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ABSTRACT
Due to its durability, the security of persistent memory (PM) needs

to be ensured. Recent works have identified the requirements for

correctly architecting secure PM to achieve crash recoverability.

A key performance bottleneck, however, lies in the integrity tree

update, which needs to be consistent with the memory persistency

model and incurs a very high performance overhead. In this paper,

we aim to drastically reduce this performance overhead.

First, we propose to leverage a small on-chip non-volatile meta-

data cache (nvMC) for keeping a small portion of the integrity tree.

We show that nvMC cannot be managed like a regular cache due to

violating crash recoverability, and hence derive a set of invariants

to be satisfied for the nvMC to work properly. Then, we propose

the idea of Bonsai Merkle Forests (BMF), which splits an integrity

tree into multiple trees, leading to a forest, with the tree roots main-

tained in the nvMC. We propose and analyze different ways of BMF

management. Our experimental results show that our proposed

BMF schemes drastically reduce the performance overhead of BMT

root updates, from 426% to just 3.5%.
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1 INTRODUCTION
Recent non-volatile memory (NVM) or persistent memory (PM)

products, such as DIMM-compatible Intel Optane DC Persistency

Memory [18], provides a promising alternative to DRAM as main

memory substrate, providing much higher density and better scal-

ing potentials than DRAM, while providing non-volatility and byte

addressability. Due to its non-volatility, data may remain in PM for

long periods of time without power, exposing it to data leakage (if

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00

https://doi.org/10.1145/3466752.3480067

stored in plaintext) and unauthorized modifications (if no integrity

protection) by potential attackers [10]. Therefore, the use of PM

as main memory requires data to be encrypted and its integrity

protected.

Furthermore, PM provides an intriguing possibility for persistent
enclaves, that retain state across crashes or boots. In both of these

uses, a secure PMwithmemory encryption and integrity verification

would typically rely on security metadata, such as counters, MACs,

and integrity trees [12, 30]. Secure PM is useless, however, if data

cannot be recovered after a crash. In particular, researchers have

pointed out that data must be crash-consistent with its security

metadata according to the persistency model, otherwise after a

crash the plaintext of data may not be recoverable, or crash recovery

may trigger integrity check failures [14].

The work in [14] specified invariants that govern atomicity and

ordering required in order for secure PM to support crash con-

sistency and recovery. In essence, the invariants require that up-

dates to security metadata (including persisting counters, persisting

MACs, and updating of Bonsai Merkle Tree (BMT) root) follow the

same ordering as specified by the persistency model for data. The

paper proposed persist-level parallelism (PLP) optimizations that

improved performance while adhering to the invariants. Unfor-

tunately, while PLP optimizations were effective, the remaining

performance overheads are still very high: 20% for epoch persis-

tency and 109% for strict persistency were reported by the authors.

The reason for the high overheads is primarily the latency of updat-

ing the BMT root which must be sequentially performed from leaf

to root. For a large PM, the BMT may have a height of 8+ levels,

and if each level takes 40 cycles (assuming no cache miss), it takes

at least 320 cycles to update the BMT root.

There are no simple solutions to the performance bottleneck

of updating the BMT from leaf to root. One may consider only

protecting a portion of PM with BMT to reduce BMT size, however

that comes with the need to partition memory between secure and

insecure portions, placing the burden on the programmer, compiler,

or OS tomake accurate partitioning. Onemay also think of reducing

BMT height by increasing the tree arity [44], but that requires

smaller MACs that reduce security strength.

To arrive at a solution, we note that recent trends indicate

expansion of the persistence domain to include on-chip struc-

tures. For example, Intel’s enhanced Asynchronous DRAM Refresh

(eADR)[34, 35] adds the cache hierarchy to the persistence domain,

while Alshboul et. al [1] adds small battery-backed persist buffers.

Considering such an expansion, the fundamental question we ask in

this work is: can the performance of secure PM be improved if a small
on-chip non-volatile or battery-backed metadata cache is available?

https://doi.org/10.1145/3466752.3480067
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We will use the term non-volatile Metadata Cache (nvMC) to denote

such a cache but the term is also applicable to battery-backed cache.

The possibility of having a small nvMC, coupled with the chal-

lenge of high BMT update overheads, prompted us to fundamen-

tally rethink the BMT organization. In particular, we propose a

new approach of splitting the integrity tree into many trees that

collectively protect the PM. We call this approach Bonsai Merkle
Forests (BMF), to indicate a forest topology instead of a tree. With

BMF, we maintain a collection of integrity trees, each with its own

root acting as the convergence point for its respective portion of

memory. These roots are persisted in the nvMC, expanding the

persistence domain to include a subset of the integrity tree. By

doing this, tree or update path heights can be reduced, resulting

in lower root update ordering overheads. We explore two variants:

Static BMF provides a static forest configuration comprised of per-

sisted BMT nodes, while Dynamic BMF dynamically reconfigures

the forest topology based on access patterns. Dynamic BMF detects

hot data and uses shallow trees for it, and using tall trees for cold

data, thereby making the common case fast. Our Dynamic BMF

efficiently provides integrity protection while protecting the en-

tire PM and without reducing MAC sizes. Dynamic BMF reduces

79.1% of the performance overheads of BMT updates, resulting in

nearly negligible overheads of 3.5% for epoch persistency, while

only relying on a 4KB nvMC.

To summarize, the contributions of this work are:

• We propose a novel approach called Bonsai Merkle Forest
(BMF), and formally specify its definition and validity criteria

for integrity protection. BMF takes advantage of a small non-

volatile (or battery-backed) on-chip metadata cache.

• We derive invariants for crash recoverability of PM protected

by a BMF that guarantees crash consistency according to the

persistency model used in the system.

• We propose a Static BMF and Dynamic BMF design; the

latter reconfigures its topology in response to the detection

of hot vs. cold data, that dynamically reduce the tree heights

for hot data.

• We propose a design of architecture support that utilizes

non-volatile Metadata Cache (nvMC) to accommodate a BMF

topology efficiently.

• We evaluate and compare Static and Dynamic BMFs against

BMT and found that secure PM overheads can be reduced to

just 3.5% with Dynamic BMF.

The rest of the paper is organized as follows: Section 2 presents

the background and related work. Section 3 derives the invariants

needed to ensure correct crash recoverability and data integrity

coverage. Section 4 details the analysis of our proposed Static and

Dynamic Bonsai Merkle Forest mechanisms. Section 5 discusses

hardware architecture and algorithm design. Section 6 presents our

evaluation methodology. Section 7 evaluates our proposed mecha-

nisms, and Section 8 concludes our work.

2 BACKGROUND AND RELATEDWORK
2.1 Threat Model
Just like in prior work [10, 29, 40, 49], we assume that adversaries

can physically access the memory system (bus, PM media, etc.) to

perform passive snooping [45] or active tampering of values in

PM [38], including replay of old valid values. Attackers may gain

physical access through ownership, theft, or even acquisition after

disposal [5, 29, 40, 49]. Due to non-volatility, data remanence is a

bigger concern for PM than for DRAM [16, 27]. Similar to prior

work [14, 22, 25, 50], we assume that attackers cannot access on-

chip resources such as caches and registers, hence the physical

boundary of the processor chip forms the trusted computing base

(TCB).

2.2 Memory Encryption
Memory encryption conceals plaintext values written in off-chip

main memory [4, 9, 20, 21, 23] or sent to other processing units [32,

47]. ECB mode [45], XTS mode [19], and counter mode [48] have

all been proposed. Counter mode is commonly employed, including

in Intel SGX [12] and in many recent works [3, 49, 51]. In counter

mode, a pseudo one-time pad (OTP) is generated by encrypting

counters which is then XORed with data plaintext to get data ci-

phertext, and vice versa. Reusing a counter value leads to reusing

OTPs which compromise the encryption, hence counters must be

incremented after each writeback to provide temporal uniqueness

and concatenated with address to provide spatial uniqueness. En-

cryption counters can be split [47] or monolithic (e.g. in Intel SGX).

Split counters co-locate a major per-page counter and many per-

block minor counters in a single cache line, and each encryption

counter is represented by the concatenation of a major and minor

counter. Split counters offer significantly lower storage overheads

and improve counter cache performance [47], and so we assume a

split-counter scheme in this paper.

2.3 Memory Integrity Verification
Memory encrypted with counter-mode encryption is vulnerable to

counter replay attacks which allow an attacker to break encryption

and may reveal secret encryption keys [47]. Thus, integrity verifica-

tion is required to ensure data integrity [39, 47]. Data fetched from

off-chip memory or other processor chips have its integrity verified

when brought on-chip [31, 32]. Memory integrity protection may

rely on Merkle Tree [15], Bonsai Merkle Tree [30], or SGX Counter

Tree [12]. BMT is the most space efficient of them all (hence the

lowest height) as it covers only counters, hence we assume split

counters protected by BMT (Figure 1).

Lvl

1

2

3

Secure processor 

boundary

BMT Root

64B to 8B Hash

4 64b major ctr 64 7b minor ctrctr leafs

Figure 1: Example 8-ary Bonsai Merkle Tree with split coun-
ters.
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2.4 Memory Persistency
Memory persistency models are defined to provide some guarantee

to stores with regard to when they become durable with respect

to other stores [2, 7, 8, 11, 13, 28]. These models provide a way to

reason about the correctness of persistent memory state visible to a

crash recovery observer. The most conservative is strict persistency

(SP) which requires that durable stores follow sequential store

order defined in the program. SP is intuitive for programmers,

but restrictive in performance as stores cannot be overlapped or

reordered. Epoch persistency (EP) and buffered epoch persistency

(BEP) allow the programmer to define regions of code called epochs

where stores within an epoch can be reordered and overlapped but

their durability is strictly ordered across epochs [28]. In addition to

memory persistency models, programmers must also define atomic

durable code regions to support crash recovery [26, 33, 36, 37].

2.5 BMT Root Update Ordering
Supporting crash consistency in secure PM requires data and se-

curity metadata to be updated in a crash consistent manner. It

was pointed out that data and counters must be atomically per-

sisted [5, 51], and similarly data and MACs [40, 41]. While non-root

BMT nodes do not need to persist (they can be rebuilt during crash

recovery), the BMT root must be updated atomically with respect

to the durable update of data and other security metadata such as

counters and MACs (collectively called a memory tuple), and the

update must be ordered following the persistency model [14]. The

latter requirement incurs a serious performance bottleneck in se-

cure PM. For example, if there are two stores that are ordered in the

persistency model of choice, the BMT root update must be ordered

(updated by the first store prior to updated by the second store)

in an atomic manner with respect to the durable update to data

and other metadata (BMT update must complete prior to durable

update to data/metadata of the second store). Therefore, ordering

root updates incurs high performance overhead, particularly in SP,

as updates must traverse and update each level of the integrity

tree. Due to this bottleneck, the performance overheads reported

after various optimizations [14] are still very high: 20% for epoch

persistency and 109% for strict persistency.

For this paper, we explore BMF for both strict and epoch persis-

tency models, and compare our work against PLP [14].

2.6 Related Work
Prior work has explored skewing integrity trees [42, 46] to reduce

integrity tree heights, but did not consider the impact of root update

ordering for crash recoverable NVM. Taassori et. al [43] discussed

per-application integrity trees and partitioned metadata caches to

eliminate covert side channels, but did not consider applicability to

NVM-base systems.

3 NON-VOLATILE METADATA CACHES
Intel’s enhanced Asynchronous DRAM Refresh (eADR)[35] and

recent work [1] point out the feasibility of battery-backed cache

hierarchy or a portion thereof. Given that in a secure PM, the

performance bottleneck is the atomicity and ordering requirements

imposed by BMT root update, we explore the question of whether

a small non-volatile or battery-backed metadata cache (nvMC) can

alleviate the bottleneck. This section presents our first contribution

that analyzes invariants that ensure crash recovery when using

nvMC in conjunction with the BMT.

3.1 Intuition
First, let us intuit how nvMC can speed up BMT root update. In

a traditional BMT, a data store that must persist to PM must also

atomically persist its corresponding counter and update the BMT

root. Figure 2(a) illustrates this, showing BMT root to be kept per-

sistent on chip at all time, and counters (BMT leaves) are kept

updated in PM. Since counters and BMT root are always crash-

consistent, but intermediate BMT nodes are not guaranteed to be

crash consistent, when a crash occurs, intermediate BMT nodes in

PM are ignored/discarded. Instead, they are recomputed starting

from counter leaves to root, and the computed root is validated

against the persistent BMT root. Anymismatch triggers an integrity

failure exception.

a b c d

x y

R

z
R Always on chip

Persisted in PM

Regenerated
on crash recovery

(a) Regular BMT (b) BMT with nvMC (c) BMT with nvMC
a c

xu

R

y

b

Figure 2: Illustration of BMT crash recovery, without nvMC
(a) versus with nvMC (b and c).

Now consider that we have a nvMC that can keep some BMT

nodes on chip persistently. Suppose that we manage nvMC just like

a regular cache, where blocks are brought in on demand, and evicted

after unused for a while. Hence, some BMT nodes will be present in

the nvMC while others are not, including the BMT root. How can

nvMC improve BMT? Figure 2(b) illustrates an example BMT with

blocks containing nodes 𝑥,𝑦, and 𝑧 cached in nvMC. nvMC can

provide two benefits. First, suppose that data block 𝐴 is updated,

resulting in counter 𝑎 being updated as well. Since its parent node 𝑥

is in the nvMC, potentially (we will analyze this further) only block

𝑥 needs to be updated, without updating the path further up to the

root 𝑅. This accelerates the persist of block𝐴 because of the shorter

update path and that no cache miss is incurred in the update. Now

suppose a crash occurs. nvMC retains its content due to its non-

volatility, but everything else is lost. During crash recovery, counter

block 𝑎 validation can be performed by comparing the hash of 𝑎

against 𝑥 , which is trusted as it never left the processor chip. This

accelerates the rebuilding of the BMT. Hence, potentially, nvMC

can accelerate both the operation of persisting stores in normal

execution, as well as the recovery process after a crash occurs.

Unfortunately, however, the scheme presented above does not

work correctly. First, some nodes cannot be verified anymore during

crash recovery. For example, node𝑏 cannot be verified because none

of its ancestors were cached in the nvMC. Second, the ordering

between persists required by the persistencymodel is hard to ensure

anymore. For example, suppose that data blocks 𝐶 and then 𝐷 are

modified and persisted in that order according to the persistency

model. Thus, counter blocks 𝑐 and 𝑑 are modified as well, and the
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modification propagates upward in the tree. If the update stops at

the first ancestor that is cached in the nvMC, e.g. 𝑐 stops at 𝑦 while

𝑑 stops at 𝑧, the updates cannot be ordered anymore as they stop at

different BMT nodes and their update paths do not overlap. In fact,

if 𝑦 is evicted, it has to update node 𝑧. However, in this case, node

𝑧 was updated in the opposite order of data persists, potentially

violating the crash recovery correctness requirement.

Therefore, an nvMC has the potential to improve performance,

but cannot be managed like a regular cache. It must satisfy some

invariants that ensure correct crash recovery. In the next section,

we will discuss our derivation of such invariants.

3.2 Crash Recovery Correctness Invariants
In Section 3.1, we have discussed the potential benefits and pitfalls

of using nvMC. In this section, we analyze and formalize the re-

quirements for correct crash recovery for a BMT with nvMC. We

discuss exclusively nvMC for caching BMT nodes as they present

the performance bottleneck of the system. Other metadata types

(counters and MACs) are assumed to be cached in volatile (meta-

data) caches. We will start with the definition of persistent root
set:

Definition 3.1. Persistent root set (PRS) is the set of BMT nodes

that are stored in the nvMC and included in the persistence domain.

We refer to BMT nodes in nvMC as persistent roots because we

wish that BMT updates can stop at the first ancestor node found in

the nvMC instead of all the way to the real BMT root. Thus, cached

nodes act like substitute roots, hence the term PRS.

Let us assume several notations. Suppose that there are 𝑁 nodes

in the PRS and they are referred to roots𝑅1, 𝑅2, . . . 𝑅𝑁 . Let us denote

𝐿(𝑅𝑖 ) as all nodes that are leaf descendants of root 𝑅𝑖 . We start with

the first invariant that is needed for correct crash recovery:

Invariant 1. Covering Invariant: The union of PRS leaves,
𝐿(𝑅), must be equal to the set of all counters, 𝛾 :

𝑛⋃
𝑖=1

𝐿(𝑅𝑖 ) = {𝛾0, 𝛾1, 𝛾2 ...} (1)

Invariant 1 (covering) requires that at any time, the nvMC must

contain nodes that collectively cover all counters (BMT leaves). This

invariant is intuitive as non-covered counters cannot be verified

during crash recovery; an example of invariant violation was earlier

presented in Figure 2(b)-(c).

The next (no-leaf overlap) invariant is less intuitive. It states that

two roots cannot cover the same leaf nodes:

Invariant 2. No-leaf Overlap Invariant: No two roots may
cover a common leaf:

∀{𝑖, 𝑗} | 𝑖 ≠ 𝑗 : 𝐿(𝑅𝑖 ) ∩ 𝐿(𝑅 𝑗 ) = ∅ (2)

We have already discussed with Figure 2(b) that when two roots

cover the same leaves, persist ordering is difficult (but not neces-

sarily impossible) to enforce. However, there is another scenario in

which the overlap leads to failed crash recovery. A scenario is illus-

trated in Figure 2(c). In the figure, nodes 𝑢 and 𝑅 are in the nvMC.

Suppose that node 𝑎 was modified and the update stopped at root

node 𝑢. Now suppose that a crash occurs. During crash recovery,

node 𝑏 is accessed. In order to validate 𝑏, node 𝑥 is regenerated

using 𝑏 and 𝑐 as input. Next, node 𝑦 is also regenerated using nodes

𝑢 and 𝑥 as input. Then, the hash of 𝑦 is regenerated and compared

against 𝑅, which mismatches because 𝑦 was regenerated using the

updated 𝑢 but 𝑅 was never updated to reflect the change in 𝑢. This

mismatch causes an integrity verification failure.

Fundamentally, the reason for the integrity failure during crash

recovery is because a node serves both as a root (where updates

stop) and as a descendant (to regenerate ancestor nodes). This is

avoided if roots do not overlap in their leaf descendants, hence the

invariant.

Invariant 2 imposes several constraints on using nvMC to persist

BMT nodes. First, it constraints the placement policy of nvMC as

some nodes cannot be cached if they violate the no-leaf overlap

invariant. Second, it also constraints the replacement policy of

nvMC as some nodes cannot be evicted if they result in some leaves

uncovered. Furthermore, fetching a node block into the nvMC or

evicting a node block from the nvMC may require actions to evict

or fetch other blocks. In the next section, we present our second

contribution of the concept of Bonsai Merkle Forest that allows the

use of nvMC without violating both correctness invariants.

4 BONSAI MERKLE FORESTS
In this section, we present our second contribution: Bonsai Merkle

Forest (BMF). We will show BMF designs that comply with Invari-

ant 1 and Invariant 2. We derive two approaches that offer valid

integrity forests, static and dynamic. Our initial approach explores

conforming to these invariants by statically persisting BMT nodes,

then explore dynamically changing the forest topology to efficiently

utilize the nvMC and reduce tree heights while ensuring crash re-

coverability.

4.1 Splitting a BMT into Multiple Trees
The challenges discussed in Section 3 of persisting BMT nodes

led to the observation that hierarchical dependencies in the BMT

increases the chance of violating the no-leaf overlap invariant. To

reduce inter-level dependencies and satisfy Invariant 2, we consider

splitting a BMT into smaller sub-trees, with sub-tree roots acting

as the convergence point for all updates from their descendants.

It is reasonable to persist these sub-tree roots in the nvMC and

include them in the PRS, since modifications to these roots will not

be used for recomputing ancestral nodes in the BMT. The invariants

discussed in [14] are still valid, but the crash recovery tuple must

be reconfigured to include the persisted sub-tree root instead of the

original BMT root. This means that a memory tuple is persisted

once the persisted sub-tree root has been updated. The memory

tuple redefinition also applies to the persist order invariant, since

updates to the PRS must be ordered.

To not violate Invariant 2, when a sub-tree root is persisted, the

edge between the root and its parent node is removed, causing the

BMT to split into sub-trees. By splitting the BMT into multiple sub-

trees, each root covers a subset of integrity tree leaves, and the roots

should collectively adhere to Invariant 1. With this observation,

we first explore a static root set that ensures both invariants are

followed and effectively reduces integrity tree update overheads.
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Figure 3: Examples illustrating two valid BMFs fitting in a
4-entry nvMC: Static BMF with Level 3 persisted (a), and Dy-
namic BMF (b).

4.2 Static Bonsai Merkle Forests
Recall that the sub-tree roots act as convergence points for their

respective leaf updates and the BMT root acted as the convergence

point for all leaf updates. A set of roots must be found that provide

a convergence point for any leaf update while not overlapping

with any other root. A prime candidate to fulfill these requirements

would be a set of sub-tree roots that make up a single level in the

BMT.

Figure 3 shows an example of two BMFs, showing PRS that must

fit into a 4-entry nvMC. Counter leaves are not shown but would

form level 6 if shown. Static BMF has a fixed forest topology that

has a pre-selected PRS at boot time and does not change with time.

Dynamic BMF has a forest topology that changes with time based

on identification of hot vs. cold data. Figure 3(a) shows a Static BMF

with all level 3 (L3) nodes selected as the PRS. If an update occurs

at one leaf, it would only traverse the tree up to one of the PRS

and updates it, before persisting memory tuples in main memory.

Intermediate nodes in L4 and L5 are not cached in the nvMC; they

may be cached separately, either in a volatile BMT cache, or kept

in the same nvMC cache but without battery backing.

It is straightforward to see that the example Static BMF in Fig-

ure 3(a) satisfies the covering invariant as all leaves are covered by

one of the PRS nodes. The no-leaf overlap invariant is also met be-

cause all members of the PRS are in a single level (L3), and all upper

level (L1 and L2) nodes are removed. All updates to the leaves will

traverse up to the persisted level L3 but not beyond. The L3 nodes

form permanent PRS and therefore their cache blocks are pinned

(i.e., never evicted) in the nvMC. In the example in Figure 3(a), the

tree height has decreased from 5 levels in the original BMT to only

3 levels in the Static BMF, resulting in a tree height reduction of

40%.

4.3 Dynamic Bonsai Merkle Forests
Adrawback of the Static BMFs is the possible nvMCunder-utilization,

as roots that are rarely updated occupy space in the nvMC just as

roots that are frequently updated. It is well known that at any given

time, most programs frequently access a small fraction of the total

memory allocated to it. This active working set exhibits strong

temporal and spatial locality while it is "hot". Ideally, we want to

prioritize keeping roots for hot data, even reducing the tree heights

for such data. By keeping tree heights low for hot data and high for

cold data, we can use utilize the nvMC more effectively. To achieve

that, we propose a Dynamic BMF scheme.

Figure 3(b) shows an example of Dynamic BMF with four nodes

selected as roots (PRS). These roots were designated based on node

access frequency, and results in a PRS consisting of one L5 node, two

L4 nodes, and one L1 node, collectively covering all leaves. Mixing

roots from different levels would normally result in violation of the

no-leaf overlap invariant, since one root may be a descendant of

another. However, we apply a novel observation that if some nodes

and edges are selectively pruned, the invariant can be met, as can

be observed in Figure 3(b), where all roots cover different sets of

leaves. By pruning a node, all updates to the node’s descendants

only traverse up to that persisted node instead of the BMT root.

The selected PRS significantly reduced the tree traversal heights

for hot data, allowing updates to only compute one to two levels

of the BMF before persisting. For example, an update to node 𝑎

updates only two levels of a tree, while an update to node 𝑏 updates

only one level of a tree. Suppose that 95% of all updates are to hot

data spread equally over the five L5 nodes covered by roots, and

only 5% of updates are to cold data. In this example, the average

height is 0.95(0.2 × 1 + 0.8 × 2) + 0.05 × 5 = 1.96. This would be a

reduction of 35% in average tree heights compared to Static BMF,

and 61% reduction compared to the original BMT.

To dynamically change elements in the PRS, the requirements

in both invariants need to be guaranteed at all times. Inserting

and removing elements from the PRS requires new placement and

replacement policies to be introduced: prunes removes edges be-

tween BMT nodes and inserts designated nodes into the PRS, and

merges remove nodes from the PRS by re-inserting edges. Prune

logic determines valid nodes to write to the nvMC and added to

the PRS, while the merge logic determines which nodes can safely

be evicted from the nvMC. Both of these mechanisms are required

to satisfy Invariant 1 and Invariant 2, and will be discussed further

in Section 5.

4.4 Using BMF for Crash Recovery
BMF roots are persistent and considered trusted because they do not

leave the chip. If a new node is brought in as a new root, it is verified

prior to use. Hence, on a crash, any valid nodes in the nvMC are

considered trusted roots. These roots carry sufficient information to

reconstruct the entire BMF topology, hence topology information

needs no redundant storage. For crash recovery, the topology is first

recovered starting with the lowest level roots. After that, counter

leaves are either validated if their parent is a root, or its non-root

parent regenerated. All non-root nodes are regenerated.

5 ARCHITECTURE DESIGN
In this section, we discuss architecture designs to enable persisting

integrity tree roots. Our baseline architecture assumes a separate

counter cache [47], BMT cache [5, 14], MAC cache [49], and ADR-

backed write pending queue (WPQ) [24]. These structures enable

supporting baseline strict and epoch persistency models for se-

curity metadata updates. Our architecture introduces a separate

non-volatile cache located in the memory controller (MC) to store

sets of roots on-chip, with per-cacheline non-volatile tag and data

entries and volatile access counters.We also introduce per-cacheline



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Alexander Freij, Huiyang Zhou, and Yan Solihin

v root_tag
m
w

1
1
0

value

nvMC
wm

Figure 4: Static BMF with two subtrees. Regions in the per-
sistent domain are shown in grey

access counters for BMT cache, and additional prune and merge

logic to determine prune and merge targets respectively.

5.1 Static BMF Root Selection
To support our Static BMF policy, we introduce an nvMC located

in the MC that interacts with the WPQ. Memory tuple components

are gathered in the WPQ and persisted to main memory when all

ciphertext, counter, and MAC updates have been written and an

acknowledgment from the nvMC for root update completion has

been received. This guarantees that memory tuples are treated as

atomic persists and that the system is crash recoverable.

Figure 4 shows an example BMF with two persisted roots and

a three-entry nvMC. Just as a cache, nvMC keeps a block with a

tag, data, and state. The tag, state (e.g. valid bit), and data fields of

the nvMC cachelines are either non-volatile or battery-backed to

support integrity verification during crash recovery. As discussed

in Section 4.2, one full level of the BMT nodes can be persisted in

the nvMC. This requires the nvMC capacity to be sufficiently sized

to hold them. Figure 4 illustrates an example of a three-entry nvMC

which is was large enough to persist L2 nodes of the BMT, but is

under-utilized. To keep L3 nodes of the BMT in the nvMC, it must

have four entries. L4 nodes requires eight entries, L5 nodes requires

16 entries, etc. In general, for a 𝑘-ary BMT, in order to keep the

next level nodes as roots, the nvMC size must increase by a factor

of 𝑘 . This is a key drawback of Static BMF; it takes exponentially

larger nvMC sizes in order to reduce the tree height linearly.

5.2 Dynamic BMF Root Selection
A Dynamic BMF requires identifying hot and cold data, and for the

forest topology to adapt by reducing the tree heights for hot data.

This identification needs to be performed periodically. We define

root evaluation interval (REI) as the interval (measured in the num-

ber of writes to PM) after which the BMF topology is re-evaluated

and nodes are inserted into (pruned) or removed from (merged)

the persistent root set (PRS). Only PRS elements are written in the

nvMC, and so a prune consumes a cacheline in the nvMC, while

a merge frees a cacheline. During an REI, candidate roots to be

pruned/merged are identified based on the frequency of roots in

nvMC being updated, hence we add a small saturating counter to

each nvMC cacheline. The counters are decayed (e.g. by bit shifting)

at the beginning of each REI. In addition, non-root nodes in the

BMT cache are also augmented with counters.

Selecting an optimal BMF given an access pattern is a complex

problem that cannot be solved quickly in hardware. To avoid the

complexity, we constrain our Dynamic BMF design in the following

ways. First, at each REI, only one node can be selected as a prune

target, and only one node can be selected as a merge target. Hence,

the prune and merge can be performed quickly in a time-bounded

manner, as the forest topology is only altered incrementally at each

REI. Second, a prune target may be replaced in the PRS by one of its

children nodes. Hence, non-child descendants or the replacement

by more than one child are avoided. Third, the original BMT root

node is pinned to the nvMC even though it may not be a member

of the PRS. The reason for this is to avoid cascading placement

and replacement (to be discussed in more details later). Finally, we

assume that nvMC is a fully associative cache. This assumption

ensures that a BMF node can be replaced by a different node in

the same cacheline, without violating the cache indexing function.

With these constraints, we will now discuss the prune and merge

operations in more details.

5.2.1 BMF Prune. Algorithm 1 shows how BMF prune is imple-

mented. At each REI, all current root counter values that exceed

threshold 𝑇 are considered (lines 1-3). Among them, select the root

with the highest counter value as the prune target 𝑃 (line 4). Next

we have two cases to handle. Suppose that 𝑃 is not the original

BMT root (line 5), then 𝑃 is added back into its ancestor’s tree by

restoring its path to its ancestor𝐴 and updating all nodes along the

path (lines 6-7). Note that because we pin the original BMT root

node in the nvMC, an ancestor 𝐴 is guaranteed to be found. Now,

we are ready to create a new root to replace 𝑃 . For that, a child 𝐶

is selected among 𝑃 ’s children that has the largest counter value,

indicating the hottest child node (line 8). The child is then added

into the nvMC as a new root by removing the link between 𝑃 and

𝐶 (line 9). In a special case where 𝑃 turns out to be BMT root, 𝑃

does not have an ancestor. Hence, in this case, to ensure covering,

we add all 𝑃 ’s children as new nvMC roots (line 11). Finally, 𝑃 is

removed from the nvMC (line 12). In hardware implementation,

adding a child 𝐶 and removing 𝑃 from the nvMC can be performed

by just replacing the tag and data of 𝑃 with the tag and data of 𝐶 ,

and this can be done easily because of nvMC’s full associativity.

Algorithm 1 BMF Prune algorithm executed at each REI.

1: Select roots from nvMC whose counters exceed𝑇

2: if None found then
3: return

4: Select a root with the largest counter value as prune target 𝑃

5: if 𝑃 is not BMT root then
6: Find 𝑃 ’s first ancestor𝐴 along the original update path

7: Restore edges from 𝑃 to𝐴 and update nodes from 𝑃 to𝐴

8: Select a child𝐶 with the largest counter value

9: Add𝐶 into the nvMC as a new root

10: else
11: Add all 𝑃 ’s children into nvMC as new nvMC roots

12: Remove 𝑃 from the nvMC

Figure 5 shows the architecture design and an example of a prune

operation. First, the roots in the nvMC are accessed to determine

the most frequently accessed root in the PRS 1○. If a root’s counter

does not exceed the preset threshold 𝑇 , the next root is read in.

This determines that node 𝑤 is the prune target in our example,

since its access counter value of 15 is the largest. As nvMC roots

are accessed, their access counters are shifted and updated in the

nvMC 2○. The prune target’s children addresses are generated and

the BMT cache is accessed to determine the persist candidate 3○.
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Figure 5: Illustration of a BMF prune operation. The for-
est topology, nvMC, and BMT cache states before and after
prune are shown in part (a) and (b), respectively. x’s denote
don’t cares.

Next, the prune target’s child with the largest counter value will

be selected as a new root 4○. Since 𝑎 has the larger counter value

(9) of𝑤 ’s children, it is selected to be persisted, since this indicates

that 𝑎 is hotter than 𝑏 (6). The prune proceeds by restoring 𝑤 ’s

edge to its ancestor 𝑥 and updating it, which re-establishes𝑤 as a

descendant of 𝑥 , thus requiring future updates to descendants of𝑤

to traverse up to 𝑥 . In the mean time, 𝑎 is added as a new root by

removing its edgewith𝑤 . Without the edge between𝑎 and𝑤 , future

updates do not need to traverse up to𝑤 , as the updates have been

persisted once 𝑎 is recomputed. The resulting new BMF topology

is shown in Figure 5(b). The tree height for leaves converging at 𝑎

has been reduced by one, which accelerates future updates to hot

data covered by 𝑎. After pruning, 𝑎 starts with a zero counter value

in the nvMC and is removed from the BMT cache 5○.

5.2.2 BMFMerge. Algorithm 2 shows how a BMFmerge operation

is implemented. A merge is triggered for two reasons: to consoli-

date trees covering cold data into a larger one, or to free up some

space in the nvMC. In either case, the operation works the same.

First, all current root counter values are read and roots with the

smallest counter value, indicating that they cover the coldest data,

are identified (line 1). If more than one such roots are identified,

we break the tie by choosing the first lowest level root in the tree

(lines 2-5) as themerge target 𝑀 . The lowest level is chosen to break

the tie because it is the least impactful root in the current PRS,

since it provides minimal counter coverage. Next, we find𝑀 ’s first

persisted ancestor 𝐴 (line 6), restore the edges along the original

path between them, and update 𝐴 along the original path (line 7).

𝑀 ’s cacheline in the nvMC is then invalidated (line 8), removing𝑀

from the PRS and freeing an entry in the nvMC.

Figure 6 shows the architecture design and an example of the

merge operation with node 𝑦 as the merge target. This situation

may occur if node 𝑥 was selected as the prune target, but no free

entries were found in the nvMC to insert its child 𝑓 , and so a merge

is required. After iterating through the nvMC counter values 1○,𝑦 is

selected as the merge target since it has the lowest access counter (3)

of the current root set, indicating that it is colder relative to other

roots 2○. The merge proceeds by restoring edges and updating
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Figure 6: Illustration of a BMF merge execution. The forest
topology, nvMC, and BMT cache states before and after the
merge operation are shown in part (a) and (b), respectively.
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Algorithm 2 BMF Merge algorithm.

1: Select a root with the lowest counter in nvMC

2: if Multiple roots have equal counters then
3: Select lowest root in tree

4: if Multiple roots meet criteria then
5: Select first root as merge target𝑀

6: Find𝑀 ’s first ancestor𝐴 along the original update path

7: Restore edges from𝑀 to𝐴 and update all nodes in the path

8: Invalidate𝑀 ’s cacheline in nvMC

all nodes in the path from 𝑦 to 𝑥 since it is the first persistent

ancestor found 3○. Once 𝑥 is updated, 𝑦’s cacheline in the nvMC

is invalidated, freeing the entry for the prune to proceed 4○. The

updated forest topology is shown in Figure 6(b). The access counters

in the nvMC and BMT are not updated after amerge is performed, as

the access state should not be changed for hot nodes when deciding

which cold nodes to evict.

Earlier, we discussed that the original BMT root must be pinned

in the nvMC. Pinning the BMT root in the nvMC guarantees that

a persistent ancestor is available for merge targets to converge to.

This simplifies the design of the merge operation by preventing

cascading prune/merge cycles. Consider a situation where a nvMC

is fully occupied by roots, and at an REI, the prune target selected

does not have an ancestor. To ensure covering, the prune target

must bring in all its children as new roots. This triggers a new

merge operation to free up space for new roots. The merge, in turn,

requires an ancestor to be found in the nvMC. If an ancestor is

not found, it must be brought on chip, which then triggers another

merge operation. This process can involve many prune/merge oper-

ations in a single REI, with the possibility of leading to a deadlock.

To avoid this situation, we pin the original BMT root in the nvMC.

5.3 PRS Modification Atomicity
A PRS modification, i.e., a prune or a merge, is executed in multiple

stages. These stages do not need to be atomically executed. It is

achieved with two state bits, which are appended to each nvMC

cacheline: an evictable (E) bit and a locked (L) bit, used for a prune

and merge, respectively. These two bits ensure that the invariants
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are not violated if a crash happens in the middle of a merge or

prune.

Consider a situation where a crash occurs during a prune opera-

tion. If the prune target was evicted from the nvMC before the new

root was written and a crash occurs, Invariant 1 would be violated

because not all leaf nodes would be protected. To guarantee that

leaf coverage is not compromised, our prune mechanism uses the

state bit, E (Figure 5), which indicates if the corresponding nvMC

cacheline can be evicted. The E bits are controlled in the following

steps:

(1) After the prune target and new root have been found, the

new root is fetched from the BMT cache and written to a

free entry in the nvMC. The E bits for both prune target and

new root are cleared, meaning that they cannot be evicted

from the cache at this time. This occurs after 4○ in Figure 5.

(2) Once the new root write operation has completed, the E bit

of the prune target cacheline is set.

(3) The prune target cacheline is invalidated and evicted from

the nvMC.

(4) The E bit of the new root cacheline is set. This completes the

transaction and makes the new root an eligible prune target

similar to other PRS elements.

These E bits ensure that the nodes involved in a prune operation

are locked in the cache until the operation has completed. If a failure

occurs after Step 1, the prune target and new root would reside in

the nvMC with both cacheline’s E bits set. This transient state does

not violate Invariant 2, as a subset of the prune target’s leaves now

correspond to the new root and prevents leaf overlap between the

prune target and new root. Similarly, the transient state does not

violate Invariant 2 if a crash occurs between Step 2 and 3. Setting

the E bit of the prune target in Step 2 is completed first to allow

the prune target to be evicted in Step 3. Once the prune target is

removed from the nvMC, setting the E bit of the new root in Step

4 establishes it as a PRS element and valid root. If a crash occurs

between Steps 3 and 4, the new root has already been written to

the nvMC and designated as a root, therefore integrity coverage is

not compromised and Invariant 1 is obeyed.

A race condition may arise when while executing a merge. If

updates to the merge target execute concurrently while updating

the next persistent root during a merge, the merge target’s new

value won’t be reflected in the next persistent root. Once the merge

target is invalidated, this results in the merge target’s descendants

being unverifiable, as updates only traversed to the merge target

and not the next persistent root. This violates Invariant 1 as not all

leaves are verifiable and protected by the PRS. To prevent this, we

use a cacheline lock bit, L (Figure 6), to ensure that the integrity

coverage of the PRS is not compromised in the event of a crash

during a merge operation. L indicates that the the designated nvMC

cacheline is locked, preventing cacheline eviction and updates to

the node when L is set. The L bits are controlled in the following

steps:

(1) After the merge target has been found, updates to the merge

target must be stalled. This is achieved by setting L for the

merge target cacheline, which prevents eviction and updates

to the node. This occurs after 2○ in Figure 6.

(2) Once the next persistent root has been updated, the merge

target’s L bit is cleared.

(3) The merge target cacheline is freed by invalidating the cache-

line (Figure 6). This unblocks all updates to the merge target

and all updates traverse to the next persistent root.

The transient state created by Step 1 forces all updates to the

merge target to stall. This preserves the PRS and the root value

in the event of a crash during a merge operation. Since the merge

target is the least frequently accessed root in the PRS, stalling

only affects a small number of updates which introduce negligible

overheads. Concurrent updates to other segments of the tree are

still allowed to complete, as they do not impact the value of the

merge target and can be persisted once they reach their respective

root. If a crash occurs between Step 1 and 2, the PRS elements and

values remain unchanged since the merge target was not removed

and leaf coverage is uncompromised. Similarly, integrity coverage

is not compromised if a crash occurs between Step 2 and 3 because

the merge target was not removed from the PRS, thus adhering to

Invariant 1. Once Step 3 completes, the merge target is no longer

a valid root, and all the stalled updates are now unblocked and

proceed to update the BMT.

5.4 Persisting Intel SGX Roots
Intel SGX integrity trees (SITs) employ a tree of counters to verify

memory integrity. Similar to BMTs, Intel SIT leafs cover encryption

counter pages with stateful MACs that detect tampering efforts.

However, an update to a SIT node requires the parent counter value

to compute a child’s MAC, whereas BMT node computation only

requires its children values. In order to support crash recoverability,

the correct parent counter value must be available to verify memory

integrity. This requires all nodes from leaf to root to be persisted

for integrity verification, instead of just the SIT root.

Persisting SIT nodes as roots requires several changes compared

to BMF. First, when a prune occurs between a persisted node and

its child, the child MAC is no longer updated with counters from

the parent. Since the node is persisted and on chip, there is no need

to recompute the MAC except if a merge occurs. However, when

a persisted root is selected as the merge target and the path edges

must be reinserted, the entire path from the merge target to the

first persisted ancestor must be fetched from memory and updated,

incurring significant memory traffic. We leave the full exploration

of forest topologies in Intel SITs for future work.

6 EVALUATION METHODOLOGY
To evaluate our scheme, we built a cycle-accurate simulation model

with Gem5[6]. The environment parameters that we assume are

listed in Table 1. For all schemes, integrity verification of a newly

fetched blocked is overlapped with decryption and data use, similar

to [14, 22, 50]. An exception is raised if integrity verification fails.

We assume separate metadata caches for counters, MACs, BMT

nodes, and BMF roots.

We evaluate two persistency models: strict persistency (SP) and

epoch persistency (EP). For SP, we implement write-through caches

to issue stores to the MC in program order. The architecture as-

sumed for EP includes all optimizations mentioned in the state-

of-the-art PLP [14] that includes epoch tracking tables (ETT) and
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Table 1: Simulation Configuration

Processor Configuration
CPU 1 core, OOO, x86_64, 4.00GHz

L1 Cache 8-way, 64KB, 64B block, Access latency: 2 cycles

L2 Cache 512KB, 16-way, 64B block, Access latency: 20 cycles

L3 Cache 4MB, 32-way, 64B block, Access latency: 30 cycles

WPQ 32 entries

Volatile Metadata Cache Configuration
Counter Cache 128KB, 8-way, 64B block

MAC Cache 128KB, 8-way, 64B block

BMT Cache 128KB, 8-way, 64B block

Non-Volatile Root Cache Configuration
nvMC battery-backed SRAM

{512b, 4KB, 32KB, 256KB, 16MB}(default 4KB)

Fully associative, 64B block

Access latency: 2 cycles

REI {2, 4, 8, 16, 32, 64} (default 32)

BMT 8 levels

MAC Latency 40 processor cycles[22, 38]

NVM Parameters
Memory 8 GB PCM, 1200MHz

Write queue: 128 entries, read queue: 64 entries

tRCD/tXAW/tBUSRT/tWR/tRFC/tCL:

55/50/5/150/5/12.5ns[14, 24]

persist tracking tables (PTT), allowing two concurrent epochs while

enforcing ordering between them. An sfence instruction is emu-

lated to enforce persist ordering between stores (for SP) or epochs

(for EP). We model 8GB NVMM with an 8-ary BMT for integrity

verification, resulting in an 8-level BMT.

For the nvMC, we assume a battery-backed SRAM technology

with parameters shown in Table 1. nvMC is fully associative and the

sizes are selected to match the total size of a particular BMT level

in order to cater to the Static BMFs(sbmf ) scheme. For (sbmf), the
system was initialized with that BMT level allocated in the nvMC.

For Dynamic BMFs (dbmf), the nvMC is originally populated with

just the the original BMT root, and subsequent prunes and merges

change the topology at each REI.

To study the source of performance improvement, we analyze

the average tree heights observed with our dbmf implementation.

We also conduct a sensitivity study that varies the nvMC capacity

to study the maximum achievable speedup with sbmf and dbmf.
We also vary the REI frequency to study the impact of varying

the impact of REI. Static and Dynamic BMF nvMC configurations

require a persistent 56b tag store (assuming 64b addresses) and

64B data store, with the addition of a volatile 6-bit access counter

co-located in cachelines for Dynamic BMFs. BMT caches require

the addition of an access counter per cacheline to enable prune

logic, and we assume a 6b counter per cacheline. All access counters

in the nvMC are shifted to prevent counter overflow and reduce

counter inertia between REIs.

Benchmarks We use 20 representative benchmarks from

SPEC2006 [17] to evaluate our proposed BMF update models. All

models are fast forwarded to representative regions and the next

100M instructions are simulated.

Evaluated Schemes The schemes used for evaluation are listed

in Table 2. The baseline secure_wb applies uses secure memory but

without persistency. sp and o3 represent schemes utilizing BMT

for strict persistency and epoch persistency similar to the state-of-

the-art PLP [14]. sp includes sequential BMT root updates, while

o3 includes out-of-order BMT root update and update coalescing

optimizations, which are the most aggressive ones from PLP. Our

BMF schemes are labeled as sbmf (static) and dbmf (dynamic) with

two sets of results for each persistency model. We also evaluate

two memory configurations for each model: ’_full’ indicates pro-
tection of the entire PM, while the other excludes the stack from

the protection, as stack holds temporary data that likely will not

need to be persistent. The latter is the default.

Table 2: Evaluated Schemes

Name Persistency Models
secure_wb (baseline) Secure processor scheme with write-back

caches and NVMM, which does not support

any persistency model

sp Strict persistency with sequential updates to

full-height BMT

o3 Epoch persistency with out-of-order updates

to full-height BMT within an epoch, but in

order across epochs

Name BMF Configurations
sbmf Static Bonsai Merkle Forest with predeter-

mined BMT height applied to sp/o3 models

dbmf Dynamic Bonsai Merkle Forest with dynamic

BMT heights and root designations applied

to sp/o3 models

7 EVALUATION RESULTS
7.1 Summary
The overall performance results are shown in Table 3, which show

the slowdown ratios over baseline, caused by our Static and Dy-

namic BMF schemes compared to the state-of-the-art BMT schemes

with PLP optimizations [14].

Table 3: Performance overheads over baseline caused by our
Static andDynamic BMF schemes versus those caused by the
state-of-the-art BMT schemes with PLP.

Epoch Persistency
Memory coverage o3 o3-sbmf o3-dbmf

Non-stack 8.5% 5.8% 3.5%

Full 59.1% 33.5% 19.3%

Strict Persistency Model
Memory coverage sp sp-sbmf sp-dbmf

Non-stack 426% 345% 89%

Full 1,864% 1,409% 567%

Consistently across all cases, our Dynamic BMF reduces the

performance overheads of BMT by 50-75%. The best performing

configuration for our scheme is with epoch persistency, showing a
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Figure 7: Execution time of strict persistency models with
Static and Dynamic BMF schemes normalized to secure_wb

performance overhead of only 3.5% (19.3% for full memory) com-

pared to the secure_wb baseline without any persistency model.

For strict persistency, dbmf shows 89% overhead (567% for full

memory), reducing overheads by 79.1% (69.6% for full memory)

compared to SP without dbmf. Our sbmf model with EP demon-

strated 5.7% overheads (33.5% for full memory), while SP showed

3.45× slowdown (14.1× for full memory). Now we will analyze the

performance of our schemes in more detail, followed by analyzing

tree height reduction in dbmf s and performance by varying key

design parameters.

7.2 Results for Strict Persistency
Strict persistency has not been recognized as necessary due to its

performance overheads, but we evaluate it because it represents

the worst-case scenario in terms of persist ordering as each store

is atomic durable and ordered w.r.t others. Figure 7 shows the

execution time of conventional BMTs (sp_full) and compared to our

Static BMF (sbmf ) and Dynamic BMF (dbmf ), normalized to the

secure_wb baseline, for full memory coverage (first three bars) and

non-stack memory only (last three bars). Across all benchmarks,

sbmf strictly outperforms sp due to the BMF height reduction over

BMT, while dbmf strictly outperforms sbmf very substantially,

demonstrating Dynamic BMF effectiveness.

To better understand the source of performance overheads, we

measured the persist rate in terms of persists per kilo instruction

(PPKI), and found strong correlation between PPKI and the amount

of slowdowns with BMT. For example, gamess suffers 79× slow-

down with sp-full because its PPKI is very high (100.72 for full

memory, 51.38 PPKI for non-stack). With 8-level BMT, updating the

BMT root from leaf to root takes 8× 40 = 320 cycles. The estimated

IPC is
1000

320×52 = 0.06, close to the actual IPC of 0.061, indicating that

the overhead is dominated by BMT root update ordering. The result

is consistent with what is reported in [14]. With SBMF, 4KB nvMC

allows the reduction of tree height by 2 levels (or 25%). The resulting

back-of-envelop IPC estimation is
1000

240×52 = 0.08, again very close

with the observed IPC of 0.081. This results in a slowdown of 30.2×
which is a reduction of

40.3−30.2
40.3 = 25%, confirming our results. In

general, memory-intensive benchmarks exhibit high overall per-

formance improvement. Among them, mcf is predominantly read
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Figure 8: Execution time of epoch persistency models with
Static and Dynamic BMF schemes normalized to secure_wb
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Figure 9: Comparison of average update path height for
Static and Dynamic BMFs with strict and epoch persistency
models.

intensive and the impact of BMT updates is more limited than oth-

ers. On the other hand, DBMF performance is harder to analyze as

the update tree heights depend on data and changes over time.

7.3 Results for Epoch Persistency
Figure 8 shows the execution time of various schemes for epoch

persistency, normalized to the non-persistent baseline for full mem-

ory protection (first three bars) and non-stack only (last three bars).

We find that the o3 model incurs an average overhead of 8.5% (or

59.1% for full memory), which is much lower than strict persistency

due to the overlapping of BMT updates within an epoch and persist

coalescing that reduces the total number of persists to PM. We

observed a reduction in PPKI from 27.27 (113.75 for full memory)

to 11.18 (33.97 for full memory) when comparing sp to o3.
Despite having less room to improve, our sbmf and dbmf schemes

substantially reduce the performance overheads: compared to o3,
sbmf cuts the overhead by 31.7%, reaching only 5.8% (33.5% for full

memory). However, dbmf cuts the overhead even more by 58.8% to

3.5% (19.3% for full memory protection). The performance improve-

ments of our schemes can again be attributed to the significant

reduction in update path heights, which we will discuss next.
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Figure 10: Update path height distribution and average tree
heights for SP with our DBMF scheme.

7.4 Tree Height Reduction Analysis
To understand why Static and Dynamic BMF are effective in re-

ducing performance overheads, we plot the average update path

heights in Figure 9 for sbmf, dbmf for epoch persistency (o3-dbmf )
and strict persistency (sp-dbmf ), and for the ideal case where nvMC

size is unlimited (all counters’ parent nodes are roots). The tree

height is always 6 for sbmf due to the 4KB nvMC holding all level

2 nodes as BMF roots. dbmf in most cases reduces the average tree

heights to near ideal of 2. Compared to a conventional BMT, the

average tree height is reduced by 87.4%. Only in one benchmark

(soplex) the tree height only goes down to 4.6. However, soplex’s
performance overhead is already very low. Upon closer examina-

tion, we found that the number of REIs triggered was several orders

of magnitude lower compared to other benchmarks due to a very

low PPKI, hence Dynamic BMF has not had much chance to adjust

the BMF topology. When we reran soplex with a longer simulation

window (500M instructions), the PPKI increases and the average

tree height goes down from 4.6 to just 2.7, indicating dbmf ’s effec-
tiveness in adjusting the BMF topology.

Figures 10 and 11 show the breakdown of update/tree heights for

SP and EP with our Dynamic BMF, respectively. The figure shows

that on average, about 80% of the time, the tree heights are only

2, meaning that a change to counter value updates only its parent,

which demonstrates that Dynamic BMF is extremely effective in

reducing tree heights. Dynamic BMF reduces tree heights slightly

more effectively in SP than in EP; the reason is that in SP, writes to

the same counter encryption page are not coalesced, thus tracking

access frequency at a finer granularity than o3.

7.5 Impact of REI Frequency
Figure 12 shows the impact of changing REI sizes from 2 to 64

persists on execution time with epoch persistency. The figure shows

that there is not much impact on execution time. However, there is

a slight increase in execution time on some applications (gamess
and h264ref ) as REI increases. This is because the Dynamic BMF

implementation we choose only alters the BMF slightly on each REI

in order to limit the complexity of BMF prune and merge operations.

Hence, a large REI may result in the BMF taking a long time to

adapt to the access pattern exhibited by the applications.
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Figure 11: Update path height distribution and average tree
heights for EP with our DBMF scheme.
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Figure 12: Execution time of o3-dbmf with different REI fre-
quencies
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Figure 13: Execution time of sp-dbmf with different REI fre-
quencies

Figure 13 shows the impact of changing REI sizes from 2 to 64

persists assuming strict persistency. Overall, there is not much im-

pact on execution time. This is due to strict persistency not allowing

persist coalescing to memory addresses and leaf access frequency

is tracked at a finer granularity, allowing concurrent access to the

same memory address to be the deciding factor in the BMF root

evaluation. With lower REIs, some benchmarks, like bwaves, ob-
served much higher performance overheads. This is because the REI

was not large enough to encompass the reuse distance of memory

addresses, and thus performance improves as the REI increases.

7.6 Cache Capacity Sensitivity
Impact of nvMCCapacity In this experiment, we vary the nvMC

size to study its impact on performance overheads. Figures 14 and
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Figure 14: Execution time of o3-sbmf with different nvMC
sizes.
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Figure 15: Execution time of o3-dbmf with different nvMC
sizes.

15 shows execution time for Static BMF vs. Dynamic SBMF for

different nvMC sizes, assuming epoch persistency. Figure 15 shows

that for dbmf, the execution decreases going from 512 bytes to 4KB

and increasing it beyond 4KB does not improve performance. In

contrast, sbmf keeps on reducing the execution time even until

256KB. This shows that dbmf is much more space efficient than

sbmf; dbmf with 4KB nvMC has a 0.2% overhead compared sbmf
with 256KB nvMC. This demonstrates that Dynamic BMF provides

significant performance improvement and minimal die area costs.

Figures 16 and 17 shows execution time for Static BMFs and

Dynamic BMFs for different nvMC sizes assuming strict persistency.

for Static BMFs, the figure shows that performance improves as the

nvMC capacity increases, as lower levels of the BMT can be fully

persisted, with the ideal capacity persisting all counter leaf parents.

For Dynamic BMFs, the increase in capacity does not improve

performance significantly beyond 4KB, showing the effectiveness

of Dynamic BMFs.

LLC Capacity Sensitivity Figures 18 and 19 show the impact of

LLC capacity on our dbmf scheme with sp and o3 models respec-

tively normalized to secure_wb. As expected, performance improved

as the LLC capacity was increased, with a 19.1% overhead reduction

observed with sp-dbmf and a 8.8% overhead reduction for o3-dbmf.

Metadata Cache Capacity Sensitivity We vary all three meta-

data cache (MDC) capacities to study the impact on our sp-dbmf
(top) and o3-dbmf (bottom) schemes, with our results presented in

Figure 20 and Figure 21. For sp-dbmf, the performance overhead

was reduced by 8.1% when comparing a 128KB to 32KB MDC, while
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Figure 16: Execution time of Static BMF assuming strict per-
sistency with different nvMC sizes.
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Figure 17: Execution time of Dynamic BMF assuming strict
persistency with different nvMC sizes.

0

2

4

6

8

10

12

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

1MB 2MB 4MB

Figure 18: Normalized execution time of sp-dbmf with dif-
ferent LLC capacities

an improvement of <1% was observed for o3-dbmf. This shows that
the MDC capacity does not have a significant impact on our dbmf
schemes.

8 CONCLUSION
Integrity verification and memory encryption are critical compo-

nents of securing persistent memory. While integrity tree root

update ordering was previously exposed as being primarily respon-

sible for performance overhead in securing NVMM, prior work still

demonstrated significant performance slowdowns when reducing
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Figure 19: Normalized execution time of o3-dbmf with dif-
ferent LLC capacities
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Figure 20: BMT cache miss rate of our dbmf scheme with sp
with different MDC capacities
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Figure 21: BMT cache miss rate of our dbmf scheme with o3
with different MDC capacities

this overhead. In this work, we presented Bonsai Merkle Forests
(BMF) and proposed utilizing on-chip non-volatile metadata caches

to support a forest topology in place of conventional trees for in-

tegrity verification. With our Bonsai Merkle Forests, overheads for

strict persistency models were reduced from 426% to 89%, while

epoch persistency models observed a reduction from 8.5% to just

3.5% while using a 4KB non-volatile cache. These mechanisms sig-

nificantly reduce root update ordering overheads, and provide a

practical approach to high performance secure NVM.
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