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Abstract
This paper introduces Genesis, the first compiler designed to sup-
port Hamiltonian Simulation on hybrid continuous-variable (CV)
and discrete-variable (DV) quantum computing systems. Genesis is
a two-level compilation system. At the first level, it decomposes an
input Hamiltonian into basis gates using the native instruction set
of the target hybrid CV-DV quantum computer. At the second level,
it tackles the mapping and routing of qumodes/qubits to implement
long-range interactions for the gates decomposed from the first
level. Rather than a typical implementation that relies on SWAP
primitives similar to qubit-based (or DV-only) systems, we pro-
pose an integrated design of connectivity-aware gate synthesis and
beamsplitter SWAP insertion tailored for hybrid CV-DV systems.
We also introduce an OpenQASM-like domain-specific language
(DSL) named CVDV-QASM to represent Hamiltonian in terms of
Pauli-exponentials and basic gate sequences from the hybrid CV-
DV gate set. Genesis has successfully compiled several important
Hamiltonians, including the Bose-Hubbardmodel, Z2−Higgs model,
Hubbard-Holstein model, Heisenberg model and Electron-vibration
coupling Hamiltonians, which are critical in domains like quan-
tum field theory, condensed matter physics, and quantum chem-
istry. Our implementation is available at Genesis-CVDV-Compiler
https://github.com/ruadapt/Genesis-CVDV-Compiler.
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1 Introduction
To date, most quantum computing architectures are homogeneous,
featuring two-state, discrete-variable (DV) realizations as qubits.
The hybrid continuous-variable discrete-variable (CV-DV) quan-
tum architecture is an emerging platform incorporating both qubits
and qumodes. A qumode has a countable infinity of states in prin-
ciple, thereby providing a larger Hilbert space for computation,
and often has a longer lifetime than that of a qubit. As a result,
qumodes have been an attractive target for quantum error correc-
tion. For instance, superconducting cavity architecture was the first
to achieve memory quantum error correction above the break-even
point [4, 8, 13, 16, 31, 34, 35, 39] with bosonic codes.

Most notably, a hybrid CV-DV system can simulate mixtures of
fermionic and bosonic matter. Simulating physical systems has long
been considered a key killer application of quantum computers, as
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originally proposed by Feynman [12]. While DV qubits can poten-
tially address Fermion simulation challenges, they are poorly suited
for bosonic fields due to the difficulty of mapping bosonic systems
to qubits and implementing bosonic field operators on infinite-
dimensional Hilbert spaces. In contrast, bosonic field operators are
natively available in hardware with bosonic modes or qumodes.
Recent work has demonstrated the great potential of simulating
Fermion-Boson mixtures on hybrid CV-DV quantum processors for
applications such as material discovery [23], molecular simulation
[47, 48], topological models [37], and lattice gauge theory [6].

Figure 1: A typical hybrid CV-DV architecture using the su-
perconducting technology. The qumodes are connected in a
sparse manner. Each qubit connects to a qumode, and there
is no direct connection between qubits [28].

In this paper, we provide compiler support for mapping Hamil-
tonian simulation instances onto hybrid CV-DV processors. Compi-
lation support for hybrid CV-DV architectures is still in its infancy.
Existing tools, such as Bosonic Qiskit [40], StrawberryField [21],
Perceval [49], and Bosehedral [33], offer preliminary support for
programming, simulating, and composing circuits—primarily for
domain-specific applications like Gaussian Boson Sampling (GBS)
or general bosonic circuits. However, none support hybrid CV-DV
Hamiltonian simulation. This compilation process requires syn-
thesizing a circuit from the Hamiltonian operator’s mathematical
representation and mapping the synthesized logical circuit onto a
physical circuit while ensuring compatibility with hardware con-
straints (an example of a superconducting hybrid CV-DV architec-
ture is shown in Fig. 1).

Our work fills this gap. We introduce Genesis, the first com-
prehensive compilation framework for Hamiltonian simulation on
hybrid CV-DV computers. It consists of two levels of compilation:
Level-1 decomposes an n-qubit-m-qumode Hamiltonian into uni-
versal basis gates, while Level-2 compilation deals with hardware
constraints, including topology constraints, multi-qubit gates, and
ancilla qubit/qumode allocation. Our framework successfully com-
piles important Hamiltonians, such as the Bose-Hubbard model,
Z2-Higgs model, Hubbard-Holstein model, and vibration-electron
(vibronic) coupling Hamiltonians, crucial in quantum field theory,
condensed matter physics, and quantum chemistry. We make the
following contributions.

• We propose the first compiler to synthesize circuits from
hybrid CV-DV Hamiltonians using a template-rewriting ap-
proach based on product formulas and trotterization. This

formulation enables automatic rule search and allows further
rule expansion without modifying the core algorithm.

• When synthesizing gates from a Hamiltonian, the universal-
ity of bosonic systems often requires hybrid qubit-qumode
operations. Therefore, the synthesis often requires the alloca-
tion of ancilla qubits or qumodes, as well as the mapping and
routing of these ancilla qubits/qumodes in the computation.
This feature is implemented in our compiler.

• We also provide the first compilation support for multi-qubit
Pauli gate implementation in a hybrid CV-DV system. As
popular hybrid CV-DV architectures do not have connec-
tivity among qubits, rather, only connectivity exists among
qumodes and between qubits and qumodes, we propose to
synthesize multi-qubit Pauli gates by leveraging an effect
similar to phase kickback in DV systems.

• Besides the compiler support, we propose a domain-specific
language (DSL) design for hybrid CV-DV Hamiltonian simu-
lation, which represents Hamiltonians as Pauli strings and
basic gate sequences.

• We conducted extensive experiments, evaluating benchmarks
with 600-1900 multi-qubit Pauli-string Hamiltonian terms
and six key Fermion-Boson Hamiltonian models. We as-
sessed different mapping, routing, and qumode allocation
strategies, including the Floating Qubit approach.

2 Background and Motivation
2.1 Advantage of Hybrid CV-DV Systems over

CV-only and DV-only Systems
Compared with CV-only or DV-only systems, hybrid CV-DV sys-
tems offer several key advantages as summarized in Table 1.

System Characteristics Hybrid CV-DV CV-Only DV-Only

Energy Truncation for Sim-
ulating Bosonic States &
Operators

Not-required Not-required Required

Support for Simulating Na-
tive Bosonic Operators (e.g.
Square-root Factors under
Fock basis)

Easy Easy Non-trivial [6]

Gaussian Resource Gener-
ation Difficulty

Easy Easy Easy [22]

Non-Gaussian Resource
Generation Difficulty

Easy Difficult [46] N/A

Error Channel Complexity Medium Low [28] High

Table 1: Hybrid CV-DV, CV-only and DV-only Systems.

(1) Advantage in simulation: Quantum simulation is one of the
most promising applications of quantum computers. However, sim-
ulating fermion-boson mixtures is challenging for DV systems.
While mapping fermion operations to qubit operations is possible,
representing a bosonic mode with qubits requires truncating its
infinite-dimensional Hilbert space. Moreover, implementing native
bosonic operations in DV hardware is further complicated, for ex-
ample, by the quantum arithmetic needed to realize square-root
factors under the Fock basis [6, 8, 13, 14]. In contrast, CV hardware
employs oscillators with infinite-dimensional Hilbert space and has
intrinsic support for native bosonic operators, but has limited sup-
port for modeling fermions. A hybrid CV-DV architecture combines
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Figure 2: Compilation workflow of Genesis. It first decomposes the Hamiltonian into CV-DV basis gate sets, as well as the Pauli
gate we defined in this paper, in the CVDV-QASM language format. Finally, it considers connectivity constraints, performs the
hardware mapping and routing stage, and outputs physical circuits.

the strengths of both: it harnesses the larger Hilbert space of the CV
systemwhile leveraging discrete qubits to perform fermion-mapped
operations in the simulation of fermion-boson mixtures.

(2) Advantage in providing non-Gaussian resources: Achieving
universal CV-based quantum computation requires non-Gaussian
operations, such as cubic interactions [28, 46]. However, non-Gaussian
gates are challenging to realize on CV-only platforms. Alternatively,
universal control of oscillators can also be achieved by the addition
of qubit-controlled oscillator gates, which are more straightforward
and much less costly and have been demonstrated successfully in
the lab for superconducting-cavity circuits [11, 42], trapped-ion,
and neutral-atom architectures [3, 7, 15, 17, 38].

(3) Advantage in error modeling and QEC: In many CV imple-
mentations (such as superconducting resonators or optical modes),
photon loss (plus minor phase noise) is the primary error source,
yielding Gaussian noise channels [9, 43, 47]. Notably, error mecha-
nisms in CV systems are simpler for a single oscillator with many
levels than for multiple qubits of equivalent total dimensionality. Us-
ing multiple qubits to represent one oscillator introduces complex
error sources, such as crosstalk and correlated errors across control
lines, gates, and measurements. In contrast, CV’s core error model
is comparatively easier to characterize and correct. This simplicity
is why bosonic error-correcting codes were the first to achieve the
memory break-even point [34, 39]. Hybrid CV-DV systems must
address both oscillator photon loss and qubit errors but typically
require only one (or a few) qubits per oscillator, reducing qubit
crosstalk and simplifying error correction and fault tolerance.

2.2 Hamiltonian Simulation
Hamiltonian Simulation plays a crucial role in understanding the
quantum dynamics of various systems and scenarios in quantum
physics, chemistry, and materials science [10]. A universal quantum
simulator is built upon the time evolution operator 𝑒−𝑖𝐻𝑡 , where 𝐻 ,
known asHamiltonian, typically represents a Hermitian operator,
and 𝑡 represents time (here and the rest of the paper, we take the
Planck’s constant as ℏ = 1). The goal of the Hamiltonian simulation
is to decompose the operator 𝑒−𝑖𝐻𝑡 into a sequence of basis gates for

a given hardware backend. This decomposition enables quantum
computers to approximate the system’s evolution over time.

A generic n-qubit-m-qumode Hamiltonian for a hybrid CV-DV
quantum system can be represented as follows:

𝐻 =

4𝑛−1∑︁
𝑘=0

𝑃𝑘ℎ𝑘 (𝑎1, 𝑎†1, 𝑎2, 𝑎
†
2,· · · , 𝑎𝑚, 𝑎

†
𝑚) (1)

The operator 𝑃𝑘 represents an element of the Pauli basis (𝑋,𝑌, 𝑍, 𝐼 )
on 𝑛 Qubits, where 𝑘 = 0, 1, . . . , 4𝑛 − 1. The function ℎ𝑘 (𝑎𝑖 , 𝑎†𝑖 ) is a
finite-degree polynomial in terms of the annihilation𝑎𝑖 and creation
operator 𝑎†

𝑖
on qumode 𝑖 .

An example is the following spin-Holstein model on N qubits and
N qumodes [23]. The first term acts on the 𝑖−th qubit and qumode
jointly, and the second term acts on the 𝑖−th qumode:

𝐻 =

𝑁∑︁
𝑖

𝑔𝑖

2
𝑍𝑖 (𝑎†𝑖 + 𝑎𝑖 ) +

𝑁∑︁
𝑖

𝑔𝑖

2
𝐼 (𝑎†

𝑖
+ 𝑎𝑖 ) (2)

The compilation goal is to map the time evolution of a Hamil-
tonian, i.e., 𝑒−𝑖𝐻𝑡 , into a minimum and efficient set of basis gates
on the hardware. The basis gates include single-qubit gate rota-
tion, single-qumode gates, multi-qumode, and hybrid qubit-qumode
gates. A representative gate set is shown in Table 2. Note that two-
qubit gates are not included in the basis gates, as there is no direct
connection between qubits.

2.3 The Challenges for Compiling A Hybrid
CV-DV Hamiltonian Application

Compiling Hamiltonian simulation on a CV-DV system is more
challenging than compiling that on a DV system. It must account for
(a) unique qumode gate decomposition rules, (b) multi-qubit Pauli-
string synthesis, and (3) architecture constraints when performing
Qubit/Qumode mapping and routing. Specifically, we describe three
fundamental differences and challenges:
Challenge 1: Qumode-focused Gate Synthesis

We need to synthesize qumode-only gates for the Hermitian
polynomial of annihilation and creation operators of qumodes. For
simple Hamiltonian terms, we can perform pattern matching to
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identify the right basis gate to implement them. For instance, for
the Hamiltonian in Equation 2, through Trotterization [29], we
can convert 𝑒−𝑖𝐻𝑡 into a product of two terms 𝑒−𝑖

𝑔𝑖
2 𝑍𝑖 (𝑎†𝑖 +𝑎𝑖 )𝑡 and

𝑒−𝑖
𝑔𝑖
2 (𝑎†

𝑖
+𝑎𝑖 )𝑡 for each 𝑖 .

The first term can be pattern-matched to the Control Displace-
ment gate 𝑒𝜎𝑧 (𝛼𝑎

†−𝛼∗𝑎) in Table 2, by setting the displacement
parameter 𝛼 = −𝑖 𝑔𝑖2 . The second term can be pattern matched to
the displacement gate 𝑒𝜎𝑧 (𝛼𝑎

†−𝛼∗𝑎) by parameterizing the displace-
ment 𝛼 = −𝑖 𝑔𝑖2 .

Type Gate Name Definition

Qubit
𝑥,𝑦 Rotation 𝑟𝜑 (𝜃 ) = exp

[
−𝑖 𝜃2 (cos𝜑𝜎𝑥 + sin𝜑𝜎𝑦)

]
𝑧 Rotation 𝑟𝑧 (𝜃 ) = exp

(
−𝑖 𝜃2𝜎𝑧

)
Qumode

Phase-Space Rotation R(𝜃 ) = exp
[
−𝑖𝜃𝑎†𝑎

]
Displacement D(𝛼) = exp

[(
𝛼𝑎† − 𝛼∗𝑎

)]
Beam-Splitter BS(𝜃, 𝜑) = exp

[
−𝑖 𝜃2

(
𝑒𝑖𝜑𝑎†𝑏 + 𝑒−𝑖𝜑𝑎𝑏†

)]

Hybrid

Conditional Phase-Space Rotation CR(𝜃 ) = exp
[
−𝑖 𝜃2𝜎𝑧𝑎

†𝑎
]

Conditional Parity CP = exp
[
−𝑖 𝜋2 𝜎𝑧𝑎

†𝑎
]

Conditional Displacement CD(𝛼) = exp
[
𝜎𝑧

(
𝛼𝑎† − 𝛼∗𝑎

)]
Conditional Beam-Splitter CBS(𝜃, 𝜑) = exp

[
−𝑖 𝜃2𝜎𝑧

(
𝑒𝑖𝜑𝑎†𝑏 + 𝑒−𝑖𝜑𝑎𝑏†

)]
Rabi Interaction RB(𝜃 ) = exp

[
−𝑖𝜎𝑥

(
𝜃𝑎† − 𝜃∗𝑎

)]
Table 2: Basis gates in the Hybrid CV-DV System, where 𝜎𝑖
terms represent Pauli terms acting on Qubits, e.g., 𝜎𝑧 is the
Pauli-Z operator. 𝑎 and 𝑎† are the annihilation and creation
operators acting on Qumode. Between different Qubits and
Qumode is the tensor product ⊗. We omit the ⊗ symbol fol-
lowing the convention in the physics literature [20]. Single-
qubit or single-qumode gates typically take around 20 ns [11].
A two-qumode gate or hybrid qubit-qumode gate typically
runs in the range of 400−1000 ns [5, 11].

While we have a comprehensive basis gate set of Qubit and
Qumode operators, not every term in a Hamiltonian (after Trotteri-
zation) can be directly mapped to a basis gate or a combination of
basis gates in the quantum hardware. For instance, the term (𝑎†)2𝑎2
is a Kerr non-linearity [20] that performs a simulation of the Kerr
Effect in optics, and it is not easy to be directly implemented in
the hardware. It is, in fact, a complex non-linear term requiring
a product formula and multiple steps of gate decomposition. In
the past, such decomposition was done manually by physicists
or theorists. This manual decomposition approach may be time-
consuming and error-prone. Furthermore, the hardware vendors
typically provide an overcomplete gate set for more flexible and
robust selections of gate operations. This further complicates the
manual decomposition process.
Challenge 2: Multi-Qubit Pauli-string Synthesis

Since we aim to support the simulation of a generic hybrid CV-
DV Hamiltonian, we need to consider qubit-only terms – Pauli-
string terms. The simulation of Pauli-string terms [18, 25, 26, 36] in
Hamiltonians has been extensively studied for DV systems. A Pauli-
string representation denotes tensor products of Pauli-matrices.
Unlike qubits that are connected in a DV system, qubits are typi-
cally not directly connected in a hybrid CV-DV system, which is
built upon either superconducting or trapped-ion devices [28]. In-
stead, qubits are connected to qumodes, and qumodes are connected

(more details discussed in Challenge 3). A previous idea that uses a
sequence of (control) displacement gates to cancel out the effect on
a qumode and then “kick back” the phase to the qubits has success-
fully implemented 𝑅𝑍𝑍 , CNOT, and Toffoli gates. Inspired by this
idea, we develop a method to synthesize an arbitrary multi-qubit
Pauli-string Hamiltonian by leveraging a multi-qubit Controlled
Displacement gate and a trajectory of Displacement gates with
respect to different eigenvectors. Moreover, this technique could
be extended to create rules for qumode operations controlled by
arbitrary multi-qubit Pauli-strings.
Challenge 3: Limited Connectivity Constraints

After gate synthesis from a Hamiltonian, there are three types
of gates: two-qumode gates, single-qubit/qumode gates, and hy-
brid qubit-qumode gates. These gates are generated at the logical
level. When mapped to the physical hardware layer, there may be
long-range interactions. Just like DV architectures, in the hybrid
CV-DV architectures, qubits and qumodes are often not all-to-all
connected. Most current hybrid CV-DV systems are designed with
either only qumodes connected among themselves, or qubits con-
nected among themselves, but not both at the same time, due to
crosstalk issues [28]. We focus on the architecture where qumodes
are connected, and qubits can be indirectly connected via qumodes.
An example of a superconducting CV-DV device is shown in Fig.
1. The reason is that a qumode has an infinite energy level and
can store the information of a qubit, but not vice versa. Also, for
the simulation of Fermion-Boson-mixture, the connectivity among
qumodes naturally allows the modeling of bosonic interactions.

Qubit/qumode mapping and routing are tightly connected with
circuit synthesis described in Challenge 1 and 2. First of all, the
synthesis rules allow certain flexibilities, such as the commutation
of gates, which can be leveraged to improve the mapping and rout-
ing stage to reduce the number of intrinsic SWAP gates. Moreover,
the synthesis approach often requires ancilla qumodes, and most
importantly, in certain cases, such as compiling multi-qubit entan-
glement operations with control displacement, it does not require
the ancilla qumode to be in the vacuum (ground) state. Rather, it
can return the ancilla qumode back to its original state after the
sequence is completed for synthesizing a qubit/qumode operation
of interest. That means any qumode can be used to assist synthesis
and also can be leveraged to improve the mapping and routing effi-
ciency in the hardware circuit compilation stage. This is different
frommapping and routing in the traditional DV system, where only
SWAP insertion is considered. In certain cases, it can be modeled
as a traveling salesman problem (TSP) as described in our Section
3.4.1. We develop a synergistic mapping and routing approach that
considers the flexibilities in circuit synthesis.

Summary: Overall, our work is the first comprehensive com-
piler framework that addresses the compilation of Hamilton-
ian simulation on hybrid CV-DV architectures. It addresses
both the gate synthesis and hardware mapping problems, as well
as identifies and models the unique compilation problems that only
arise in the hybrid CV-DV architecture rather than in the tradi-
tional DV context. We show our workflow in Fig. 2, which shows
the process of how a given Hamiltonian is decomposed into phys-
ical circuits step by step by our methods. We present our design
details in Section 3 corresponding to each of the three challenges.
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2.4 Current State of CV-DV Technologies
CV-DV systems can be implementedwith superconducting, trapped-
ion, or neutral atom devices. In superconducting devices, transmons
are used as two-level systems (DV), and microwave resonators stor-
ing photons are used as harmonic oscillators (CV). In trapped-ion
devices, collective motional modes are oscillators, while ions’ in-
ternal degrees of freedom are used as qubits. With neutral atoms,
atomic motional modes in the optical tweezer are oscillators, and
neutral atoms’ internal degrees of freedom are used as qubits.

All three technologies have been demonstrated successfully in
labs. Superconducting devices typically operate in GHz, trapped-ion
in MHz, and neutral atom in KHz. Among them, superconducting
devices offer advantages compared to the other two architectures,
such as fast and reliable basis gate sets. For instance, microwave-
controlled beam-splitter gates permit fast, high-fidelity oscillator
SWAPs, usually in 100 ns, with 99.92% fidelity in the single pho-
ton subspace [30]. Hence, the superconducting architecture is our
primary evaluation platform in this work, and our work can be
extended to other hybrid CV-DV architectures.

3 Our Compilation Framework
As shown in Equation 1, the Hamiltonian consists of contributions
from Pauli operators (𝑋,𝑌, 𝑍, 𝐼 ) and qumode operators (𝑎†

𝑖
, 𝑎𝑖 ). We

synthesize them into a physical circuit with basis gates while con-
sidering hardware connectivity constraints in CV-DV systems.

3.1 Qumode Gate Synthesis
3.1.1 Pattern Matching. For sequences involving first or second-
order Hermitian polynomials of annihilation/creation operators,
we first try to map them to the basic gates in the hybrid CV-DV gate
set (Table 2) through pattern matching. The corresponding basic
gates are applied directly if the operators align with specific gate
patterns with parameterization – most of the bosonic gates have
continuous parameters. These sequences can then be synthesized
into implementable gate operations. For example, common terms
like 𝑎†𝑎 and (𝑎† − 𝑎) can be mapped to the Phase-Space Rotation
gate and the Displacement gate, respectively, as shown below:

𝑒 (−𝑡𝑖𝑎
†𝑎) → 𝑅(𝑡), where 𝑅(𝜃 ) = 𝑒−𝑖𝜃𝑎

†𝑎

𝑒 (3𝑖𝑎
†+3𝑖𝑎) → 𝐷 (3𝑖), where 𝐷 (𝛼) = 𝑒𝛼𝑎

†−𝛼∗𝑎
(3)

The basic gate set in Table 2 defines the matching rules, which
allow further extension for wider functionally or architecture-
specific gates. However, it only works for simple and fine-grained
qumode operator sequences. For complex and large-scale annihi-
lation/creation operator polynomials, we propose the following
recursive decomposition process to synthesize them.

3.1.2 Template Matching Decomposition and Approximation. Most
Hamiltonians are not directly implementable on quantum hardware
and require further decomposition and approximation. Two com-
mon methods for Hamiltonian decomposition are Trotterization
and the Baker Campbell Hausdorff (BCH) formula, both widely
used in quantum circuit synthesis [1, 20, 27, 32].

Trotterization:The Trotter-Suzuki decomposition approximates
the time evolution operator by breaking it into simplified exponen-
tials:

𝑒 (𝑀+𝑁 )𝑡 ≈
(
𝑒𝑀𝑡 ′𝑒𝑁𝑡 ′

)𝑛
, (4)

where 𝑀 and 𝑁 are parts of the Hamiltonian, 𝑡 ′ = 𝑡/𝑛, and 𝑛 is
the number of Trotter steps. This method is particularly effective
for approximating long-time evolution by transforming it into dis-
crete, simplified steps. The purpose of Trotterization is to break
a Hamiltonian into a sum of terms, which later can be used for
approximation as products of small matrix exponentials.

Baker Campbell Hausdorff (BCH): The BCH formula is used
to decompose the time evolution operator with non-commuting
terms, allowing for a systematic approximation:

𝑒 [𝑀,𝑁 ]𝑡2 ≈ 𝑒𝑀𝑡𝑒𝑁𝑡𝑒−𝑀𝑡𝑒−𝑁𝑡 . (5)

where [𝑀, 𝑁 ] = 𝑀𝑁 − 𝑁𝑀 is the commutator. This approach is
most suitable for short-time evolution or small non-commutative
contributions. BCH is useful, as it can be used to help create a
product of terms.

Both Trotterization and BCH can be approximated to an arbitrary
precision with a large enough order. For the BCH formula, we use
the second-order approximation. Trotter will affect the number of
gates by repeating the same gate sequence 𝑛 times, but each gate
has a smaller parameter and has a smaller duration. The overall
evolution time is the same after Trotterization.

Consider the following commutator (assuming A and B are
qumode operators):

[𝜎𝑧 ⊗ 𝐴, 𝐼 ⊗ 𝐵] = 𝜎𝑧 ⊗ 𝐴𝐵 − 𝜎𝑧 ⊗ 𝐵𝐴 = 𝜎𝑧 [𝐴, 𝐵] . (6)

Now also consider that ( [𝐴, 𝐵] + {𝐴, 𝐵})/2 = 𝐴𝐵, where {𝐴, 𝐵} =
𝐴𝐵 + 𝐵𝐴 is the anticommutator, the implication is that we can im-
plement a product of terms of 𝑎 and 𝑎† operators if 𝜎𝑧 {𝐴, 𝐵}
can be implemented. Fortunately, Kang et al. [20] provides an imple-
mentation of 𝜎𝑧 {𝐴, 𝐵} on CV-DV architecture, as well as another
version of [𝐴, 𝐵] implementation, which is different from ours in
Equation 6. These altogether set a foundation for the template-
rewriting-based approach we propose in this paper. We list all these
rules in Table 3. With basic sums and products rules, we can re-
cursively break a Hamiltonian down into sums and products until
we reach a point where the term of interest matches a basis gate
template in Table 2. We describe the recursive template matching
process in the next section.

In Table 3, For a qubit⊗qumode system, the Hamiltonian pattern
B𝑀 :

B𝑀 =

(
0 𝑀

𝑀† 0

)
,

as a Hermitian operator acting on the combined Hilbert space
H2 ⊗ HΛ+1, whereH2 is the qubit Hilbert space andHΛ+1 is the
qumode Hilbert space.

Certain decomposition rules in Table 3 represent that the target
operator is in a block encoding form. For instance, we only need
the𝑀𝑁 component in the top-left of the Hamiltonian below.(

2𝑀𝑁 0
0 −𝑁𝑀 − (𝑁𝑀)†

)
. (7)
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Rules Operator Template Conditions Decomposition Output Reference Precision

1 exp(𝑀𝑡 + 𝑁𝑡) ≈ Trotter(𝑀𝑡, 𝑁𝑡) (exp(𝑀𝑡/𝑘)exp(𝑁𝑡/𝑘))𝑘 Trotterization Approx

2 exp( [𝑀𝑡, 𝑁𝑡]) ≈ BCH(𝑀𝑡, 𝑁𝑡) exp(𝑀𝑡)exp(𝑁𝑡)exp(−𝑀𝑡)exp(−𝑁𝑡) BCH Approx

3 exp(𝑡2 [𝑀, 𝑁 ]) 𝑀, 𝑁 Hermitian exp( [𝑖𝑡𝜎𝑖𝑁, 𝑖𝑡𝜎𝑖𝑀]) [20] Exact

4 exp(−𝑖𝑡2𝜎𝑖 {𝑀, 𝑁 }) 𝑀, 𝑁 Hermitian exp( [𝑖𝑡𝜎 𝑗𝑀, 𝑖𝑡𝜎𝑘𝑁 ]) [20] Exact

5 exp(−𝑖𝑡2𝜎𝑧 [𝑀, 𝑁 ]) exp( [(𝑖𝑡𝑁 , 𝑖𝑡𝜎𝑧𝑀]) This paper Exact

6 exp(𝑡2𝜎𝑧 ((𝑀𝑁 − (𝑀𝑁 )†))) [𝑀, 𝑁 ] = 0 exp( [𝑋 · 𝑖𝑡B𝑁 · 𝑋, 𝑖𝑡B𝑀 ]) [20] Exact

7 exp(𝑖𝑡2𝜎𝑧 ((𝑀𝑁 + (𝑀𝑁 )†))) [𝑀, 𝑁 ] = 0 exp( [𝑆 · 𝑖𝑡B𝑀 · 𝑆†, 𝑋 · 𝑖𝑡B𝑁 · 𝑋 ]) [20] Exact

8 exp ©«−2𝑖𝑡 ©«
𝑀𝑁 0

0 −𝑀𝑁

ª®¬ª®¬ 𝑀, 𝑁 Hermitian exp(−𝑖𝑡𝜎𝑧 [𝑀, 𝑁 ] − 𝑖𝑡𝜎𝑧 {𝑀, 𝑁 }) This paper Exact

9 exp ©«2𝑖𝑡2 ©«
𝑀𝑁 0

0 −𝑀𝑁

ª®¬ª®¬
[𝑀, 𝑁 ] = 0

𝑀𝑁 = (𝑀𝑁 )†
exp( [(𝑆 · 𝑖𝑡B𝑀 · 𝑆†, 𝑋 · 𝑖𝑡B𝑁 · 𝑋 ]) [20] Exact

10 exp (2𝑖𝑡B𝑀𝑁 ) [𝑀, 𝑁 ] = 0 𝑋 · exp(𝑡𝜎𝑦 (𝑀𝑁 − (𝑀𝑁 )†) + 𝑖𝑡𝜎𝑥 (𝑀𝑁 + (𝑀𝑁 )†)) · 𝑋 [20] Exact

11 exp ©«𝑖𝑡 ©«
2𝑀𝑁 0

0 −𝑁𝑀 − (𝑁𝑀)†
ª®¬ª®¬ 𝑀𝑁 = (𝑀𝑁 )† exp( [𝑆 · 𝑖𝑡B𝑀 · 𝑆†, 𝑋 · 𝑖𝑡B𝑁 · 𝑋 ]) [20] Exact

12 B𝑎 = exp ©«2𝑖𝛼 ©«
0 𝑎

𝑎† 0
ª®¬ª®¬ 𝛼 = 𝛼∗ exp(𝑖 (𝜋/2)𝑎†𝑎)exp(𝑖 (𝛼 (𝑎† + 𝑎)) ⊗ 𝜎𝑦)exp(−𝑖 (𝜋/2)𝑎†𝑎)exp(𝑖 (𝛼 (𝑎† + 𝑎)) ⊗ 𝜎𝑥 ) [20] Approx

13 B𝑎† = exp ©«2𝑖𝛼 ©«
0 𝑎†

𝑎 0
ª®¬ª®¬ 𝛼 = 𝛼∗ exp(𝑖 (𝜋/2)𝑎†𝑎)exp(𝑖 (𝛼 (𝑎† + 𝑎)) ⊗ 𝜎𝑦)exp(−𝑖 (𝜋/2)𝑎†𝑎)exp(−𝑖 (𝛼 (𝑎† + 𝑎)) ⊗ 𝜎𝑥 ) This paper Approx

14 𝑒 (𝑃1𝑃2 · · ·𝑃𝑛 ) (𝛼𝑎
†
𝑘
−𝛼∗𝑎𝑘 ) Multi-qubit-controlled displacement: Right hand side (RHS) of Equation (11) first line [28] Exact

15 𝑒2𝑖𝛼
2𝑃1𝑃2 · · ·𝑃𝑛 Multi-Pauli Exponential: Right hand side (RHS) of Equation (9) first line This Paper Exact

16 All Native Gates RHS in Table 2 All Native Gates Left Hand Side (LHS) Table 2 [28] Exact

Table 3: Decomposition rules for operators in hybrid CV-DV systems with corresponding conditions. 𝑋 and 𝑆 represent Pauli-X
and phase gates, implemented using the single-qubit rotation gates in Table 2. All rules are exact except rules 1, 2, 12, and 13,
which are subject to Trotter and BCH approximation errors with respect to the order of Trotter or BCH.

In a qubit-qumode system, an operator O =

(
𝐴 𝐵

𝐶 𝐷

)
can be ex-

pressed as:

O = |0⟩ ⟨0| ⊗ 𝐴 + |0⟩ ⟨1| ⊗ 𝐵 + |1⟩ ⟨0| ⊗ 𝐶 + |1⟩ ⟨1| ⊗ 𝐷.

Projecting onto the subspace associated with |0⟩ by setting the
ancilla qubit to |0⟩, the effective operator becomes ⟨0|O|0⟩ = 𝐴,
assuming 𝐶 = 0. Terms involving |0⟩ ⟨1| and |1⟩ ⟨1| vanish due to
orthogonality. Thus, by initializing the ancilla and zeroing specific
components (e.g., 𝐶 = 0), we can isolate and simplify blocks of the
operator matrix for easier decomposition. If we take the matrix
exponential of O, let 𝐵 = 𝐶 = 0, since 𝐴 is on the diagonal, we can
also implement 𝑒𝐴 via 𝑒O via the block encoding.

3.1.3 Rule-Based Recursive Template Matching for Hamiltonian
Decomposition. Section 3.1.1 introduces template matching rules
for synthesizing operators into gates, while Section 3.1.2 extends
these rules to decompose operator sequences. To decompose com-
plex Hamiltonians, recursive steps andmultiple decomposition
paths are needed. To enable scalable and automated Hamiltonian
simulation, we transform the decomposition task into a Template
Matching compilation. This recursive process applies gate syn-
thesis and decomposition rules iteratively to input sequences of
annihilation and creation operators so as to reduce a Hamiltonian
to basic gates in the Hybrid CV-DV gate set.

Next, we use an example, Hamiltonian in Equation 8, to illustrate
the decomposition process. We first apply Rule 1, the Trotterization

formula, to approximate it as a product of two exponential operators.
As Rule 1 and Rule 2 are common intermediate steps in many
decomposition Rules, we omit their detailed discussion here.

exp(−𝑖𝐻𝑡) = exp
(
− 𝑖 (𝜔𝑎†𝑎 + 𝜅

2
(𝑎†)2𝑎2)𝑡

)
≈
(
exp(−𝑖𝜔𝑎†𝑎 𝑡

𝑘
) · exp(−𝑖 𝜅

2
(𝑎†)2𝑎2 𝑡

𝑘
)
)𝑘 (8)

Rule 1 separates the linear term 𝑎†𝑎 and nonlinear term (𝑎†)2𝑎2.
Each term is then decomposed into basic gates in the Hybrid CV-DV
gate set. For the linear term 𝑎†𝑎, it is synthesized as a Phase-Space
Rotation gate using the rules from Section 3.1.1.

Decomposing the nonlinear term (𝑎†)2𝑎2 is challenging due
to the lack of a matching basis gate. This would incur recursively
applying the templatematching rules from Section 3.1.2 or Table 3 to
simplify it. The process follows a recursive search tree, where nodes
represent decomposition states (current terms and their settings),
and edges correspond to synthesis rules from Tables 2-3.

For a complex term, there may exist multiple ways to break it
into subterms,𝑀 and 𝑁 in Table 3. Fig. 3 shows three possible meth-
ods for splitting (𝑎†)2𝑎2 into𝑀 and 𝑁 . This introduces additional
complexity or opportunity to the decomposition process due to the
multipath selection.

To decompose (𝑎†)2𝑎2, we select a splitting method for 𝑀, 𝑁 ,
then apply the template matching rules from Table 3. First, we
check the conditions for each rule and filter out those that don’t
apply. Next, we identify the operator templates for 𝑀 and 𝑁 , such
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Figure 3: Decomposing (𝑎†)2𝑎2 into three child states, i.e.,
splitting it into subterms𝑀 and 𝑁 using three methods.

as𝑀𝑁 , [𝑀, 𝑁 ], {𝑀, 𝑁 },𝑀𝑁 ± (𝑀𝑁 )†, or B𝑀𝑁 , and proceed with
the decomposition accordingly.

We use Depth-First Search (DFS) with backtracking to traverse
the recursive decomposition tree, exploring paths deeply and stor-
ing valid decomposition paths for evaluation. Dead ends occur
when no rule further reduces the operator sequence. The algorithm
then backtracks to the last valid node, prunes unnecessary branches,
and explores alternative paths.

Handling Dead Ends: For instance, if 𝑀 = 𝑎† and 𝑁 = 𝑎†𝑎2,
Rule 11 from Table 3 applies as 𝑀𝑁 = (𝑀𝑁 )†. While 𝑀 matches
a basic gate, 𝑁 (𝑎†𝑎2) requires further decomposition. The path
reaches a dead end after trying three splitting methods for 𝑁 with-
out success. The algorithm then discards this branch and backtracks
to try an alternative decomposition, such as𝑀 = (𝑎†)2 and 𝑁 = 𝑎2.

Step 1: For𝑀 = (𝑎†)2 and 𝑁 = 𝑎2, the condition𝑀𝑁 = (𝑀𝑁 )†
holds, allowing Rule 11 to be applied. This decomposes the term
into two subterms, (𝑆 · 𝑖𝑡B𝑀 · 𝑆†) and (𝑋 · 𝑖𝑡B𝑁 · 𝑋 ).

Step 2: One of subterm (𝑎†)2 is further decomposed into𝑀 = 𝑎†

and 𝑁 = 𝑎†, satisfying the condition [𝑀, 𝑁 ] = 0 and matching the
Block Encoding template. Rule 10 is applied to produce two new
subterms: 𝑖𝑡𝜎𝑥 (𝑀𝑁 + (𝑀𝑁 )†) and 𝑡𝜎𝑦 (𝑀𝑁 − (𝑀𝑁 )†).

Step 3: At this stage,𝑀 = 𝑎† and 𝑁 = 𝑎† again. Rule 6 is applied,
decomposing the term into (𝑆 ·𝑖𝑡B𝑀 ·𝑆†) and (𝑋 ·𝑖𝑡B𝑁 ·𝑋 ), further
simplifying the operators.

Step 4: The Block Encoding template is then decomposed into a
sequence of simplified annihilation and creation operators using
Rule 13.

Step 5: Finally, the resulting sequence is synthesized into Phase-
Space Rotation and Displacement gates from the hybrid CV-DV
gate set. The complete 5-step recursive Template Matching decom-
position and gate synthesis process is illustrated in Fig. 4.
Discussion:Ourmechanism is designed to be extension-friendly,
reuse-friendly, and customization-friendly. When expanding
two rule sets, such as adding new architecture-specific gates or
decomposition rules, our template matching and implementation
mechanism remains unaffected. Additionally, we can customize
cost metrics, such as fidelity or decomposition approximation, by
extending our template-matching into a cost-optimized framework.

Hamiltonian decomposition and gate synthesis are highly chal-
lenging tasks. To the best of our knowledge, our work is the first to
automatically decompose the six general Hamiltonian models de-
scribed in Section 4 for the CV-DV system. Our evaluation indicates

Figure 4: Recursive decomposition and gate synthesis of
(𝑎†)2𝑎2 into a sequence of basic gates. The red circle indicates
the template matching rules from the Decomposition Rules
Set (Table 3), and the blue square represents the template
matching rules from the hybrid CV-DV gate set (Table 2).

that the decomposition and synthesis of a given Hamiltonian opera-
tor have limited viable pathways. As a result, the trade-offs between
latency, gate count, and error rate are not a primary concern at
this stage, given the scarcity of successful decomposition pathways.
However, providing support to choose among different decompo-
sition and synthesis pathways should be a feasible extension. We
leave this extension of our compiler as our future work.

3.2 Multi-qubit Pauli-string Synthesis
We propose a scheme to synthesize an arbitrary multi-qubit Pauli-
string on hybrid CV-DV platforms. It is inspired by phase kickback
in DV systems, where the phase of the control qubit is influenced
by the operation on the target qubits. In our approach, we use
qumodes as a medium to pass entanglement among qubits through
a sequence of Conditional Displacement gates, i.e., qubit-controlled
qumode Displacement, and unconditional Displacement gates such
that the desired operation is achieved on qubits while the effects
on qumodes cancel.

We propose, for the first time, the multi-Pauli exponential for
the CV-DV system in this paper, that is, an arbitrary Pauli-string
exponential for a hybrid CV-DV system built upon displacement
and multi-qubit control displacement gates.

The detailed implementation follows a structured decomposition:

𝑈 = 𝐷𝑘 (𝑖𝛼)𝐶𝐷 (𝑘,𝑃1· · ·𝑛 ) (−𝛼) 𝐷𝑘 (−𝑖𝛼)𝐶𝐷 (𝑘,𝑃1· · ·𝑛 ) (𝛼)

= 𝑒2𝑖𝛼
2𝑃1𝑃2 · · ·𝑃𝑛

(9)
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where 𝑃1𝑃2 · · · 𝑃𝑛 represents the desired multi-qubit Pauli string
𝑃1⊗𝑃2⊗ · · ·⊗𝑃𝑛 ,𝐷𝑘 (𝑚) is a displacement of𝑚 to the 𝑘-th qumode,
and 𝐶𝐷 (𝑘,𝑃1· · ·𝑛 ) (−𝛼) and 𝐶𝐷 (𝑘,𝑃1· · ·𝑛 ) (𝛼) are controlled displace-
ment of ±𝛼 . During the operation, displacement effects on qumodes
return them to the original states, kicking back an overall phase to
the qubits, akin to phase kickback in DV systems. This is built on
Liu et al.[28], which used ancillary qumodes to implement CNOT
and 𝑅𝑍𝑍 and single-qubit gates. We extend their approach to cover
arbitrary multi-qubit operations with machine compilation.

An example with one qubit and one qumode is as follows.

𝑈 = 𝐷𝑘 (𝑖𝛼)𝐶𝐷𝑘,𝑃1 (𝛼,−𝛼)𝐷 (−𝑖𝛼)𝐶𝐷𝑘,𝑍 (−𝛼, 𝛼)

= 𝑒2𝑖𝛼
2𝑍

(10)

If we set 𝑃1 as the Pauli-Z operator, 𝐶𝐷𝑘,𝑍 (𝑚) applies a qubit-
controlled Displacement gate to the 𝑘-th qumode, with 𝐷 (𝑚) for
|0⟩ and 𝐷 (−𝑚) for |1⟩ with respect to the state of the first qubit,
this exactly implements 𝑒2𝑖𝛼

2𝑍 .
Our new multi-Pauli exponential in Equation (9) makes use of a

multi-qubit controlled CD gate proposed by Liu et al.[28], as below.

CD(𝑘,𝑃1𝑃2 · · ·𝑃𝑛 ) (𝛼) = 𝑈
†
seq𝐷 (𝑖𝑛𝛼)𝑈seq

= 𝑒 (𝑃1𝑃2 · · ·𝑃𝑛 ) (𝛼𝑎
†
𝑘
−𝛼∗𝑎𝑘 )

(11)

where𝑈seq =
∏𝑛

𝑗 𝑒
𝑖𝜋𝑃 𝑗𝑎

†
𝑘
𝑎𝑘/2 is a sequence of Control Parity gates

(in Table 2) conjugated by Clifford gates, with the 𝑗−th qubit control-
ling the 𝑘−th qumode. It acts as a Control Parity gate for 𝑃 𝑗 = 𝑍 . For
𝑃 𝑗 = 𝑋 , the Control Parity gate must be conjugated with Hadamard
(𝐻 ) gates, and for 𝑃 𝑗 = 𝑌 , with 𝐻 and 𝑆† gates.

Essentially, this method combines unconditional Displacement
and Control Parity gates to construct an arbitrary multi-qubit Pauli-
string term, requiring only a single ancillary qumode. The approach
is agnostic to the state of the ancilla qumode, with the an-
cilla qumode returning to its initial state after the operation. This
flexibility supports efficient resource allocation and specific
optimization goals, benefiting mapping and routing.

The example in Fig. 5 illustrates how an ancilla qumode travels in
the physical circuit, visiting every qubit 𝐴, 𝐵, · · · , 𝑁 , to implement
a CD gate for all qubits involved in the Pauli-string.

Figure 5: An ancilla qumode interacts with every qubit on
the path from A to N via Control Parity (CP) gates, performs
an unconditional Displacement gate, and then travels back
to A’s location while performing CP gates. This implements
a CD gate in Equation 11. Note that the ancilla qumode can
be any qumode, and the CP gates can run in any order. We
just pick the qumode below qubit A to illustrate this idea.

Note that conjugating the Displacement gate with conjugated
CP gates, or applying it to a polynomial of annihilation and creation

operators, yields multi-qubit controlled qumode gates. These form
a series of sub-rules, which are also included in our rule database
(Table 3) for conciseness.

3.3 DSL Design and Implementation
After level-1 compilation, Hamiltonians are decomposed into se-
quences of basic gates from the hybrid CV-DV gate set. Level-2
compilation then applies hardware constraints to generate physical
circuits. To streamline this process, we introduceCVDV-QASM, an
OpenQASM-like DSL that integrates Pauli-strings and CV-DV gate
sequences. Our mapping and routing stage parses CVDV-QASM
into quantum circuits. Syntax support for Pauli-string terms like
“pauli(𝜋/4) YYZI” enables CP gate commutation and qumode allo-
cation flexibility during physical circuit mapping while preserving
semantics and providing crucial information to the lower compila-
tion stack. An example is shown in Fig. 6:

// Pauli String with Parameter
pauli(pi/4) YIYZXXIIIIIIII;
pauli(pi/4) XZYZXYIIIIIIII;...
// Phase Space Rotation Gate
R(pi/4) qm[1];
R(pi/4) qm[2];...
// Control Displacement Gate
CD(pi/4) q[2], qm[1];
CD(pi/4) q[3], qm[1];...
// Displacement Gate
D(pi/4) qm[2];
D(pi/4) qm[2];...

Figure 6: Hybrid CV-DV circuit DSL example. pauli repre-
sents the parameter of a Pauli String; R, CD, D represent the
gate type; qm[i] and q[i] represent the qumode and qubit re-
spectively. Pauli String sequence will be further decomposed
into basic gates in the compiler output of physical circuits.

This DSL has a similar input format of Bosonic Qiskit [40], except
that our DSL supports Pauli string representation. As described
before, Pauli strings are decomposed with an ancilla qumode, while
hardware constraints, such as qumode interactions, are managed by
inserting SWAP gates. The final circuit after our mapping and rout-
ing consists only of basic CV-DV gates and not Pauli-string gates.
Detailed discussions on hardware constraints are in Section 3.4.

3.4 Tackling Limited Connectivity Constraints
In hybrid CV-DV architectures shown in Fig. 1, qumodes have
limited connectivity and interact with qubits, adding complexity to
multi-qumode interactions. While a SWAP operation in DV systems
typically requires 3 CNOT gates, in CV systems, it begins with a
Beam-Splitter gate 𝐵𝑆 (𝜋, 0) with parameters 𝜃 = 𝜋 and 𝜑 = 0:

𝐵𝑆 (𝜋, 0) |Φ𝑎,Φ𝑏⟩ = 𝑒−𝑖
𝜋
2 (𝑎

†𝑎+𝑏†𝑏 ) |Φ𝑏 ,Φ𝑎⟩ (12)

To cancel the phase change from the Beam-Splitter (BS) gate, two
Phase Space rotation gates, 𝑒−𝑖

𝜋
2 �̂�𝑎 and 𝑒−𝑖

𝜋
2 �̂�𝑏 , are added. Thus,

a qumode SWAP gate consists of one Beam-Splitter (BS) gate
and two Phase Space rotation gates, with the latter having very
low latency compared with a BS gate. This qumode SWAP primitive
enables qumode movement for interactions with other qumodes or
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qubits. For qubit interactions involving qumodes, the qumodes can
be moved to qubits. Multi-qubit interactions require primitives like
Controlled Parity gates, discussed in Section 3.2.

In physical implementations, connectivity constraints between
qumodes, qubits, and qumode-qubit pairs can be summarized as
the following three mapping challenges:

• Qumode-qumodeMapping. Interactions are limited to ad-
jacent qumodes. For non-adjacent qumodes, qumode SWAP
gates are used, with routing optimized to minimize such
SWAPs.

• Qubit-qumodeMapping. Each qumode interacts onlywith
its associated qubit. For interactions with other qumodes,
adjacency is established by moving qumodes, similar to
qumode-qumode mapping.

• Qubit-qubit Mapping. Qubits interact indirectly via an
ancilla qumode, which is moved between qubits to mediate
interactions and complete gate operations.

3.4.1 Optimized Ancilla Qumode Routing for Qubit-qubit Interac-
tions. As direct qubit-qubit interactions are limited by hardware
constraints, we use ancilla qumodes to mediate interactions via
phase kickback (Equation 10). The main challenge is to find the
ancilla qumode and optimize its path to interact with target qubits
efficiently. This Optimized Ancilla Qumode Routing Problem seeks
to minimize path costs, measured by qumode SWAP operations, by
finding the shortest path for a specific ancilla qumode to visit all
qubits in 𝑆 ⊆ 𝑉 on an undirected graph 𝐺 = (𝑉 , 𝐸).

Fig. 7 compares an arbitrary alphabetical routing path with an
optimized ancilla qumode routing path, highlighting its significant
impact on the overall SWAP cost:

Figure 7: In the Optimized Ancilla Qumode Routing example,
the red path represents alphabetical routing (𝐴 → 𝐵 → 𝐶 →
𝐷) with a SWAP cost of 4. The blue path shows optimized
routing (𝐷 → 𝐶 → 𝐴 → 𝐵), using the Qumode at 𝐷 as the
ancilla, reducing the SWAP cost to 3.

The Optimized Ancilla Qumode Routing Problem can be reformu-
lated as a relaxed Hamiltonian Path Problem, similar to a modified
Traveling Salesman Problem (TSP). Unlike the closed-path TSP, this
problem allows revisiting vertices and does not require returning
to the starting vertex.

We construct a complete graph 𝐺 ′ = (𝑉 , 𝐸′) with the same
vertex set𝑉 as the original graph𝐺 . Each edge in 𝐸′ is weighted by
𝑤𝑖 𝑗 , the shortest path cost between 𝑣𝑖 and 𝑣 𝑗 in 𝐺 , mapped to the

edge sequence in 𝐺 . As shortest paths in 𝐺 are polynomial-time
computable, constructing 𝐺 ′ is also polynomial in complexity.

Given the NP-hardness of the Hamiltonian Path Problem, we
propose a multi-level solution strategy for scalability, as heuristic
solutions can be more practical for larger problem instances.

We use Christofides Algorithm, which constructs a minimum
spanning tree, finds a minimum-weight perfect matching among
the odd-degree vertices, and combines them to form an Eulerian
circuit, which can guarantee a near-optimal solution with polyno-
mial time complexity, making it suitable for large-scale qumode
routing scenarios. However, we also explore the other Heuristic-
based algorithms, such as Threshold Accepting Algorithm, which
can perform better in large-scale Pauli Strings compilation.

Also, for larger-scale problems, Heuristic Algorithms can pro-
vide efficient solutions, also making them well-suited for specific
physical circuits optimization goal in Hybrid CV-DV systems
to provide high extensibility and scalability.

Dynamic Qubit Floating:While the only native SWAP gates
are for qumodes when addressing the connectivity constraints.
Qubit movement can also be considered. As discussed by Liu et
al.[28], CNOT gates can be implemented in the CV-DV architecture
where qubits are not directly connected. We can essentially imple-
ment a qubit-qubit SWAP using 3 CNOT gates. However, it would
require the usage of ancilla qumode, as the qubits are indirectly
interacting via the ancilla qumodes. However, since qubit-qubit
SWAP is not native, it takes 12 control displacement gates and 12
qumode-SWAP gates. It is almost 24 times the cost of the beamsplit-
ter (qumode-SWAP) gate. It could only be useful when there are
frequent interactions on a set of qubits, while the set of qubits is
scattered very far from each other. This depends on the active-qubit
pattern in the Pauli-string terms and the qubit-controlled qumode
gates. Although it may not be useful in some applications, we still
integrate this design into our compiler. We calculate the average
shortest distance for active qubits within a Pauli-string, and if it
exceeds a certain threshold, we trigger a clustering procedure and
move qubits into a connected component. It offers more flexibility
for specific long-range interactions. This is as if qubits can float
around rather than being at their fixed locations. We name this
approach as floating qubit.

Given hardware constraints and optimization flexibility, using an
ancilla qumode or using qubit floating for multi-qubit gate synthe-
sis offers three key advantages: Resource Flexibility: Any avail-
able qumode can serve as the ancilla without requiring a specific
initial state, enabling efficient resource utilization. Operational
Efficiency: The ancilla qumode can be reused across multiple gates,
with Controlled Parity gates applied in any order before and after
Displacement gates. Optimization Potential: Ancilla selection,
Ancilla/Qubit routing, and task assignment can be optimized for
resource reuse and circuit partitioning.

3.4.2 Mapping and Routing for General Case. Now we handle the
case when the CVDV-QASM representation contains both Pauli
strings and other CV-DV basis gates. Pauli-strings are processed
separately. The general idea is to keep a working frontier – the set
of gates (Pauli-string gates) whose dependence has been resolved,
as well as a scheduled_worklist data structure containing gates that
have already been scheduled so far. Then we repeat the following.
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(1) Execute any gate, including Pauli-string gates that are exe-
cutable from the frontier. We prioritize the scheduling of
Pauli-string gates because, by Trotterization, each Pauli-
string gate (block) can run in any order. We use different
ranking functions to choose the set of Pauli-strings to sched-
ule next, and the ranking function either prioritizes the non-
identity qubit number or the time stamp of the latest finished
gate in that set of active qubits, to improve the parallelism.
Then for the rest of the CV-DV basis gates, they are ex-
ecutable if their involved qubits/qumodes are connected.
Once we schedule a sequence of gates, we add them to the
scheduled_worklist.and update the frontier.

(2) For the rest of the gates in the frontier, pick SWAPs that
will help at least one gate in the frontier. Rank all the possi-
ble SWAPs. Then select one SWAP and add it to the sched-
uled_worklist.

(3) Go back to Step 1 or terminate if there is no gate in the work
frontier.

Once the program completes, the scheduled_worklist implies
the order of the compiled physical gates. For the cost function of
ranking candidate SWAP gates, we use amethod similar to the Sabre
qubit mapper [24]. For the cost function of ranking Pauli-strings, as
mentioned above, we use either the minimum-active-qubit-number
metric or the minimum-total-depth metric (sum up the depths of all
active qubits in that Pauli-string) to parallelize as much as possible.

We also design a specific coupling map data structure for hybrid
CV-DV systems. Currently, there are three versions of hybrid CV-
DV quantum processors: superconducting, trapped ion, and neutral
atom. We do not consider the neutral atom architecture as it does
not allow connectivity among qubits. Our couplingmap can support
both superconducting and trapped ion CV-DV architecture.

4 Evaluation
4.1 Experimental Setup
Our evaluation focuses on two key aspects: Pauli-string Hamil-
tonian (qubit-only) in a hybrid CV-DV architecture and general
compilation support for Hamiltonian simulation. First, we analyze
the performance of compiling qubit-only Pauli-string Hamiltonians
within the hybrid CV-DV architecture, evaluating our solutions
for generating multi-qubit interactions via ancilla qumode(s). Sec-
ond, we demonstrate, for the first time, the complete synthesis and
compilation of given Hamiltonian models that may consist of both
Fermions and Bosons, or just Bosons. This is for evaluating both
the gate synthesis component and the hardware component.

Metrics. We employ three primary metrics to assess the com-
piler’s performance: 1-op Gate, 2-op Gate, and Depth. The 1-op
Gate and 2-op Gate metrics count the number of single-operand
and two-operand gates, respectively, reflecting interactions such as
qubit-qumode or qumode-qumode operations. The Depth metric
measures the number of layers of quantum gates after compilation,
representing the complexity of the compiled circuit. Using data from
Table 2, we approximate the cost of a 2-op gate as equivalent to 20x
that of a 1-op Gate and set 1-op gate latency to 1 when evaluating
depth. For general Hamiltonian simulation compilation, the met-
ric depth is for the final physical circuits that satisfy connectivity
constraints rather than for the logical circuit.

Benchmarks. We select benchmarks of various sizes and ap-
plications from practical, real-world Hamiltonian models. For the
fermion-only Hamiltonian, using the PySCF [41] software pack-
age, we constructed the Hamiltonians for seven distinct molecules:
LiH, BeH2, ethylene, NH3, C2, N2, and H2O, under minimal basis
STO-3G.

We also consider different spin-orbital-to-electron ratios, result-
ing in 20 benchmarks that comprise a total of 600 to 1900 Pauli
strings. For example, H2O(8,12) and H2O(10,14) represent water
molecules with 8 electrons and 12 spin orbitals, and 10 electrons
and 14 spin orbitals, respectively. The size of the molecular system
affects the overall complexity of the simulation, and different en-
coding schemes can lead to variations in the number of required
operations and the resulting circuit depth.

We also include six general models, such as the Kerr nonlinear
oscillator Hamiltonian, the Z2-Higgs model, the Bose-Hubbard
model, the Hubbard-Holstein model, the Heisenberg model, and
the electronic-vibration coupling Hamiltonians. They could include
interactions of boson matters or fermion-boson matters.

For each of the Hamiltonians, the fermion creation/annihilation
operators must first be converted into qubit operators, in order to
convert them into the form in Equation 1 before we perform further
synthesis and scheduling. We employ both Jordan-Wigner [19] (JW)
and Bravyi-Kitaev [2] (BK) encoding schemes to map fermionic op-
erators to qubit operators [44]. JW is highly regular, but its operator
length grows linearly with the system size𝑁 (𝑂 (𝑁 )). In contrast, the
Bravyi-Kitaev encoding employs a more intricate tree-based struc-
ture to store parity information, thereby reducing the Pauli-weight,
but with less regularity.

The Kerr nonlinear oscillator Hamiltonian (𝐻1) is a single-qumode
Hamiltonian that includes a Kerr nonlinear term, adding complexity
to its decomposition and compilation:

𝐻1 = 𝜔𝑎†𝑎 + 𝜅

2
(𝑎†)2𝑎2 . (13)

TheZ2-Higgsmodel (𝐻2) is a hybridHamiltonian featuringmulti-
mode interactions, including qumode-qumode and qubit-qubit in-
teractions, making it representative of hybrid CV-DV systems:

𝐻2 = −𝑔
𝐿−1∑︁
𝑖=1

𝑋𝑖,𝑖+1 +𝑈
𝐿∑︁
𝑖=1

�̂�2𝑖 − 𝐽

𝐿−1∑︁
𝑖=1

(
𝑎
†
𝑖
𝑍𝑖,𝑖+1𝑎𝑖+1 + h.c.

)
, (14)

where �̂�𝑖 = 𝑎
†
𝑖
𝑎𝑖 is the bosonic number operator, and 𝑋𝑖,𝑖+1 and

𝑍𝑖,𝑖+1 are Pauli X and Z operators linking sites 𝑖 and 𝑖 + 1, respec-
tively, each can be represented using one qubit operator. The term
“h.c.” represents the hermitian conjugate of the term right before
the addition sign.

The Bose-Hubbard model (𝐻3) is a lattice model whose structure
varies with different lattice configurations, making it suitable for
higher-dimensional physical systems. Also, it is a pure Hamiltonian
with only qumode-qumode interaction (may need ancilla qubits
for higher order annihilation and creation operators), making it
representative of pure qumode Hamiltonian systems:

𝐻3 = −𝑡
∑︁
𝑖, 𝑗

(𝑏†
𝑖
𝑏 𝑗 + 𝑏†𝑗𝑏𝑖 ) +

𝑈

2

∑︁
𝑖

�̂�𝑖 (�̂�𝑖 − 1) − 𝜇
∑︁
𝑖

�̂�𝑖 , (15)
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where �̂�𝑖 = 𝑏
†
𝑖
𝑏𝑖 , and 𝑏†𝑖 and 𝑏𝑖 are creation and annihilation opera-

tors.
The Hubbard-Holstein model (𝐻4) involves both fermionic and

bosonic operators, adding complexity due to multiple mappings
of fermionic operators to qubit Pauli operators. Here, 𝑏†

𝑖
(𝑏𝑖 ) de-

notes the bosonic creation (annihilation) operator at site 𝑖 , while
𝑐
†
𝑖,𝜎

(𝑐𝑖,𝜎 ) represents the fermionic counterpart. The number oper-
ator �̂�𝑖,𝜎 = 𝑐

†
𝑖,𝜎

𝑐𝑖,𝜎 counts fermions with spin 𝜎 =↑, ↓ at site 𝑖 . We
applied Jordan-Wigner encoding, but, due to space constraints, do
not expand it into Pauli and Bosonic annihilation operator form:

𝐻4 = −𝑡
∑︁
𝑖, 𝑗,𝜎

𝑐
†
𝑖,𝜎

𝑐 𝑗,𝜎 +𝑈
∑︁
𝑖

�̂�𝑖,↑�̂�𝑖,↓ +
∑︁
𝑖

𝑏
†
𝑖
𝑏𝑖 +𝑔

∑︁
𝑖,𝜎

�̂�𝑖,𝜎 (𝑏†𝑖 +𝑏𝑖 ),

(16)
The Hamiltonian 𝐻5 describes the interaction between discrete

electronic states (qubits) and vibrational modes (qumodes), captur-
ing complex electron-phonon coupling effects in molecular systems.
Such models are essential for simulating quantum dynamics in one-
dimensional (1D) chromophore arrays, where electronic excitations
are strongly coupled to vibrational environments. Applications
span light-harvesting complexes, organic semiconductors, and pho-
tosynthetic systems [45]. The full Hamiltonian is decomposed as:

𝐻5 =
𝑁∑︁
𝛾=1

[
𝐻

(𝛾 )
0 + 𝐻

(𝛾 )
1 + 𝐻

(𝛾 )
2

]
(17)

Here,𝐻 (𝛾 )
0 represents local non-interacting terms,𝐻 (𝛾 )

1 captures
dispersive coupling between qubits and modes, and 𝐻 (𝛾 )

2 includes
inter-chromophore interactions and vibrationally modulated cou-
plings. Each component is defined below:

𝐻
(𝛾 )
0 = 𝜔𝛾0𝑏

†
𝛾0𝑏𝛾0 + 𝜔𝛾1𝑏

†
𝛾1𝑏𝛾1 −

𝜔𝑞𝛾0

2
𝜎𝑧𝛾0 (18)

𝐻
(𝛾 )
1 = −

𝜒𝛾0

2
𝑏
†
𝛾0𝑏𝛾0𝜎

𝑧
𝛾0 +

𝑔𝑐𝑑,𝛾0

2
(𝑏𝛾0 + 𝑏

†
𝛾0 )𝜎

𝑧
𝛾0 (19)

𝐻
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2 =

𝑔𝑐𝑑,𝛾1
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The Heisenberg model (𝐻6) describes qubit-qubit interactions
in a spin chain or lattice system. Here, 𝐻6 represents a chain of 𝑁
qubits coupled via exchange interactions in the 𝑥,𝑦, 𝑧 directions.
The absence of qubit-qumode and qumode-qumode interactions
simplifies the model, making it ideal for understanding pure qubit
dynamics. The Heisenberg Hamiltonian has broad applications in
condensed matter physics, quantum magnetism, and quantum com-
puting, serving as a foundation for entanglement, spin transport,

and quantum phase transitions, which is given by:

𝐻6 = −1
2

𝑁∑︁
𝑗=1

(𝐽𝑥𝑋 𝑗𝑋 𝑗+1 + 𝐽𝑦𝑌𝑗𝑌𝑗+1 + 𝐽𝑧𝑍 𝑗𝑍 𝑗+1 + ℎ𝑍 𝑗 ) (21)

TheseHamiltonians exemplify hybrid CV-DV systems and present
significant compilation challenges. For the first time, we have fully
decomposed, synthesized, and compiled their physical circuits for
hybrid CV-DV quantum computers.

Baselines and Hardware Coupling Maps. For multi-qubit
interactions on a hybrid CV-DV architecture, since there is a prior
compiler study, we compare different versions of our implementa-
tion, including the Christofides algorithm and the Threshold Ac-
cepting Heuristic-based approach, to analyze their effectiveness in
handling such Hamiltonian Simulation scenarios. Additionally, we
investigate the use of Floating Qubits within the hybrid CV-DV
architecture, exploring innovative compilation strategies under this
framework. Finally, we assess the scalability and extensibility of
our methods, offering valuable insights for future research and
development. For the coupling map, we adopt a lattice structure for
qumode connectivity as shown in Fig. 1, each qumode is connected
to one qubit. Qubits are not connected.

4.2 Pauli String Synthesis using Ancilla
Qumode and Floating Qubit

For Pauli string compilation, hybrid CV-DV systems introduce chal-
lenges in handling qubit-qubit interactions where direct qubit com-
pilation is unavailable. This necessitates adaptations in our frame-
work. One approach mediates multi-qubit interactions through
qumodes, addressing the Optimized Ancilla Qumode Routing Prob-
lem.We explored two routing strategies: the Christofides Algorithm
and the Threshold Accepting Algorithm, both efficient heuristics
for the common traveling salesman problem (TSP). Additionally,
we investigated the Floating Qubit method as an alternative archi-
tectural solution for hybrid systems. Detailed results are in Table 4.
Our benchmarks involve complex and representative Hamiltonians.
While the Christofides Algorithm provides an efficient polynomial-
time approximation, results indicate that the Threshold Accept-
ing Algorithm achieves 3-7% better optimization, reducing circuit
depth by an average of 4.8%. This demonstrates the effectiveness of
heuristics in addressing complex compilation problems. Further im-
provements might be possible by incorporating additional heuristic
objectives, such as architecture-specific optimizations.

We also evaluated the Floating Qubit method but found it largely
ineffective across our benchmark suite, achieving optimal results in
only two cases. In most benchmarks, it increased the average circuit
depth by 6%. This is attributed to the significant cost of Floating
Qubits, which can reach up to 24x, making the depth minimization
goal more challenging. However, flexible Floating Qubit strategies
may still be useful in scenarios requiring high adaptability, such as
resource reuse or circuit partitioning.

Table 4 shows that JW outperforms BK in physical mapping
and routing. It is because JW’s Pauli strings have more regularity
from block to block and hence better locality, thereby reducing the
number of additional routing gates. Therefore, we use JW encoding
for fermion operators in all subsequent experiments.
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Molecules Mapping # Pauli Strings
Christofides Algorithm(Qumode SWAP) Threshold(Qumode SWAP) Threshold(Floating Qubit)
1-op Gate 2-op Gate Duration 1-op Gate 2-op Gate Duration 1-op Gate 2-op Gate Duration

LiH (4, 12)
BK 631 41472 30920 546597 39192 29780 518510 (5.14%) 39360 29864 520580 (4.76%)
JW 631 36344 27384 458441 33888 26156 432246 (5.71%) 34352 26472 444074 (3.13%)

BeH2 (6, 14)
BK 666 49520 35608 628278 46576 34136 587180 (6.54%) 48210 35184 644966 (-2.66%)
JW 666 44428 33652 562822 42092 32484 535692 (4.82%) 43384 33508 585151 (-3.97%)

Ethylene (10, 16)
BK 789 54976 40688 678566 52368 39384 650664 (4.11%) 57602 43408 769017 (-13.33%)
JW 789 57312 43496 712622 54304 41992 681511 (4.37%) 58066 44608 796156 (-11.72%)

NH3 (8, 12)
BK 915 61564 45592 810401 58164 43892 773912 (4.5%) 58268 43944 769401 (5.06%)
JW 915 53680 39960 656519 50336 38288 615952 (6.18%) 53002 39684 699905 (-6.61%)

C2 (10, 16)
BK 1177 87200 63768 1057647 82584 61460 1011085 (4.4%) 85998 64196 1111745 (-5.11%)
JW 1177 88960 66968 1100289 83832 64404 1057411 (3.9%) 87568 67028 1190209 (-8.17%)

N2 (10, 16)
BK 1177 88792 65004 1074193 84488 62852 1039060 (3.27%) 87078 65176 1150102 (-7.07%)
JW 1177 88752 67056 1106544 84232 64796 1063242 (3.91%) 89512 68528 1216367 (-9.92%)

H2O (8, 12)
BK 1219 80004 59516 1048788 75860 57444 1001186 (4.54%) 75940 57484 997611 (4.88%)
JW 1219 70200 52696 862689 66336 50764 817900 (5.19%) 70540 52908 937287 (-8.65%)

H2O (10, 14)
BK 1654 122864 88204 1543297 116576 85060 1469419 (4.79%) 122572 91040 1620031 (-4.97%)
JW 1654 111332 83068 1377143 105180 79992 1319874 (4.16%) 113576 84904 1553009 (-12.77%)

NH3 (8, 14)
BK 1734 131716 94452 1657461 124404 90796 1547533 (6.63%) 129320 93968 1700487 (-2.6%)
JW 1734 118260 88428 1484725 111620 85108 1395552 (6.01%) 120348 90228 1622020 (-9.25%)

C2 (12, 18)
BK 1884 175612 126176 2212185 167756 122248 2141333 (3.2%) 171994 131024 2381938 (-7.67%)
JW 1884 155140 117292 1937459 147340 113392 1857982 (4.1%) 163376 127668 2361642 (-21.89%)

Table 4: Compilation latency results for multi-Pauli exponentials. Gate latencies are assigned according to Table 2, where
single-qubit (1-op) gates have a latency of 1 unit (20 nanoseconds) and two-qubit (2-op) gates incur a latency of 20 units. The
Christofides algorithm is used as the performance baseline. Christofides-based routing is used as the baseline. Duration results
show absolute latency and percentage reduction relative to the baseline.

4.3 General Hamiltonian Simulation
Compilation

4.3.1 End-to-end Compilation. For the evaluation of general Hamil-
tonian simulation, we compiled a diverse set of six Hamiltonian
models. These models are not only representative in hybrid CV-DV
systems but also pose significant complexity during compilation,
making them ideal for evaluating our general-purpose compiler.
We further tested performance across varying lattice sizes to assess
scalability. The detailed results are shown in Table 5.

Table 5 shows the results at different stages of compilation. The
number of Pauli strings and hybrid CV-DV gates is from the inter-
mediate representation using our domain-specific language,CVDV-
QASM. The “Total Gate Count” and “Duration” are from the final
compiled circuits after decomposition, mapping, and routing.

These representative Hamiltonian models highlight the com-
piler’s capability to support practical quantum computing appli-
cations, offering a valuable framework for benchmarking and ref-
erence in future research. Key considerations included successful
decomposition, gate count, and acceptable depth metrics. Based
on our Rule-Based Recursive Template Matching Mechanism, the
framework can be further optimized for architecture-specific con-
straints or fidelity improvements, providing a foundation for future
advancements in Hamiltonian simulation compilation.

4.3.2 Hit Rate Analysis for Decomposition Rules. We conducted a
detailed decomposition analysis by measuring the “hit rate” of each
rule, quantifying its relative importance during synthesis. Each
unique term in a summation Σ was counted once per Hamilton-
ian model, regardless of index variations. For complex expressions

(e.g., 𝑎†𝑎†𝑎𝑎, 𝑎†𝑎𝑎†𝑎), which often require multiple recursive ap-
plications, we normalized rule usage per Hamiltonian model. This
normalized frequency is defined as the rule’s “hit rate.”

Rule 16, which corresponds to native basis gate synthesis, ap-
pears most frequently and nearly all decomposition paths eventu-
ally terminate at a basis gate. It accounts for 68.30% of rule applica-
tions along successful paths, and 70.88% overall. To better assess
the relative contribution of other rules, we exclude Rule 16 and
report the normalized hit rates for Rules 1-15 in Table 6.

Rules 1 and 2 (Trotter and BCH decompositions) are heavily used
during intermediate steps, together contributing over 28.80% of the
successful hit rate. Rules 14 and 15, which address multi-Pauli
exponentials and multi-qubit-controlled qumode displacements,
also show high hit rates, highlighting the importance of qubit-
qumode interactions in certain Hamiltonian model. Rules 11 and 12
frequently appear in the successful paths as well, enabling bosonic
operators to be decomposed into fine-grained gate-synthesizable
forms via block-encoding templates, jointly contributing 10.80% to
the successful hit rate.

4.3.3 Compilation Time Analysis. We evaluated the compilation
time of our framework using JW-mapped Pauli strings, considering
the scale of Pauli string compilation for each molecule. Results are
shown in Table 7. Measured in seconds, the compilation time covers
the entire process, from Pauli string decomposition to physical
circuit synthesis. While it generally increases with the number of
Pauli strings, C2(12, 18) shows a significantly higher time due to
the increased number of electrons and spin-orbitals, leading to a
more complex system than just longer Pauli strings.
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Hamiltonians # Qubits # Qumodes # Pauli Strings (in IR) # Gates (in IR) Final Gate Count Duration
Kerr Nonlinear Hamiltonian 19 (ancilla) 1 0 409 595 3032

𝑍2-Higgs Model
20 20 19 419 696 943
40 40 39 839 1472 1797
60 60 59 1259 2263 2721

Bose-Hubbard Model
20 (ancilla) 20 0 820 2935 15353
40 (ancilla) 40 0 2440 15313 62548
60 (ancilla) 60 0 4860 36705 155872

Hubbard-Holstein Model 40 20 3100 100 688011 4509157

Electronic-Vibration Coupling
20 40 96 1392 5635 28551
40 80 196 2852 12655 54952
60 120 296 4312 19684 81729

Heisenberg Model
20 0 77 0 2218 4122
40 0 157 0 4676 4398
60 0 237 0 7200 7074

Table 5: Compilation results for general Hamiltonian simulations. For eachmodel, the table reports (a) the number of qubits and
qumodes utilized, (b) the component counts in intermediate representation, i.e., the number of Pauli strings and hybrid CV-DV
gates, using our domain-specific language, CVDV-QASM, and (c) the “Total Gate Count” and “Duration” of the final compiled
circuit. Operation durations are estimated by assigning 1 time unit (20 nanoseconds) to each single-qubit or single-qumode
gate and 20 time units to each hybrid CV-DV gate and multi-qumode gate, according to Table 2.

Rule Success Total Rule Success Total Rule Success Total
No. 1 9.50% 3.83% No. 6 1.35% 0.97% No. 11 0.34% 4.47%
No. 2 19.33% 23.77% No. 7 1.35% 0.57% No. 12 5.40% 12.78%
No. 3 0.00% 0.00% No. 8 8.15% 1.47% No. 13 5.40% 11.48%
No. 4 8.15% 2.94% No. 9 0.00% 1.47% No. 14 15.77% 17.17%
No. 5 8.15% 1.47% No. 10 1.35% 0.45% No. 15 15.77% 17.17%

Table 6: Normalized hit rates for decomposition Rules 1-15.
Each entry includes both the Success Hit Rate (calculated
over successfully decomposed paths) and the Total Hit Rate
(all search attempts, including failures).

Molecule # Pauli Strings Time(s) Molecule # Pauli Strings Time(s)
LiH (4, 12) 631 20.39 BeH2 (6, 14) 666 33.33

Ethylene (10, 16) 789 67.21 NH3 (8, 12) 915 59.95
C2 (10, 16) 1177 184.49 N2 (10, 16) 1177 205.48
H2O (8, 12) 1219 100.33 H2O (10, 14) 1654 379.83
NH3 (8, 14) 1734 485.46 C2 (12, 18) 1884 1,152.00

Table 7: Compilation Time Analysis

5 Related Work
Existing tools, including Bosonic Qiskit [40], StrawberryField [21],
Perceval [49], and Bosehedral [33], offer preliminary support for
programming, simulating, and composing circuits for either domain-
specific applications such as Gaussian Boson Sampling (GBS) or
general bosonic circuits. Perceval allows users to build linear optical
circuits from a collection of pre-defined components. Strawberry
Fields and Bosonic Qikist provide Python libraries involving ba-
sic CV-DV gates, as well as simulate the programs written with
these basic libraries. However, none of this provides support for
the simulation of the hybrid CV-DV Hamiltonian.

While Hamiltonian simulation on DV systems has been exten-
sively studied [18, 25, 26], compilation support for hybrid CV-DV
systems remains underexplored. The unique properties of Bosonic
hardware mean that Fermion-Boson interactions have not been
thoroughly investigated. This involves converting Hamiltonian sim-
ulation algorithms into basis gates for both qubits and qumodes, im-
plementing multi-qubit operations, and optimizing qubit-qumode
mapping and routing to address connectivity and error mitigation
challenges. Our work bridges this gap.

6 Conclusions
Our work introduces Genesis, the first comprehensive compilation
framework for Hamiltonian simulation on hybrid CV-DV quantum
processors. By leveraging a two-stage compilation approach: (1)
decomposing hybrid Hamiltonians into universal basis gates, and (2)
mapping them to hardware-constrained circuits, we enable efficient
simulation of complex physical systems. Our tool has successfully
compiled important Hamiltonians, including the Bose-Hubbard
model, Z2−Higgs model, Hubbard-Holstein model, and electron-
vibration coupling Hamiltonians critical in domains like quantum
field theory, condensed matter physics, and quantum chemistry. We
also provide a domain-specific language (DSL) design to support
Hamiltonian simulation on a hybrid CV-DV architecture.
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