangled from the qubit under
test and should be |0⟩.
If the state |Ψ⟩ is in the orthogonal state, i.e., |Φ′⟩, as its

corresponding eigenvalue is -1, the state |Ψ3⟩ = 1√
2
[|Φ′⟩ ⊗

|0⟩ − |Φ′⟩ ⊗ |1⟩] = |Φ′⟩ ⊗ |0⟩−|1⟩√
2

. The state after the H gate
|Ψ4⟩ = |Φ′⟩ ⊗ |1⟩, which means that the ancilla qubit is un-
entangled from the qubit under test and should be |1⟩.
If the state |Ψ⟩ is in an arbitrary superposition state due

to a bug or error, it can be expressed as |Ψ⟩ = 𝑎′ |Φ⟩ + 𝑏 ′ |Φ′⟩
where 𝑎′ and 𝑏 ′ are complex numbers and |𝑎′ |2 + |𝑏 ′ |2 = 1
as the states |Φ⟩ and |Φ′⟩ form a complete basis. Based on
the linearity principle, the state after assertion circuit |Ψ4⟩ =
𝑎′ |Φ⟩⊗ |0⟩+𝑏 ′ |Φ′⟩⊗ |1⟩. After the measurement of the ancilla
qubit, if the measurement result is |0⟩ (i.e., no assertion error),
the qubit state |Ψ⟩ is projected to |Φ⟩. If the measurement
result is |1⟩ (i.e., assertion error), the state is projected to
|Φ′⟩. It means that this circuit can automatically correct the
qubit state if there is no assertion error. And it will report an
assertion error when the qubit state is not corrected. For the
purpose of debugging, we can also estimate 𝑎′ and 𝑏 ′ based
on the probability distribution of |0⟩ and |1⟩.

As a special case, to assert the uniform superposition state,
i.e., 𝜃 = 𝜋

2 and 𝜑 = 0, the𝑈 gate becomes

𝑈 =

[
0 1
1 0

]
(6)

It is actually a NOT gate, and the controlled-U gate be-
comes a CNOT gate. The resulting assertion circuit is shown
in Figure 7.

Figure 7. Circuit for asserting uniform superposition

Although the circuits in Figure 5 and Figure 7 both assert
uniform superposition, the difference is that the circuit in
Figure 5 always "corrects" the qubit under test regardless of
themeasurement outcome of the ancilla qubit. In comparison,
the circuit in Figure 7 only corrects the qubit under test when
the ancilla qubit is |0⟩. However, when running on current
quantum machines, as the CNOT gate has relatively high
error rates, the latter design results in lower error rates as it
requires only one CNOT gate.

3.4 Impact of Errors in Assertion Circuits
Note that the derivations in previous sections are based on
the assumption that there are no errors in the assertion



circuits. This assumption is valid for quantum program de-
bugging. On the other hand, for error detection, an error in
the assertion circuits may propagate into the qubits under
test due to the CNOT gates used for assertions. We use two
different approaches to study this impact.

The first approach is an error model. Instead of a detailed
study of quantum noise channels [21], we only consider the
error probability of the gates and qubits. In this model we
consider three types of errors:
1. Single qubit coherent error: The time of a qubit retain-

ing its information is called coherence time and the process
of losing the information is called decoherence process [29].
There are two kinds of coherence time 𝑇1 and 𝑇2. 𝑇1 asso-
ciates with the amplitude damping channel as it denotes the
process where the high-energy state |1⟩ decays to the low-
energy state |0⟩. In the amplitude damping channel, the qubit
retains its state with a probability of 𝑝1 (𝑡) = 𝑒−𝑡/𝑇1 , where
t is the time of operation that depends on the gate time. 𝑇2
associates with the phase damping channel as it denotes the
process of phase change. In the phase damping channel, the
qubit retains its state with a probability of 𝑝2 (𝑡) = 𝑒−𝑡/𝑇2 . So
the coherence error rate 𝜖𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 of a quantum gate can be
expressed as

𝑝 (𝑡 + Δ𝑡) = 𝑝 (𝑡) (1 − 𝜖𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 ) (7)

where Δ𝑡 is the gate time. As 𝑝 (𝑡 +Δ𝑡) = 𝑝1 (𝑡 +Δ𝑡)𝑝2 (𝑡 +Δ𝑡)
and 𝑝 (𝑡) = 𝑝1 (𝑡)𝑝2 (𝑡),

𝜖𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 = 1 − 𝑒−Δ𝑡 (1/𝑇 1+1/𝑇 2) . (8)

In current IBM quantum computers [11], the coherent time
varies from 10 to 100 micro-seconds. The gate time varies
from 100 to 1000 nano-seconds.
2. Gate error: Here, we consider the depolarizing error

𝜖𝑔𝑎𝑡𝑒 , which can be depicted by the randomized benchmark-
ing [20]. Randomized benchmarking measures the average
gate errors by running sequences of randomly selected Clif-
ford gates followed by the reverse gates that would return
the qubits to the initial state. This method is useful as it
measures the depolarization probability and does not rely on
accurate state preparation and measurement. In current IBM
quantum computers, the single qubit gate’s error rates are
approximately 10−3 and two-qubit CNOT gate’s error rate is
10−2 [11].

3. State preparation and Measurement error: State prepa-
ration error 𝜖𝑠𝑡𝑎𝑡𝑒 happens when preparing the qubit. Mea-
surement error 𝜖𝑚𝑒𝑎𝑠𝑢𝑟𝑒 happens at the measurement of the
qubit. In IBM quantum computer, the measurement error
rates are between 10−3 and 10−2 [11]. The state preparation
error rates of qubits are not reported.
For purpose of deriving the success probability of the

system, we use the following assumptions similar to [27]:

• An error in a gate ormeasurement will cause the whole
program to fail.

• The probability of each error are independent of each
other and only depends on the corresponding qubit
and gate. In other words, we ignore the crosstalk er-
rors.

Based on the assumptions above, the success probability
𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 of a quantum circuit can be represented as:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
∏
𝑖

(1 − 𝜖𝑖 ) (9)

where i denotes all the errors including state preparation
error 𝜖𝑠𝑡𝑎𝑡𝑒 , gate error 𝜖𝑔𝑎𝑡𝑒 , coherent error 𝜖𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 and mea-
surement error 𝜖𝑚𝑒𝑎𝑠𝑢𝑟𝑒 .
As a result, for our assertion circuit, its error rate can be

computed as

𝜖𝑎𝑠𝑠𝑒𝑟𝑡 = 1 − 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 −
∏
𝑖

(1 − 𝜖𝑖 ) (10)

We use our 3-qubit entanglement assertion circuit as an
example to demonstrate the extra errors caused by our asser-
tion logic. For this entanglement assertion circuit we append
three CNOT gates to the circuit under test. We assume the
state preparation error 𝜖𝑠𝑡𝑎𝑡𝑒 is 0.01, CNOT gate time is 500ns,
𝑇1 = 𝑇2 = 100𝜇𝑠 , CNOT gate error 𝜖𝑔𝑎𝑡𝑒 is 0.01, measurement
error 𝜖𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is 0.01, the error rate 𝜖𝑎𝑠𝑠𝑒𝑟𝑡 introduced by the
assertion circuit is:

𝜖𝑎𝑠𝑠𝑒𝑟𝑡 = 1 − [(𝑒−500×(10−5+10−5) ) (1 − 0.01)3]3 = 0.113 (11)

We can see that based on the simple error model, the ex-
tra error introduced by the assertion circuit is small. The
other assertion circuits has fewer numbers of quantum gates
than the 3-qubit entanglement assertion circuit, thus they
should have fewer errors. In comparison, the circuit under
test is expected to have many more gates and more qubits,
which would have much higher error rates compared to the
assertion circuits.

The second approach is based on quantum state tomogra-
phy [31]. Quantum state tomography reconstructs the quan-
tum state and provides its density matrix 𝜌𝐸 by performing
sequences of measurements in different bases. Fidelity quan-
tifies the difference between experimental density matrix 𝜌𝐸
and ideal density matrix 𝜌𝐼 [26], and it is defined by:

𝐹 (𝜌𝐸, 𝜌𝐼 ) = 𝑇𝑟

[√√
𝜌𝐼𝜌𝐸

√
𝜌𝐼

]
(12)

Based on the prior work [10], a quantum error detection
code with fidelity score higher than 80% is considered as
high fidelity. Our experiments show that the fidelity of our
assertion circuits well above 80% (see Section 6.1), which
indicates that our assertion circuit has little impact on the
circuits under test.



Another related issue to be considered is the actual CNOT
gate implementation. Given the limited connectivity among
qubits in quantum computers, we check to ensure that there
are no additional SWAP gates being introduced as these
additional gates increase the circuit depth and are susceptible
to higher error rates.

4 Methodology
We implement our assertion circuits on Qiskit [3] which
is an open-source framework for quantum computing. We
augmented Qiskit version 0.13.0 with the function to insert
assertion circuits and check ancilla bits for assertion. The
adapted version of Qiskit is publicly available [1]. With our
tool, the programmer is able to insert dynamic assertion
circuits for classical, entanglement, and superposition states.
It checks the ancilla bits’ results for assertion errors and it
can also filter out the erroneous results when running on
real quantum computers. We offer three kinds of assertion
functions:

• classical_assertion(circuit, qubitList, value)
The classical_assertion() function takes three argu-
ments specifying the quantum circuit under test, the
list of qubits for assertion, and a particular classical
value to assert for.

• entanglement_assertion(circuit, qubitList, flag)
The entanglement_assertion() function takes three ar-
guments specifying the quantum circuit under test,
the list of qubits for assertion and the type of entangle-
ment. The flag being 0 denotes that the circuit asserts
for state in the form of 𝑎 |00⟩ + 𝑏 |11⟩. The flag being 1
denotes that the circuit asserts for state in the form of
𝑎 |01⟩ + 𝑏 |10⟩.

• superposition_assertion(circuit, qubitList, phaseDict,
flag)
The superposition_assertion() function takes four ar-
guments specifying the quantum circuit under test,
the list of qubits for assertion, the quantum state dic-
tionary for the qubits, and a flag. The flag being 0
denotes that the uniform entanglement assertion cir-
cuit described in Section 3.3.1 is in use. The flag being
1 denotes that the circuit in Section 3.3.2 is used.

Qiskit does not have full support for an arbitrary controlled-
U gate. For the controlled-U gate discussed in Section 3.3.2,
we use the two qubit KAK decomposition function [12] in
Qiskit to decompose our proposed controlled-U gate into a
set of single qubit and CNOT gates.
We perform our experiments for quantum program de-

bugging on the simulator Aer from Qiskit. We also perform
experiments on an IBM Q (ibmq-20-tokyo) quantum com-
puter to check the effectiveness of using assertions to filter
out erroneous results. The connectivity map of ibmq-20-
tokyo quantum computer is shown in Figure 8. For each

benchmark mentioned in Section 6, its comparison exper-
iments are executed within a time window of 30 minutes
to guarantee that there is not much change in the quantum
computer’s environment and error characteristics.

Figure 8. Connectivity map of ibmq-20-tokyo

Note that our proposed assertion circuit is aimed for de-
tecting bugs/errors while the program is running. In the
ideal case, when an assertion error is detected, the program
should stop or restart. Due to the limitation of current sys-
tems, all the measurement are taken at the end. So these
assertion qubits are used as post measurement selection on
actual quantum computers.

5 Dynamic Runtime Assertion for
Program Debugging

Previous research on statistical assertion [18] studies com-
mon types of bugs and proposes the statistical assertion
approach for debugging. The usage of our dynamic assertion
is the same as the statistical approach for debugging. Here,
we use the Quantum Phase Estimation (QPE) algorithm as an
example to illustrate how our proposed assertion primitives
are used.
QPE is an important algorithm in quantum computing

and is used as a building block in algorithms such as Shor’s
factoring algorithm. It estimates the phase (eigenvalue) of a
unitary operator U. Given a unitary operator U and a quan-
tum state |𝜓 ⟩ such that 𝑈 |𝜓 ⟩ = 𝑒𝑖2𝜋𝜃 |𝜓 ⟩, the algorithm es-
timates the value for 𝜃 . Figure 9 shows the circuit of QPE
based on inverse Quantum Fourier Transform (QFT).
Figure 10 shows the code for 𝑛-qubit QPE and we have

inserted assertions at different stages. A quantum algorithm
begins with initializing all the qubits to the preconditions in
the initialization stage. Usually, the qubits are initialized to
a classical value or a uniform superposition of values. In the
quantum information process protocols, the qubits are often
initialized to entanglement states such as Bell states. Our
dynamic assertion can assert the preconditions for classical,



Figure 9. Quantum Phase Estimation circuit based on in-
verse QFT

superposition and entanglement states. As shown in line
17, we assert for the uniform superposition state using the
"superposition_assertion()" function with the flag being 0.
We also assert at line 23 the ancilla qubit which is in a non-
uniform superposition state |𝜓 ⟩. In this case, the flag is set
to 1.
In QPE, after applying inverse QFT, the output states of

the qubits are in classical state. We assert for the expected
classical states using the "classical_assertion()" function in
line 35.
Besides the desired output, we can also assert for deallo-

cated ancilla qubits used in the algorithm. Generally speak-
ing, the programmer would only measure the qubits that
carry program output and ignore the ancilla qubits. The an-
cilla qubits in the algorithm should be deallocated and stay
in classic or superposition state. We argue that this ancilla
qubit still carries useful information that indicates whether
there is a bug in the program. Line 38 shows the superposi-
tion assertion for deallocated ancilla qubit, which ensures
that this qubit remain the same as its initialized state.

6 Dynamic Runtime Assertion for
Improving Success Rates

In this section, we will first show the reliability of our pro-
posed assertion circuits on real quantum computers. Then
we will provide several case studies on QFT, Quantum Phase
Estimation and Bernstein Vazirani benchmark to show the ef-
fectiveness of our approach in increasing the success rate on
the real quantum computers. In our experiment, each trial is
executed on a 20-qubit quantum computer, ibmq_20_tokyo,
for 8192 shots. We use the function from IBM Qiskit-Ignis to
calculate fidelity.

6.1 Reliability of Proposed Assertion Circuits
Because of the faulty gates in real quantum computers, an
error may occur in the assertion circuits and propagate into
the qubits under test. Also, the qubits that we add for asser-
tion may have measurement errors when reading out the
value. It may, for example, be the case that the results are

1 #n qubits for quantum phase estimation circuit
2 q = QuantumRegister(n)
3 #one ancilla qubit
4 a = QuantumRegister(1)
5 c = ClassicalRegister(n)
6 circuit = QuantumCircuit(q,a,c)
7
8 # Initialize the qubits to uniform superposition
9 for i in range(n):
10 circuit.h(q[i])
11
12 # Initialize the qubit list for superposition assertion
13 qubitList = [q[0], q[1] ..., q[n−1]]
14 # Initialize the state dictionary for superposition assertion
15 phaseDict = {q[0]:[pi/2, 0], ..., q[n]:[pi/2, 0]}
16 # Superposition assertion for initialization states
17 superposition_assertion(circuit, qubitList, phaseDict, 0)
18
19 # Initialize 𝜙 and 𝜆 for the ancilla qubit
20 circuit.u1(phi,lambda, a[0])
21
22 # Superposition assertion for ancilla qubit initialization state
23 superposition_assertion(circuit, [a[0]], {a[0]:[phi,lambda]}, 1)
24
25 # Controlled𝑈 2𝑛 gate
26 for j in range(n):
27 controlled_U(circuit, a[0], q[j], j)
28
29 # n−qubit inverse QFT
30 iQFT(circuit, q, n)
31
32 # Initialize the qubit list for classical assertion
33 qubitList2 = [q[0], q[1] ..., q[n−1]]
34 # Classical assertion for output states
35 classical_assertion(circuit, qubitList2, value)
36
37 # Superposition assertion for ancilla qubit deallocated state
38 superposition_assertion(circuit, [a[0]], {a[0]:[phi,lambda]}, 1)
39
40 circuit.measure(q, c)

Figure 10. The code for n-qubit QPE and assertions.

correct, but assertion raises an error (false positive). We need
the false positive probability as well as fidelity of the circuit
to quantify the difference between experimental output state
and the ideal output state.

Table 1 shows the results for our experiment. "Un1" stands
for the circuit for uniform superposition assertion in Figure
5. "Un2" stands for the circuit for uniform superposition
assertion in Figure 7. "Arb" is the arbitrary superposition
assertion circuit, for which 𝜃 = 𝜋

2 and 𝜑 = 𝜋
2 . For these

circuits, the qubits under test are set to have no assertion
error.
From the table, we can see that all the classical and su-

perposition assertion circuits have false positive possibility



Classical Entanglement Superposition
Type 1bit 2bits 3bits Uni1 Uni2 Arb

Probability(%) 3.1% 2.6% 7.8% 2.7% 2.1% 3.8%
Fidelity(%) 95.0% 93.8% 88.5% 92.7% 93.3% 82.1%

Table 1. Probability of false positive case and fidelity for all
assertion circuits

lower than 5%. And all the assertion circuits have fidelity
higher than 80%. The entanglement assertion circuits have
higher false positive possibility as a result of more CNOT
gates in the circuit and the entanglement of multiple qubits.
We can also find that "Uni2" has lower false positive proba-
bility and higher fidelity than "Uni1", which is in line with
our expectation.

6.2 Quantum Fourier Transform: Asserting for
Classical and Superposition States

In this section, we use QFT (Quantum Fourier Transform) as
a case study, where the code of the QFT function is from the
IBM Qiskit-Terra[3]. We compare the 4-qubit QFT program
with and without assertion supports and add different types
of assertion supports. Our experiment shows the usefulness
of output state assertions and intermediate state assertions.
First, we evaluate the effectiveness of output state asser-

tions. We set the input qubits in the uniform superposition
state such that the expected output should be |0000⟩. The
quantum circuit based on code in Figure 11 is shown in
Figure 12. By inspecting the quantum circuit, we can see
that, although the circuit depth (i.e., number of gates) for the
four input qubits is the same, 𝑞3 is measured last. Therefore,
rather than asserting for |𝑞3𝑞2𝑞1𝑞0⟩ = |0000⟩, which requires
four extra qubits, we choose to add the circuitry to assert
′ |𝑞3⟩ == |0⟩′. We use the function "classical_assert()" to as-
sert 𝑞3 ′𝑠 output state for a classical value 0. The qubits for
QFT are mapped to actual qubit No.5, 6, 10 and 11 on the
20-qubit quantum computer, and the ancilla qubit for asser-
tion is mapped to qubit No.0. As shown in the connectivity
map, i.e., Figure 8, our classical assertion only requires one
extra CNOT gate, and no swap gate is involved. Note that
although the CNOT gate used for assertion itself is subject
to error, we expect it has much lower error rate compared
to the QFT circuit of interest due to the disparity in circuit
depth.

The measurement results are reported in Table 2 and Table
3. Without the assertion circuit (Table 2), the machine has a
72.0%(=5900/8192) success rate for the 4-qubit QFT compu-
tation. Among the erroneous ones, 14.0% has an error in 𝑞3.
After filtering out the measurements with 𝑞3 being measured
as |1⟩, the success rate becomes 5811/(5811 + 219 + 879) =
84.1% (an improvement of 16.8%) as shown in Table 3.
The impact of the errors introduced from the assertion

circuit (i.e., the CNOT gate and the measurement) is small:
1.5% false positive and 2.7% false negative measurements,

1 # Quantum fourier transform function
2 def qft(circ, q, n):
3 for j in range(n):
4 for k in range(j):
5 circ.cu1(np.pi/float(2∗∗(j−k)), q[j], q[k])
6 circ.h(q[j])
7 q = QuantumRegister(4)
8 c = ClassicalRegister(4)
9 circuit = QuantumCircuit(q,c)
10
11 # Set up the 4−qubit input
12 for j in range(4):
13 circuit.h(q[j])
14
15 #4−qubit QFT
16 qft(circuit, q, 4)
17
18 # Initialize the qubit list for classical assertion
19 qubitList = [q[1]]
20 # Classical assertion for q[1]
21 classical_assertion(circuit, qubitList, 0)
22
23 circuit.measure(q,c)

Figure 11. The code for 4-qubit QFT and result assertion on
q[3].

Figure 12. QFT circuit based on the code from Figure 11

𝑞3𝑞2𝑞1𝑞0 Counts %(=counts/8192) Meaning
0000 5900 72.0% Correct result

0001∼0111 1142 14.0% Incorrect result with correct 𝑞3
1xxx 1150 14.0% Incorrect result with incorrect 𝑞3.

Table 2. The results of QFT without assertion on IBM Q

𝑞3𝑞2𝑞1𝑞0 Counts %(=counts/8192) Meaning
00000 5811 70.9% Correct result

10000 124 1.5%
Correct result with assertion error

(false positive)

01xxx 219 2.7%
Incorrect result without assertion error

(false negative)
11xxx 1033 12.6% Incorrect result with assertion error

10001∼10111 126 1.5%
Incorrect results with correct 𝑞3

but assertion error

00001∼00111 879 10.7%
Incorrect results with correct 𝑞3
and without assertion error

Table 3. The results of QFT with classical assertion on IBM
Q



compared to the errors in the QFT circuit. We also tried with
asserting two qubits ′ |𝑞3𝑞2⟩ == |00⟩′ in the QFT circuit and
the success rate is further increased to 86.2%.

To improve statistical significance, we repeated the same
experiment five times on different dates. The min, median,
and max improvement on the success rate by asserting 𝑞3
are 15.4%, 19.6%, 29.0%, respectively.
In order to observe the effect of decoherence (in which a

|1⟩ state devolves into |0⟩), we change the input state to pro-
duce an expected output state as |1111⟩. After measurement
we find that the success rate of QFT without assertion drops
to 49.3% due to decoherence error, and the success rate of
QFT with assertion is 60.8% (an improvement of 23.3%).

1 q = QuantumRegister(4)
2 c = ClassicalRegister(4)
3 circuit = QuantumCircuit(q,c)
4 # Set up the 4−qubit input 0100
5 circuit.x(q[2])
6
7 # 4−qubit QFT
8 qft(circuit, q, 4)
9
10 # Initialize the qubit list for superposition assertion
11 qubitList = [q[1]]
12 # Initialize the state dictionary for superposition assertion
13 phaseDict = {q[1]:[pi/2,pi/2]}
14 # Superposition assertion for q[1]'s intermediate state
15 superposition_assertion(circuit, qubitList, phaseDict, 1)
16
17 for i in range(4):
18 circuit.u1(−pi/(2∗∗(2−i)), q[i]) #change the output phase
19 circuit.h(q[i]) #change the output state to |0>
20 circuit.measure(q,c)

Figure 13. The code for 4-qubit QFT and intermediate as-
sertion on q[1].

Second, we evaluate the effectiveness of intermediate state
assertions.We set the input qubit state as |0100⟩ therefore the
output states of QFT are in superposition. The ideal output
states are: ′ |𝑞0⟩ = 1√

2
|0⟩ + 1+𝑖

2 |1⟩, |𝑞1⟩ = 1√
2
|0⟩ + 𝑖√

2
|1⟩, |𝑞2⟩ =

1√
2
|0⟩ − 1√

2
|1⟩, |𝑞3⟩ = 1√

2
|0⟩ + 1√

2
|1⟩′. We add superposition

assertion to assert ′ |𝑞1⟩ == 1√
2
|0⟩+ 𝑖√

2
|1⟩′ in the QFT’s output

states. Since the measurement of superposition states are
probabilistic, we add phase changing gates and Hadamard
gates at the output of QFT to change the qubit states to
classical states |0000⟩. As shown in Figure 13, the output of
QFT becomes intermediate state of the circuit and the final
output is |0000⟩.
Table 4 and Table 5 show the measurement results. As

shown in Table 4, the success rate without assertion is 43.4%
(=3556/8192). After we enable assertion, the success rate be-
comes 4961/(4961 + 187 + 1815) = 71.2% (an improvement of

64%). We repeated the same expreiment five times on differ-
ent dates, The min, median and max improvement on the
success rate by assertion 𝑞1 are 36.4%, 52.8%, 66%, respec-
tively.

𝑞3𝑞2𝑞1𝑞0 Counts %(=counts/8192) Meaning
0000 3556 43.4% Correct result
xx0x 2890 35.3% Incorrect result with correct 𝑞1
xx1x 1746 21.3% Incorrect result with incorrect 𝑞1.

Table 4. The results of QFT without assertion on IBM Q

𝑞3𝑞2𝑞1𝑞0 Counts %(=counts/8192) Meaning
00000 4961 60.6% Correct result

10000 184 2.2%
Correct result with assertion error

(false positive)

0xx1x 187 2.3%
Incorrect result without assertion error

(false negative)
1xx1x 929 11.3% Incorrect result with assertion error

1xx0x 300 3.7%
Incorrect results with correct 𝑞1

but assertion error

0xx0x 1815 22.2%
Incorrect results with correct 𝑞1
and without assertion error

Table 5. The results of QFT with superposition assertion on
IBM Q

6.3 Quantum Phase Estimation: Asserting for
Classical States

As introduced in Section 5, QPE algorithm is used to estimate
the phase of a unitary operator U. In our experiment, we
implement themodified LloydQPE algorithm [23] and enable
output state assertions. We change the phase of the unitary
operator to produce different output states. The results of
4-qubit QPE are listed in Table 6. We always assert the most
significant output bit.

Output states Without assertion With assertion Improvement
0000 73.2% 84.9% 16.0%
0001 53.3% 68.1% 12.8%
0011 47.3% 53.2% 12.5%
0111 44.0% 53.1% 20.7%
1000 69.2% 79.6% 15.0%
1100 64.0% 71.7% 12.0%
1110 56.3% 66.9% 18.8%
1111 47.9% 58.0% 21.1%

Table 6. The results of 4-qubit QPE algorithm with output
state classical assertion on IBM Q

Based on the results we can find that the success rate drops
as the number of ones in the output state increases. This is
because of two kinds of errors. The decoherence error decays
the high-energy state |1⟩ into the low-energy state |0⟩. The
measurement error has a higher error rate when measuring
state |1⟩. When we design our assertion circuits, we always
set the rule such that the ancilla qubit being |0⟩ means no



assertion error. This rule is set to alleviate decoherence error
and measurement error in the assertion circuit since these
errors will introduce false positive cases. We also find that
the success rate of "0011" is lower than "1100" while they
have the same number of ones in the output state. This is due
to the property difference of the actual qubits as different
qubits will have different gate and measurement error rates.
Also some optimizations are performed when the compiler
unrolls the circuit to basic gate sets. We find that the circuit
generated for output "0011" requires one less U3 gate than
the one for output "1100". This also explains that "0011" has
higher error rate than "1100".

6.4 Quantum Entanglement Swapping Protocol:
Asserting for Bell Pair States

Quantum entanglement swapping protocol [6] is a protocol
that swaps the entanglement between two repeater stations.
It is an important component for transferring information
to distant places. Assume we have three parties, Alice, Bob
and Charlie. We consider two pairs of entangled qubits, 𝐴 −
𝐶1, 𝐵 − 𝐶2, where A and B denote the qubits of Alice and
Bob, respectively, and 𝐶1, 𝐶2 are qubits belongs to Charlie.
The qubits are entangled by the Bell channel, |00⟩+ |11⟩√

2
. After

this swapping process, the qubits of Alice and Bob, A and
B get entangled. The qubits of Charlie(𝐶1 and 𝐶2) also get
entangled. We can add entanglement assertion for the Bell
pair initialization stage and output stage of the swapping
protocol.

Figure 14. Entanglement swapping protocol with entangle-
ment assertion

If 𝐴−𝐵,𝐶1 −𝐶2 are entangled after the swapping process,
after measurement, the output should be ’|0000⟩’, ’|0101⟩’,
’|1010⟩’ and ’|1111⟩’. In our experiment, the success rate of
the swapping protocol is 32.0%. After we enable entangle-
ment assertion for Bell pair initialization stage of 𝑞0 and 𝑞1,
the success rate becomes 29.6%. Because the depth of the
initialization stage is low, error is not likely to happen in
the initialization stage. So the entanglement assertion we en-
abled at the initialization stage does not improve the success
rate. In contrast, the success rate after asserting the output
stage 𝑞0 and 𝑞2 is 56.2%, much improved compared to the no
assertion case.

6.5 Bernstein Vazirani: Asserting for Uniform
Superposition States

In this section we use Bernstein Vazirani algorithm [7] as an
example to evaluate the effectiveness of deallocated ancilla
qubit assertion. In the Bernstein Vazirani algorithm, a black
box oracle implements the the function 𝑓𝑐 (𝑥) = 𝑥 · 𝑐 . The
algorithm finds hidden string c with a single evaluation of
the function. In the oracle, hidden string c is encoded with
a set of CNOT gates. An ancilla qubit is used to encode
the hidden string, and it is in the uniform superposition
after deallocation. Therefore, we can apply superposition
assertion on this ancilla qubit. Figure 15 shows the code.

1 q = QuantumRegister(2)
2 a = QuantumRegister(1) # one ancilla qubit
3 c = ClassicalRegister(2)
4 circuit = QuantumCircuit(q,a,c)
5 for i in range(2):
6 circuit.h(q[i]) #set up the preconditions for 2 qubits
7 circuit.x(a[0])
8 circuit.h(a[0]) #set up the precondition for ancilla qubit
9
10 # Apply the oracle for hidden string 10
11 for j in range(2):
12 if (2 & (1 << j)):
13 circuit.cx(q[j], a[0])
14 else:
15 circuit.iden(q[j])
16 for k in range(2):
17 circuit.h(q[k])
18
19 qubitList = [a[0]] #list of qubits for assertion
20 phaseDict = {a[0]:[pi/2, 0]}
21 superposition_assertion(circuit, qubitList, phaseDict, 1)
22 circuit.measure(q,c)

Figure 15. The code for 2-qubit Bernstein Vazirani algorithm
and assertion on ancilla qubit.

In our experiment, we change the number of qubits in the
Bernstein Vazirani algorithm, and results are shown in Table
7. The hidden strings for 2, 3 and 4-qubit BV algorithm are
"10","110" and "1110" respectively. As the number of qubits
increases, the success rate of the system decreases; how-
ever, our proposed assertion circuit consistently improve the
success rate after asserting the ancilla qubit.

Number of qubits Without assertion With assertion Improvement
2 77.9% 87.4% 12.2%
3 72.3% 80.0% 10.7%
4 51.1% 57.9% 13.1%

Table 7. The results of Bernstein Vazirani algorithm with
ancilla qubit assertion on IBM Q



Figure 16. Bernstein Vazirani circuit based on code from
Figure 15

6.6 Other Benchmarks
We also enable our assertion circuit on other benchmarks.
Table 8 shows the success rate of the benchmarks and the
improvement of success rate after assertion. For the Toffolli
gate, our input state is |110⟩ and the output state is |111⟩, we
enable classical assertion for ’|𝑞2⟩ == |1⟩’. For the 1-qubit
adder, the output state is |10⟩. We enable classical assertion
for ’|𝑞0⟩ == |0⟩’. The Deutsch-Jozsa algorithm [9] determines
whether a hidden oracle function is constant or balanced.
We assert ’|𝑞4 == |0⟩’ which indicates the hidden function is
constant.

benchmark Without assertion With assertion Improvement
Tofolli gate 61.9% 70.0% 13.1%
1-bit adder 63.3% 81.8% 29.2%

4-bit Deutsch–Jozsa 74.3% 80.0% 7.7%

Table 8. The results of classical assertions on IBM Q

7 Conclusion
In this paper, we propose quantum circuits to enable dynamic
assertions for classical values, entanglement, and superpo-
sition. This enables a dynamic debugging primitive, driven
by a programmer’s understanding of the correct behavior
of the quantum program. We show that besides generat-
ing assertion errors, the assertion logic may also force the
qubits under test to be into the desired state. Besides de-
bugging, our proposed assertion logic can also be used in
noisy intermediate scale quantum (NISQ) systems to filter
out erroneous results, as demonstrated on a 20-qubit IBM
Q quantum computer. Our proposed assertion circuits have
been implemented as functions in the open-source Qiskit
tool.
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A Artifact Appendix
A.1 Abstract
Our artifact provides the experiments for all our evaluated
benchmarks, alongwith experiments to validate the quantum
circuit fidelity in our paper.
We also provide source code for all of our benchmarks

and our function for inserting assertion circuits.

A.2 Artifact check-list (meta-information)
• Algorithm: quantum mechanics
• Hardware: We recommend to run the experiments on a
20-qubit IBM Q machine to verify results.

• Execution: Run the corresponding jupyter notebooks
• Metrics: Fidelity: Defined by Eq.12
Probability of false-positive case: % The count of the false-
positive case over the total count of the trials.
Success rate: % The count of correct output state over the
total count of the trials

• Output: Fidelity and probability of false positive case are
printed by running the jupyter notebook for fidelity test.
Success rate for each benchmark is printed by running the
corresponding jupyter notebook.

• Experiments: We use functions from Qiskit to measure the
fidelity of our assertion circuit. We calculate the probability
of false positive case and success rate based on the output
data of the IBMQ backends.

• Howmuch disk space required (approximately)?: 2GB
• How much time is needed to prepare workflow (ap-
proximately)?: A couple of minutes

• How much time is needed to complete experiments
(approximately)?: Dozens of minutes, depending on the
number of jobs submitted to the machine.

• Publicly available?: Yes.

A.3 Description
A.3.1 How delivered. Our benchmark, source code, and jupyter
notebooks for experiments are available on Github: https://github.c
om/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertio
ns-in-Quantum-Computation.git. TheDOI of our artifact is https://d
oi.org/10.5281/zenodo.3597507.

A.3.2 Hardware dependencies. We recommend running the
experiments with a 20-qubit IBM Q machine (In our paper, we used
ibmq_20_tokyo). The experiments can also run on the publically
available 14-qubit machine ibmq_16_melbourne. Due to the hard-
ware property difference, the results of fidelity and success rate on
different machines may differ.

A.3.3 Software dependencies. Python 3.5+, Qiskit 0.13.0, Jupyt
er notebook. Qiskit requires Ubuntu 16.04 or later, macOS 10.12.6
or later and Windows 7 or later

A.3.4 Data sets. Quantum computing benchmarks mentioned
in our paper.

A.4 Installation
To install Qiksit, please refer to:

https://qiskit.org/documentation/install.html
You can clone our jupyter notebooks and benchmarks from

Github:
$ git clone https://github.com/revilooliver/Quantum-Circuits-for-

Dynamic-Runtime-Assertions-in-Quantum-Computation.git
After clone, copy and paste the assertion.py file under the com-

piler folder "... \qiksit \compiler" in the Qiskit installation directory.

A.5 Experiment workflow
To run the experiments for the fidelity of our assertion circuit,
run the jupyter notebooks under the folder named "fidelity". Tests
should take less than 10 mins for the 20-qubit quantum computers,
depending on the number of jobs submitted to the machine.

To run the experiments for the success rate of different bench-
marks, run the jupyter notebooks under the folder named "bench-
mark". Test could take dozens of minutes, depending on the number
of jobs submitted to the machine.

A.6 Evaluation and expected result
The fidelity and success rates are printed after running the corre-
sponding jupyter notebook. The expected results are reported in
our paper.

A.7 Experiment customization
The jupyter notebooks are all customizable to run different as-
sertions with different benchmarks. To insert different assertion
circuits, first import the corresponding assertion function:

from qiskit.compiler.assertion import classical_assertion
Then call the functions as described in Section 4. The assertion

function will insert the assertion circuits to the circuit under test.

A.8 Notes
Due to the hardware property difference of different backends, the
results of fidelity and success rate may differ. When running the
experiments on backends with limited connectivity, the inserted
assertion circuit may introduce too many extra swap gates and
therefore hurt the success rate of the circuit under test. In our
paper, we ran our experiments on ibmq_20_tokyo quantum com-
puter which offers the best connectivity among all the 20-qubit
machines. However, this quantum computer has retired. Among
the currently available 20-qubit machines, ibmq_boeblingen has the
lowest noise level, so we recommend to reproduce the experiments
on boeblinegen machine.

The transpiler from Qiskit uses the stochastic swap pass, so the
number of swap gates (each swap gate consists of three CNOT
gates) inserted for the logical-to-physical mapping may vary for
the reproductions of the same experiment. We recommend use the
circuit.count_ops() function in Qiskit to check minimum number
of CNOT gates is inserted after logical-to-physical mapping.

A.9 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging
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