
CoopRT: Accelerating BVH Traversal for Ray Tracing via
Cooperative Threads

Yavuz Selim Tozlu
ystozlu@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Huiyang Zhou
hzhou@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Abstract
Ray Tracing is a rendering technique to simulate the way light inter-
acts with objects to create realistic images. It has become prominent
thanks to the latest hardware support on Graphics Processing Units
(GPUs), i.e., the Ray-Tracing (RT) unit, specially designed to accel-
erate ray tracing operations. Despite such hardware advances, ray
tracing remains a performance bottleneck for high-performance
graphics workloads, such as real-time path tracing (PT), which
is an application of ray tracing where multiple bouncing rays are
traced per pixel. The key reasons are (a) the costly Bounding Volume
Hierarchy (BVH) traversal operation, and (b) low Single-Instruction-
Multiple-Thread (SIMT) efficiency as the rays in the same warp
deviate inevitably in their traversal paths.

In this work, we propose a novel architecture design for coop-
erative BVH traversal that exploits the parallelism present in the
BVH traversal process. The key idea of our CoopRT scheme is to
make use of the idle threads, either completely inactive when the
ray tracing instruction is executed or partially idle due to early
completion, to help the long running threads in the same warp.
Specifically, we enable idle threads in a GPU warp to utilize their
readily available traversal hardware to help traverse the BVH tree
for the busy threads, therefore helping them finish their traversal
much faster. This approach is implemented purely in hardware,
requiring no changes to the programming model. We present our
architecture design and show that it only involves small changes
to the existing RT unit.

We evaluated CoopRT in Vulkan-sim, a cycle-level simulator, and
observed up to 5.11x speedup over the baseline, with a geometric
mean of 2.15x speedup at the cost of a moderate area overhead
of 3.0% of the warp buffer in the RT unit. Using the energy-delay
product, our CoopRT achieves an average of 2.29x improvement
over the baseline.

CCS Concepts
• Computing methodologies→ Graphics systems and interfaces;
• Computer systems organization→Multicore architectures;
Single instruction, multiple data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731118

Keywords
Ray tracing, GPU, 3D graphics

ACM Reference Format:
Yavuz Selim Tozlu and Huiyang Zhou. 2025. CoopRT: Accelerating BVH
Traversal for Ray Tracing via Cooperative Threads. In Proceedings of the
52nd Annual International Symposium on Computer Architecture (ISCA ’25),
June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3695053.3731118

1 Introduction
Ray tracing (RT) is a 3D rendering technique that can achieve life-
like graphics by simulating how light rays travel through 3D scenes.
It has been used in offline rendering for movies and animations
[16]. With the special hardware support available in GPUs now,
ray tracing is also being used in real-time applications such as
video games [1][17]. Modern game engines adopt various ray trac-
ing algorithms, such as ray-traced shadows and reflections [6][7],
which can be used in conjunction with traditional rasterization
techniques to enhance visual realism. Beyond computer graphics,
ray tracing is also used in various fields such as wireless commu-
nication for channel estimation, propagation modeling, and 3D
imaging [20][27][28][39][43].

In practice, ray tracing involves traversing a tree-like structure
called the Bounding Volume Hierarchy (BVH) tree [25]. A 3D scene
is encoded as a hierarchical arrangement of Axis-Aligned Bounding
Boxes (AABBs), where objects are grouped based on their proximity
and size. These groups are enclosed in AABBs, and the collection of
AABBs forms the BVH tree. Rays are modeled as 3D vectors, which
traverse the BVH tree and test intersection against the AABBs to
find the closest-hit primitive, a basic geometric shape such as a
triangle, quad, or sphere.

The BVH tree can become large depending on the scene’s com-
plexity and often exceeds the capacity of on-chip caches. A traversal
involves reading BVH nodes, performing intersections, and pro-
cessing the subsequent nodes based on the intersection results. In
large scenes, these memory accesses often miss in the caches and
require expensive DRAM accesses, during which the threads stall
and wait for the data to return. In addition, each thread traces a ray
with different directions, causing the rays to diverge and traverse
different portions of the BVH tree. As a result, the traversal process
can be slow and memory-bound, making it a primary bottleneck in
ray tracing performance.

Latest consumer-grade GPUs incorporate a specialized hardware
unit called the RT unit to accelerate ray tracing and enable real-
time performance [3][4][5]. The RT unit is triggered when a warp
encounters the specialized trace_ray instruction. The semantics
of this instruction is that each thread in the warp traces a ray by

1

https://doi.org/10.1145/3695053.3731118
https://doi.org/10.1145/3695053.3731118
https://doi.org/10.1145/3695053.3731118


ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

Figure 1: Pipeline stalls from different instructions, RT:
trace_ray instructions, MEM: load/store instructions from
CUDA cores, ALU: compute instructions from CUDA cores,
SFU: special function instructions from CUDA cores. Config-
uration: 256x256 resolution, path tracing, 1 sample-per-pixel.

traversing the BVH tree and performing intersection tests to find
the closest-hit primitive, if one exists. A warp of 32 threads traces
up to 32 rays if all the threads are active.

Despite the hardware support for ray tracing, performing real-
time ray tracing, especially path tracing, is still very challenging.
The key reasons are (1) for a high-resolution image, the number of
rays to be traced is very high; (2) BVH traversals are memory-bound,
dominated by reading tree nodes, with little computation needed
mainly for intersection tests and coordinate transformations; and
(3) there are high degrees of divergence as different rays follow
different traversal paths and bounce in different directions.

In Fig. 1, we present the contribution of pipeline stalls from
different types of instructions across various scenes in a ray tracing
application. It can be seen that most of the stalls are due to the
trace_ray instructions.

To reveal the performance issues with the trace_ray instructions,
we look into path tracing (PT), which is a specific application of
ray tracing to render a 2D image of a 3D scene [13][14]. With PT,
a primary ray is cast for each pixel, bouncing through the scene
for a set number of times or until it hits a light source or escapes
the scene. Each bounce contributes to the final color of the pixel
and involves a trace_ray instruction (more details in Section 3).
As the rays bounce through the scene with different paths, their
traversing behaviors diverge. Given the SIMD nature of a warp,
such divergence results in two levels of resource under-utilization.
Firstly, as a ray misses/escapes the scene, the corresponding thread
becomes inactive for subsequent bounces or subsequent trace_ray
instructions. As a result, when a trace_ray instruction is dispatched
to the RT unit, some of the threads may be completely inactive
or idle. As the active threads continue tracing the bouncing rays
through the scene, the number of idle threads in a warp typically
increases as the number of bounces increases. Fig. 2 shows how
the ratio of active threads in a warp on average changes over time
for various scenes on the baseline RT unit. We can see that all the
warps have 100% SIMT efficiency (i.e., 100% active threads) when
tracing the primary rays at the beginning. After only a few bounces,
the efficiency starts to drop significantly. Secondly, among active
threads, some may finish their traversal earlier than others, thereby
being partially idle during the trace_ray instruction execution.

With the observation that there exists significant divergence
and the resulting resource under-utilization during ray tracing, we

Figure 2: Percent of threads that are busy in RT unit.

propose a novel way to overcome this fundamental performance
challenge. Our idea is to parallelize BVH traversal by employing the
abundant idle threads. The key insight is for a single ray, in order
to determine its closest-hit in the BVH tree, the traversal can be
effectively parallelized without error. In other words, the workload
of one active thread in a warp in the RT unit performing the BVH
tree traversal can be parallelized and distributed among multiple
threads. Considering that each thread already has dedicated traver-
sal hardware in the RT unit, if we enable the idle threads to access
the active threads’ traversal stacks, the idle threads can traverse the
BVH as usual, i.e., processing the nodes, and pushing new nodes
into their own stacks based on the intersection test results. In our
proposed scheme, the cooperation of threads is done completely in
the RT unit hardware and is transparent to the software. Therefore,
the cooperative execution only changes how a trace_ray instruc-
tion is executed in the RT unit and does not affect rest of the GPU
hardware or software.

In summary, this paper makes the following contributions,
• We propose a cooperative BVH traversal algorithm that uti-
lizes existing GPU hardware to parallelize BVH traversal and
accelerate ray tracing with no changes to the programming
model.
• We propose the architecture design for cooperative BVH
traversal.
• We model the cooperative BVH traversal in Vulkan-sim, a
cycle-level simulator, to evaluate its performance and show
that our CoopRT scheme achieves up to 5.11x with a geo-
metric mean of 2.15x speedup.

2 Background
2.1 Ray Tracing and BVH Traversal
Ray tracing is a 3D computer graphics method that can produce
highly realistic visuals. It simulates light rays through a 3D scene
and calculates how much illumination the objects would receive.
Rays are modeled as 3D vectors with an origin, usually the camera,
and a direction through the pixels on the 2D image plane. These
rays are tested against the primitives in the scene to find the closest-
hit or detect if there is any-hit at all. This can be used to accurately
compute global illumination, shadows, reflections, or any lighting
effect in a scene. Therefore, ray tracing is commonly used together
with rasterization to augment the lighting effects, and still maintain
real-time performance.

Ray tracing can also be used exclusively to render 2D images
of 3D scenes with a technique known as path tracing (PT) [30]. In
PT, primary rays originating from the camera are traced until they
either miss the scene or hit an object. Upon hitting an object, the

2



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

direction of reflection is calculated, and subsequent bouncing rays
are traced. This bouncing process continues until a preset number
of times determined by the programmer, 16 in this study, or until the
rays hit a light source or miss the scene. Each bounce contributes
to the pixels’ final color.

Objects in a 3D scene are usually modeled as a collection of
triangles. While it is possible to test rays against every triangle
in the scene to find the closest-hit object, this quickly becomes
impractical due to the large number of triangles in a scene. To
accelerate ray tracing, BVH is utilized to encode the 3D scene in a
tree-like structure of AABBs, where the root node is an AABB that
bounds the whole scene [23][25][29][36]. When traversing a BVH
tree, if a ray does not intersect an AABB, then it is guaranteed that
the ray will not intersect any primitives inside the AABB, therefore
they can be skipped.

BVH can be built on the CPU or the GPU using various methods
such as the surface area heuristic [32]. The traversal starts from
the root node and typically follows a depth-first search (DFS). In
DFS, a traversal stack is used to track nodes. The traversal stack
stores the addresses of the nodes that will be accessed afterwards.
A BVH tree node can be either an internal node or a leaf node.
Internal nodes have child nodes, and they contain the coordinates
and addresses of their children. Leaf nodes are primitives such as
triangles or quads, and they contain the vertex coordinates of the
primitive. Traversal involves popping nodes from the stack and
fetching them from memory. For internal nodes, their children are
tested for intersections and pushed onto the stack if a hit is detected.
For leaf nodes, the primitives are directly tested for intersections.
Traversal continues until the stack is empty, or any-hit is found,
based on the criteria defined by the programmer according to the
application’s needs.

High-performance ray tracing applications are typically run on
GPUs. Modern graphics application programming interfaces (API),
such as Vulkan [41] or DirectX, feature sophisticated ray tracing
pipelines that programmers can use to develop ray tracing appli-
cations. The ray tracing pipeline introduces programmable shader
stages such as raygen, closest-hit, miss, and optionally intersection
and any-hit. Rays are generated in the raygen shader using the
trace_ray instruction. If a hit primitive is found, closest-hit shader
is invoked to carry out reflection/illumination calculations, other-
wise; themiss shader is invoked. Custom geometry, such as spheres,
can be defined using the intersection shader. The any-hit shader is
executed for each potential intersection, allowing for effects like
transparency by conditionally accepting or discarding hits along
the ray’s path.

In GPU ray tracing applications, the BVH is built by the GPU
driver. In this work, the open-source ray tracing library Embree
3.14 [2] is used to build BVH trees for Vulkan-sim.

2.2 GPU Architecture
GPUs are throughput oriented massively parallel computers. They
consist of thousands of hardware threads that can run in parallel
[31]. Fig. 3 shows a generic GPU architecture which we consider
as the baseline. A GPU contains an array of Streaming Multipro-
cessors (SM), as in Nvidia terminology. Each SM has a collection
of execution lanes, register files, warp schedulers, and dedicated

L1 caches. Shader programs are executed with a thread hierarchy
of thread blocks (TBs), each composed of warps, with a warp of
32 threads that execute in a lock-step manner. TBs are assigned
to SMs by the Gigathread Engine [40]. GPUs hide memory laten-
cies by employing fine-grained multithreading. When a warp stalls,
the warp scheduler issues instructions from another non-stalling
warp instead. As long as there are enough warps, long instruction
execution latencies, such as memory latency, can be hidden by con-
tinuously scheduling non-stalling warps. Modern GPUs can have
anywhere from fewer than 10 (Mobile) to over 100 (Desktop) SMs,
depending on the use case. Typically, there is an L2 cache shared
among all SMs, connected via a crossbar. For off-chip memory,
high-bandwidth DRAM modules are used with on-chip memory
controllers.

2.3 Hardware Support for Ray Tracing
Latest GPUs feature specialized hardware called the RT Unit/Core
to efficiently perform ray tracing [4][5]. Vulkan-sim is a GPU archi-
tectural simulator that models an RT unit, which we use to model
our proposed CoopRT in this study. The RT unit can be viewed as
a specialized execution lane operating at warp granularity. When a
warp encounters the trace_ray instruction, the instruction is steered
to the RT unit, where the hardware performs BVH traversals. Specif-
ically, each thread of the warp is assigned a ray and traverses the
BVH tree to find either the closest-hit or any-hit primitive. As
shown in Fig. 3, an RT unit has a warp buffer which keeps the
ray data and traversal stack for each thread. At each cycle, a warp
from the warp buffer is selected, and a memory access request from
that warp is served. When the data returns, an intersection test is
performed by the operation units. Based on the result, either the
node’s children are pushed to the traversal stack (upon a hit), or if
it is a primitive, the closest-hit value is updated if needed. The per-
thread traversal stack stores the addresses of the nodes instead of
the node data itself. While the RT unit does not reduce the latency
of memory requests, it accelerates the traversal by streamlining the
address calculations and intersection tests.

3 Thread Activity In Ray Tracing
The latency of ray tracing applications is usually dominated by
the CISC-like trace_ray instruction, which traverses the BVH tree,
performs intersection tests and writes the results back to memory.
Listing 1 shows the anatomy of a raygen shader. When compiled,
the traceRay() function expands to a block of code that includes the
performance-dominating trace_ray instruction, followed by control
flow instructions that branch off to the closest-hit, any-hit, intersec-
tion, ormiss shaders. As the listing shows, each iteration of the loop
processes one bounce and invokes a trace_ray instruction. Like any
GPU shaders, the raygen shader is executed in the SIMT manner.
Due to such SIMT execution, there are two sources of hardware
resource under-utilization: inactive threads and early finishing
threads. With rays bouncing further into the scene every iteration,
more threads become inactive as they miss the scene or hit a light
source and exit the loop. However, although some threads become
inactive, as long as there is at least one active thread in the warp, the
loop keeps repeating. Inactive threads are masked off in hardware
and they do not perform any traversal, leading to unused hardware.

3



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

Figure 3: Diagram of the GPU model used in this study. Red blocks indicate the modified components. Redrawn from [37].

Figure 4: Thread status distribution.

In addition, the execution latency of the trace_ray instruction itself
is variable among threads, similar to load instructions where some
threads hit in the cache, while others miss. In the case of trace_ray
instruction, this latency variation is much more severe, as some
threads might quickly find the closest-hit primitive or just miss the
scene, whereas other threads might spend a long time traversing
the BVH to find their closest-hit primitive. We refer to the threads in
a warp that finish earlier than the others as early finishing threads.

To quantify the importance of inactive and early finishing threads,
we simulate the baseline GPU in Vulkan-sim and gather thread
status data at fixed intervals and average them. Fig. 4 shows the
distribution of thread status across different 3D scenes. From the
figure, we can see a high number of threads spend most of their
time being inactive, or finishing early and waiting.

Note that the divergence behavior in ray tracing (i.e., the raygen
shader and the trace_ray instruction) differs from typical GPGPU
applications, where the programs have relatively more balanced
if-then-else paths. In comparison, as shown in Listing 1, the ma-
jority of the execution time is spent inside the loop, leaving little
to no work for threads that exit the loop. Fig. 5 shows a simplified
Control Flow Graph for the program in Listing 1. Existing SIMT
control flow handling techniques could be beneficial for this code
to some extent [18][19][21][22][42]. Dynamic Warp Formation[22]
and Thread Block Compaction[21] could be used to create new
warps when threads diverge to blocks 𝐶0, 𝐶1 and 𝑀 . Similarly,
multi-path execution[19] could execute these blocks in parallel.
However, when threads diverge at block 𝐿 to 𝑇 and 𝑆 , these tech-
niques become insufficient because the latency of 𝑆 is negligible
compared to block 𝑇 , which contains the 𝑡𝑟𝑎𝑐𝑒_𝑟𝑎𝑦 instruction.
Therefore, the existing techniques can mitigate some of the diver-
gence in ray tracing, but none of them address the main bottleneck,
which is the BVH traversal process, i.e., block 𝑇 .

Different from the existing schemes, CoopRT offers a novel way
to exploit the inactive or early finishing threads to parallelize and

Figure 5: A Simplified Control Flow Diagram of Listing 1. 𝐶0,
𝐶1 are closest-hit shaders, and 𝑀 is a miss shader. 𝐿 is the
loop iteration block.

accelerate the BVH traversal process, therefore improving the re-
source utilization and significantly reducing the latency of the
trace_ray instruction and the raygen shader. More generally, as
each trace_ray instruction essentially performs 32 DFS operations
and the raygen shader can be viewed as a sequence of dependent
DFS operations, CoopRT provides a novel way to accelerate such
DFS operations, which has more profound impacts when the RT
unit is repurposed for accelerating graph algorithms [11][26][44].

Listing 1: Simplified raygen shader for path tracing.

//Calculate ray origin and direction

//using pixel coordinates

for ( in t i = 0 ; i <NUM_BOUNCES ; i ++ ) {
traceRay(ray.orig, ray.dir)

i f missed | | ! s c a t t e r e d
break ;

//Calculate new origin and direction

//using the hit data

}
4



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

//Calculate and store pixel color

4 Cooperative BVH Traversal
In this section, we first explain how the baseline BVH traversal
works. Then, we propose our cooperative traversal by parallelizing
the traversal process.

4.1 Baseline BVH Traversal
The baseline RT unit in Vulkan-sim traverses a BVH using the DFS
algorithm, as shown in Algorithm 1 [37].

Algorithm 1: BVH Traversal using DFS to find the closest-
hit primitive
Input: 𝑟𝑎𝑦, 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒

1 if 𝑟𝑎𝑦 intersects 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒 then
2 𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒);
3 while !𝑠𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 do
4 𝑛𝑜𝑑𝑒 ← 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ();
5 if 𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑛𝑜𝑑𝑒 then
6 for 𝑖 = 0 to 5 do // 6-ary tree
7 𝑡ℎ𝑖𝑡 [𝑖] ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑒𝑠𝑡 (𝑟𝑎𝑦, 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖]);
8 if 𝑡ℎ𝑖𝑡 [𝑖] < 𝑚𝑖𝑛_𝑡ℎ𝑖𝑡 then
9 𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖]);

10 else // leaf node
11 𝑡ℎ𝑖𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑒𝑠𝑡 (𝑟𝑎𝑦, 𝑛𝑜𝑑𝑒);
12 𝑚𝑖𝑛_𝑡ℎ𝑖𝑡 ←𝑚𝑖𝑛(𝑚𝑖𝑛_𝑡ℎ𝑖𝑡, 𝑡ℎ𝑖𝑡);

The BVH tree in Algorithm 1 is assumed to be a 6-ary tree,
meaning each node can have up to 6 child nodes, following the
convention used in the MESA graphics library and Vulkan-sim.
The nodes in the BVH can be internal nodes, which are nodes
that have up to 6 children, or leaf nodes which are primitives like
triangles or quads. An internal node contains information such
as the coordinates of the AABBs of its child nodes, as well as the
address offsets of the child nodes. Leaf nodes contain the vertex
coordinates of the primitive.

Tree traversals are initiated when a warp issues a trace_ray
instruction to the RT unit. Each thread of the warp traverses one
ray using the ray properties passed with the trace_ray instruction.
The root node is an AABB that encompasses the entire scene and
is checked for intersection first (line 1). If the root node is hit, its
address is pushed onto the traversal stack (line 2). Then, until the
stack is empty, the node address at the top of the stack (TOS) is
popped, read from memory, and if it is an internal node, its children
are checked for intersections and their addresses are pushed onto
the stack if hit (lines 4-12). If the popped node is a leaf node, i.e. a
primitive, the variablemin_thit, representing the hit distance of the
current closest-hit primitive, is updated if necessary (lines 10-12).
An important observation is that an entire tree/sub-tree often does
not need to be traversed, as some nodes may be farther than the
current closest-hit primitive. Consequently, those nodes and their
children can be skipped. Upon finding a primitive hit, threads store
the hit information to memory. Typically, subsequent instructions

read this information to calculate reflections based on the material
and geometry, and trace subsequent bouncing rays.

From the description above, we can see that the baseline traversal
is very similar to a generic DFS traversal. Each thread processes
the traversal stack one node at a time, i.e., top of the stack, while
multiple node addresses are available in the stack. This observation
motivates our proposed Cooperative BVH traversal, which makes
use of the node addresses in the traversal stack to parallelize and
accelerate DFS operations.

4.2 Cooperative BVH Traversal
Our cooperative traversal enables idle (or inactive) threads to be
helper threads by tapping into the traversal stacks of busy threads
(main threads) within the same warp. We define an idle or helper
thread as one whose traversal stack is empty, and a busy or main
thread as one with a non-empty traversal stack. Algorithm 2 shows
how an idle thread behaves during traversal. An idle thread (with
its ID as tid) first searches for a busy thread within the same warp
(lines 2-6). Upon finding a busy thread to help (line 4), the top node
is popped from the main thread’s stack and pushed to the helper
thread’s stack (line 5). The helper thread saves the thread ID of
the main thread (line 6), which is used to look-up and update the
correct closest hit distance, i.e.,min_thit. It then proceeds to traverse
the tree as usual until its stack is empty (lines 12-20), at which
point it will look for another busy thread to help. The traversal
finishes when all threads in the same warp have emptied their
stacks and updated the destination registers to indicate whether a
hit was found, after which the trace_ray instruction retires. This
cooperative traversal is functionally correct, i.e., the closest-hit
primitive will be correctly identified, as long as helper and main
threads update the right min_thit value whenever a closer hit is
found.

Fig. 6 illustrates an example of cooperative traversal. In the base-
line, the entire tree is traversed by a single thread. After checking
the AABB of root node for intersection and finding a hit, its address
is pushed onto the stack to initiate the traversal. Then, the root
node address is popped and fetched from memory. When the node
data arrives, the children are tested for intersection, and found
that they are both hit, therefore both the child node addresses are
pushed onto the stack. Next, the thread pops the left child address
and starts traversing the left subtree before checking the right sub-
tree. With cooperative traversal, let us assume there is one helper
thread. After the main thread pops the root’s left child address,
the helper thread pops the main thread’s stack and gets the root’s
right child address. Therefore, the helper thread would traverse
the right subtree of the root. With both the main and the helper
threads, the two subtrees are traversed in parallel. Note that it is
possible that the helper thread pops a different node address from
the main thread, depending on when the helper thread is available
to pop an address from the main thread’s traversal stack. In this
case, different subtrees would be traversed in parallel. Whenever a
thread empties its traversal stack, it would become a helper thread
and try to take an address from a busy thread’s stack. As such, the
degree of parallelization is not affected by which address is taken
by a helper thread. Although both the main and helper threads find
triangle hits (red circles in Fig. 6), only one of them is identified as

5



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

Figure 6: Example BVH tree traversal comparing baseline
and cooperative traversal.

the closest-hit primitive, as the threads compare with the current
closest-hit, min_thit, of the main thread before updating it. As a
result, the correctness of traversal is maintained.

While we focus on cooperative traversal for DFS, it can be ex-
tended to breadth-first-search (BFS) as BFS is also inherently paral-
lelizable. Compared to DFS, BFS would use a queue (FIFO) rather
than a stack (LIFO) to track nodes. In that case, helper threads would
steal nodes from the front of the queue and start their traversal. In
general, as long as a tree/graph traversal algorithm is parallelizable
and uses a stack/queue to track nodes, cooperative traversal can be
directly applied.

An important design consideration in cooperative traversal is
deciding the range of the threads who can help each other. In
Algorithm 2, all 32 threads in a warp are allowed to help each
other, which maximizes cooperation and performance, but at the
cost of more complex hardware. We investigate more restrictive
configurations where only threads within the same subwarp are
allowed to help each other, in order to reduce hardware overhead.
We explore area and performance impact of subwarp sizes of 4, 8
or 16 threads in Section 7.

5 CoopRT Architecture
5.1 Overview of the Architecture
To support our cooperative BVH traversal, we modify the warp
buffer and the accompanying logic in the RT unit. Fig. 7 shows the
high level block diagram of our proposed implementation, with the
added per-thread structures highlighted using red and added per-RT
unit structures highlighted using purple. At every cycle, the warp
scheduler in the RT unit picks a non-stalling warp from the warp
buffers . The memory scheduler iterates through the threads in
the scheduled warp, checking each thread’s status to determine if it
has any remaining memory requests. The node addresses from the
TOSes of these threads are coalesced to remove redundant cache
or memory accesses. One of these unique addresses is selected
and added to the memory access queue, which breaks the requests
into small chunks before sending them to memory hierarchy .
The threads that generated this request pop their TOSes and save
the popped addresses in registers, which will be needed when the

Algorithm 2: Cooperative BVH Traversal to find the
closest-hit primitive
Input: 𝑟𝑎𝑦𝑠 ,𝑚𝑖𝑛_𝑡ℎ𝑖𝑡𝑠 , 𝑠𝑡𝑎𝑐𝑘𝑠 ,𝑚𝑡𝑖𝑑𝑠 , 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒

1 𝑚𝑡𝑖𝑑 [𝑡𝑖𝑑] ← 𝑡𝑖𝑑 // Initialize mtid to thread id
2 if 𝑠𝑡𝑎𝑐𝑘𝑠 [𝑡𝑖𝑑] .𝑒𝑚𝑝𝑡𝑦 then
3 for 𝑖 ← 0 to𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒 do
4 if !𝑠𝑡𝑎𝑐𝑘𝑠 [𝑖] .𝑒𝑚𝑝𝑡𝑦 then
5 𝑠𝑡𝑎𝑐𝑘𝑠 [𝑡𝑖𝑑] .𝑝𝑢𝑠ℎ(𝑠𝑡𝑎𝑐𝑘𝑠 [𝑖] .𝑝𝑜𝑝 ());
6 𝑚𝑡𝑖𝑑 [𝑡𝑖𝑑] ←𝑚𝑡𝑖𝑑𝑠 [𝑖] // Save main thread id to

mtid
7 𝑏𝑟𝑒𝑎𝑘 ;

8 𝑠𝑡𝑎𝑐𝑘 ≡ 𝑠𝑡𝑎𝑐𝑘𝑠 [𝑡𝑖𝑑] // Let stack refer to stacks[tid]
9 𝑚𝑡𝑖𝑑 ≡𝑚𝑡𝑖𝑑 [𝑡𝑖𝑑] // Let mtid refer to mtid[tid]

10 𝑟𝑎𝑦 ≡ 𝑟𝑎𝑦𝑠 [𝑚𝑡𝑖𝑑] // Let ray refer to rays[mtid]
11 𝑚𝑖𝑛_𝑡ℎ𝑖𝑡 ≡𝑚𝑖𝑛_𝑡ℎ𝑖𝑡𝑠 [𝑚𝑡𝑖𝑑]
12 while !𝑠𝑡𝑎𝑐𝑘.𝑒𝑚𝑝𝑡𝑦 do
13 𝑛𝑜𝑑𝑒 ← 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ();
14 if 𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑛𝑜𝑑𝑒 then
15 for 𝑖 ← 0 to 5 do
16 𝑡ℎ𝑖𝑡 [𝑖] ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑒𝑠𝑡 (𝑟𝑎𝑦, 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖]);
17 if 𝑡ℎ𝑖𝑡 [𝑖] < 𝑚𝑖𝑛_𝑡ℎ𝑖𝑡 then
18 𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑖]);

19 else
20 𝑡ℎ𝑖𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑒𝑠𝑡 (𝑟𝑎𝑦, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒);
21 𝑚𝑖𝑛_𝑡ℎ𝑖𝑡 ← min(𝑚𝑖𝑛_𝑡ℎ𝑖𝑡, 𝑡ℎ𝑖𝑡);

memory responses come in. In parallel, the Load Balancing Unit
(LBU) looks for a thread that needs help, and another thread that
can offer help within the scheduled warp . If a main and a helper
thread are picked, it pushes the node at the TOS of the main thread
to helper thread’s stack by controlling the per-thread multiplexors

. If the Helper ID that LBU finds matches the thread’s ID, then
the multiplexors select the TOS coming from LBU, which is then
pushed to this thread’s traversal stack. Since LBU moves only one
node at a cycle, the number of pushes is set to 1; whereas the math
units may push up to 6 nodes at once depending on how many
child nodes are hit.

Responses from memory hierarchy are inserted to the Response
FIFO, and fed into the Math units where coordinate transformations,
ray-box and ray-triangle intersection tests are carried out . The
address of the response is checked against the saved TOS registers
to determine which thread or threads originated the request. We
assume there is one math unit associated with each thread to ensure
there are no stalls for intersection tests, similar to [37]. Depending
on the intersection test results, child nodes are pushed to traversal
stacks of the associated threads. If a primitive hit is found, the
closest hit information, min_thit, may be updated (Section 5.3) and
a store request for the primitive data is inserted to the store queue
which can then be read by the closest-hit or any-hit shaders [37].

6



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 7: Overview of the modified RT unit. Orange blocks indicate existing hardware, red blocks are newly added per-thread
structures, and purple blocks are newly added per-RT unit (therefore per-SM) structures. main_tid is a new 5-bit field added to
Thread Status in the warp buffer.

Figure 8: Load Balancing Unit.

5.2 Load Balancing Unit
LBU is a per SM unit and is responsible for assigning idle threads
as helpers to a busy thread, and moving node addresses from the
main to helper threads. Fig. 8 shows details of the LBU. The priority
encoder (PE) on the right of Fig. 8 determines which thread needs
help, and outputs its thread ID. A thread needs help if its traversal
stack is not empty, and its TOS is not being processed in that cycle.
Both active and inactive threads in the warp can be helped, which
means a helper thread can also be helped by another thread as long
as its traversal stack is not empty. The main thread ID is used to
control the multiplexor which outputs the TOS of main thread. The
PE on the left determines which thread is available to help, and
outputs its thread ID. The empty signal means the corresponding
thread’s traversal stack is empty at the cycle. If both a main and
a helper thread are found, main_tid of the main thread is saved
in the helper thread’s main_tid field in the warp buffer using the
per-thread multiplexor . All the threads traversing the same ray,
including the helper(s) and main, use the main_tid field to get the
right ray properties andmin_thit value.main_tid is initialized to tid
when the trace_ray instruction first enters the RT unit. As threads
are assigned as helpers, they save the main thread’s main_tid field
in their own main_tid field.

5.3 Synchronization Between Main and Helper
Threads

When multiple threads traverse the same ray, to ensure functional
correctness, they need to update the same min_thit register as they
find primitive hits. The min_thit field in the warp buffer stores the
hit distance of the current closest-hit primitive, and it is updated
only when a closer primitive is found. With CoopRT, all helper
threads update themin_thit field of the main thread, which ensures
functional correctness. This is achieved via the logic shown in Fig.
7, which is a per-thread structure . Three signals are ANDed
together for each thread: math_rdy signal that indicates the math
unit’s output is ready, the main_tid==tid signal where main_tid
is the main thread’s ID saved by the helper thread and tid is the
thread ID of the thread whose min_thit is being updated, and the
thit value itself. Output of all the AND gates (one AND per thread)
are ORed to allow the valid thit value that will be written to the
main thread’smin_thit field if it is smaller than the current one. The
OR gate behaves like a multiplexor, because it is logically impossible
for more than one thread to find a primitive hit for a given ray at the
same cycle. The reason is that the responses from the response FIFO
are popped one per cycle, and the math unit latency is constant. If
the bandwidth of the response FIFO is increased to be more than
one response per cycle, we can let each helper update their own
min_thit field first and then borrow atomic instruction support (e.g.,
atomicMin) to update the main threads’ min_thit at the store buffer
when retiring. Since the FIFO throughput is not a performance
bottleneck, we do not investigate this design option further.

It is possible that a main thread empties its traversal stack, i.e.
finishes traversal, before a helper thread. This does not pose a
problem as the trace_ray instruction will not retire until all threads
in the warp have emptied their stacks.

Overall, the newly added support shown in Fig. 7 provides (a)
a mechanism to identify helper and main thread pairs, up to one
pair a cycle by the LBU, (b) the data path to read from the main
thread’s traversal stack and write to the helper thread’s traversal
stack (a bus design can also be sufficient, as only one main-helper
pair is selected per cycle), and (c) the data path from the math
units’ outputs, i.e., the thit from a helper thread, to update the

7



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

main thread’s min_thit if it is smaller than the min_thit. This is
achieved with a crossbar. If we allow any thread in a warp to help
each other, it is a 32x32 crossbar. If we limit the scope to a subwarp
(e.g., size 8), then we can replace the 32x32 crossbar with multiple
small crossbars (e.g., 4 8x8 crossbars). The logic is simplified by
the observation that only up to one helper thread would update
the main thread’s min_thit at a cycle. The reason is that node
addresses are unique, the memory response IO throughput is one
per cycle, and different helper threads traverse different portions
of the BVH tree. As a result, it is impossible for more than one
thread to ever access the same primitive for a given ray, and when
different threads access different primitives, their thit values will
be available at different cycles.

6 Experimental Methodology
6.1 Modeling CoopRT in Vulkan-sim
We modify Vulkan-sim 2.0 [37] to model CoopRT and evaluate
its performance. Vulkan-sim is built on top of GPGPUsim [31],
which is made up of a functional and a timing simulator. Vulkan-
sim performs the actual BVH traversal process in the functional
simulator, and passes a list of BVH node addresses for each thread to
the timing simulator, which in turn simulates the memory accesses.
The timing simulator picks a warp from the warp buffer at every
cycle, reads the node addresses from the top of the lists passed from
the functional simulator, merges duplicate addresses and sends
one of the unique addresses to memory hierarchy. To implement
CoopRT, we check for idle threads in the scheduled warp each cycle.
If any are found, the node at the top of the list of a busy thread is
moved to the idle thread’s node list.

The functional simulator assumes a single thread traverses the
BVH tree in DFS fashion for a given ray, and therefore generates
the list of nodes accordingly. This means some nodes in the tree
get eliminated during traversal because they are farther than the
current closest-hit primitive, and they are not added to the list.
However, when multiple threads traverse the BVH together, it is
impossible to know beforehand which nodes will be eliminated,
because that depends on runtime information such as how many
threads traverse the tree and which parts of it they are processing,
which is not available in the functional simulator.

We resolve this issue by not doing any node eliminations in the
functional simulator, and instead, passing the thit values of each
node to the timing simulator. In the timing simulator, we keep track
of themin_thit value for each thread, which is initialized to positive
infinity. Before processing a new node in the list, we compare its
thit value to the min_thit value. If thit is greater than or equal to
min_thit, we discard it.

To estimate the impact on power consumption, we useGpuWattch
[33] shipped with Vulkan-sim.

We use one of the default configurations available in the Vulkan-
sim repository, namely the SM75_RTX2060 configuration. Table 1
shows the key settings in this configuration.

6.2 Benchmark Suite
We use the Lumibench[35] ray tracing benchmark suite for eval-
uation. Lumibench features 16 3D scenes with various geometric

# Streaming Multiprocessors(SM) 30
Max. TBs per SM 32
Warp Size 32
Instruction Cache 128KB, 20 cycles
L1 Data Cache 64KB, Fully assoc. LRU, 20 cycles
L2 Cache 3MB, 16-way assoc. LRU, 160 cycles
Core, Interconnect, L2 Clock 1365 MHz
Memory Clock 3500 MHz
# of RT Units per SM 1
RT Unit Warp Buffer Size 4

Table 1: Vulkan-sim baseline hardware configuration.

complexities and lighting conditions. Table 2 shows a summary of
the 3D scenes.

The highest resolution we could simulate without simulations
timing out or running out of memory is 256x256. Among all the
scenes, we could only simulate 13 scenes at this resolution. For the
remaining ones, we run the scenes car and robot at the resolution
of 128x128 because they either time out or consume too much
memory at the resolution of 256x256. The scene park would not
finish after 3 days of simulation and time out at the resolution of
128x128. In all the scenes, we use 1-sample-per-pixel, meaning one
primary ray for each pixel.

At the resolution of 256x256, there are 2048 thread blocks (TB)
and each TB has one warp, which is the default thread block size
in Vulkan-sim. 2048 TBs are enough to fill up the entire GPU that
we use in this study, which has 30 SMs.

7 Results
7.1 CoopRT Performance and Memory

Bandwidth Utilization
Fig. 9 shows the normalized speedup and power of CoopRT with PT
shaders. We observe up to 5.11x speedup, with a geometric mean
of 2.15x. Scenes with low SIMT efficiency and long BVH traversals,
such as crnvl, fox and party, benefit the most from cooperative
traversal. Although spnza has the highest number of BVH nodes
visited among all the scenes, it also has relatively higher SIMT
efficiency, meaning there are fewer idle threads, likely because it
is a closed scene with minimal exposed sky. On average, power
consumption is increased by 2.02x, and energy is decreased to 0.94x.

To provide more insight to the source of performance gains, we
calculate average thread utilization in RT unit using the readily
available AerialVision stats [10]. At every 500GPU cycles, we collect
the number of busy threads in RT unit, i.e., the threads with non-
empty traversal stacks, and divide them by the number of total
threads to get the thread utilization per sample. We then average
all the samples to obtain overall utilization for each scene. Fig. 10
shows the overall thread utilization for baseline and CoopRT.

From the Figs. 9 and 10, we can see that the speedups are propor-
tional to the thread utilization improvements, rather than the actual
final utilization. The three scenes, crnvl, fox, and party have the
highest improvement in utilization, which is why they achieve the
highest speedups. In other words, CoopRT overcomes the divergent
nature of ray tracing by exploiting the parallelism of BVH traversal.
The more divergent a scene, the higher speedup is achieved.

8



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

Scene
Label wknd ship bunny spnza chsnt bath ref crnvl
Tree Size(MB) 0.2 0.5 12.2 22 25.5 104.2 37.1 37.3
Depth 7 12 11 16 12 16 13 16

Scene
Label fox party sprng lands frst park car robot
Tree Size(MB) 597.8 143.8 164.3 279.2 348.6 501.9 1,233.6 1,721.3
Depth 15 14 14 12 14 14 16 18

Table 2: Benchmark scenes from LumiBench [35]. Scene stats taken from [15].

Figure 9: Normalized speedup, power and energy consumptions of CoopRT over the baseline RT unit.

Figure 10: Average thread utilization.

Fig. 11 presents the trace_ray instruction execution timeline of
an example warp (in the bath scene) to illustrate how the thread
utilization increases with CoopRT. In Fig. 11a, there are 13 inactive
threads, and several threads that finish their traversal early and
idle, yielding an average utilization rate of 30.5%. Fig. 11b shows
how the timeline changes with CoopRT. Inactive threads steal work
from active threads, and spend most of their time doing traversals.
In addition, active threads who finish early also steal work from
other threads. Ultimately, average utilization increases to 94.6%.

CoopRT also entails substantial improvement in memory band-
width utilization due to the increased number of threads doing
traversals in parallel. Fig. 12 shows the L2 cache and DRAM band-
width utilization normalized to baseline. We observe up to 5.7x
and 5.5x increase in L2 and DRAM bandwidth respectively. This
increase is primarily due to low bandwidth use of the baseline RT
unit, as there are fewer busy threads in the baseline.

Another important factor is the number of maximum number
of warps allowed in the RT unit. By default, as shown in Table 1,
the RTX2060 configuration allows at most 4 warps to exist simulta-
neously in the RT unit. However, 4 warps are not enough to fully
utilize the memory bandwidth. Simply increasing the number of

warp buffers in the RT unit is costly, as all the fields in the warp
buffer add up to hundreds of bits of storage per thread. We discuss
the area overhead with detail in Section 7.5. To evaluate the impact
of warp buffer size on performance, we simulate different warp
buffer sizes with and without CoopRT. Fig. 13 shows the normalized
speedups for different warp buffer sizes. Compared to the baseline,
we see geometric means of 1.45x, 1.64x, 1.64x for warp buffer sizes
of 8, 16, 32 without CoopRT. As the warp buffer size increases,
inter-warp parallelism and memory bandwidth utilization increase,
yielding higher throughput and performance. Increasing the warp
buffer size from 4 to 8 provides the greatest performance boost, with
further increases yielding diminishing returns. For this particular
hardware configuration, 8 or 16 buffer entries seem like the sweet
spot for performance and area trade off. When CoopRT is enabled,
the impact of warp buffer size becomes less significant. We see geo-
metric means of 2.15x, 2.13x, 2.06x, 1.99x for warp buffer sizes of 4,
8, 16 and 32 over the baseline. This is because CoopRT already satu-
rates the memory bandwidth utilization. CoopRT with just 4 warp
buffer entries achieves greater speedup than the baseline 32 entry
warp buffer configuration. Moreover, CoopRT reduces the latency
of the longest-running or slowest warps, which would determine
the frame rate in real-time rendering, compared to the schemes
using large warp buffers. Fig. 14 shows the latency of the longest
running warp in each scene normalized to baseline. From the figure,
we can see that CoopRT achieves higher throughput and better
latency via intra-warp parallelism. On average, CoopRT achieves
0.46x the latency of the baseline, compared to 0.62x achieved by
the large warp buffer scheme.

9



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

(a) Baseline

(b) CoopRT
Figure 11: RT unit trace_ray instruction execution timelines.
Dark and light gray bars represent active and originally in-
active threads, respectively. A continuous bar indicates a
non-empty traversal stack. bath scene, 256x256 resolution
path tracing.

Figure 12: Normalized L2↔ Interconnect, and DRAM band-
width with CoopRT over the baseline.

To quantify and compare the energy efficiency of CoopRT against
large warp buffers, we calculate the energy-delay products (EDP)
[24][12] of each approach, and plot the EDP improvements in Fig.
15. Geometric means are 1.54x, 1.75x, 1.75x and 2.29x for warp buffer
sizes of 8, 16, 32 without CoopRT and 4 with CoopRT respectively.
While neither approach introduces substantial energy consumption,
CoopRT with the warp buffer size of 4 achieves higher performance
by better utilizing the existing hardware, thus achieving better EDP
with much smaller area overhead.

7.2 Memory Contention Under CoopRT
When CoopRT is enabled, the RT unit generates more memory
requests in a shorter amount of time. This could lead to contention
in the memory hierarchy. To analyze such contention, we collect
the L1 and L2 miss rates for each scene, as shown in Fig. 16. From

the figure, we observe that CoopRT results in: (1) increased L1 cache
miss rates indicating more contention on L1; (2) a higher number
of L2 accesses but similar L2 miss rates meaning more reuses at
the L2 (as some of the original L1 reuses now happen at L2); (3)
GPU latency hiding capability tolerating additional L1 misses; and
(4) overlapping misses (i.e. memory level parallelism) and memory
bandwidth utilization being more important than the number of
misses alone.

7.3 Ambient Occlusion and Shadow Shaders
In addition to PT shaders, Lumibench features ambient occlusion
(AO) and shadow (SH) shaders that use the ray tracing pipeline
to produce realistic lighting effects. Unlike PT, these shaders are
typically used together with rasterization, and are readily employed
in real-time applications such as video games. AO and SH shaders
are muchmore lightweight than PT, as they do not aim to render the
entire 3D scene, but rather perform lighting calculations. Similar
to PT, AO and SH shaders also begin with primary rays generated
from the camera, but instead of bouncing the primary ray through
the scene, they find the closest object that the primary rays hit.
Then, from that intersection point, they trace a small number of
shadow rays to determine how much light reaches that point. The
key difference from PT is that these shadow rays are much more
localized and coherent (i.e., non-divergent). Therefore, they are
relatively faster to trace and there is less room for improvement.
Fig. 17 shows how CoopRT performs with AO and SH shaders. As
expected, the speedups are smaller compared to PT. This is because,
as mentioned before, AO and SH rays do not diverge nearly as
much as PT, leaving less speedup opportunity for CoopRT than PT
rays. Despite this, CoopRT achieves an average of 1.42x and 1.28x
speedup for AO and SH, respectively.

7.4 Mobile GPU Configuration
To demonstrate the robustness of CoopRT, we also evaluate the per-
formance on a mobile GPU configuration included in Vulkan-sim,
which has 8 SMs and 4 memory channels. Fig. 18 shows the speedup,
power and energy results under this configuration. We see CoopRT
achieves an average of 1.8x speedup, 1.71x power and 0.95x en-
ergy relative to the baseline. The speedups are mainly bottlenecked
by the memory bandwidth limitation of this configuration. When
CoopRT is enabled, DRAM utilization increases from 44.0% to 85.3%
on average.

7.5 Area Overhead
We implement the hardware model proposed in Section 5 to es-
timate the area cost of CoopRT. We wrote the RTL for all of the
newly introduced blocks, and synthesized using FreePDK45 [38]
and Synopsys Design Compiler. While the proposed logic is purely
combinational that consists of PEs, multiplexors and logic gates, we
also take into account the extra fields introduced to warp buffers.

The total number of combinational cells in this design is 16,122,
occupying an area of 13,347 µm2. For reference, each sequential cell
(e.g., a D flip-flop) takes up 6 µm2 in this design kit. This means
that the area occupied by the combinational logic is equivalent
to approximately 2,200 flip-flops. By comparison, in the baseline
RT unit, just the RayProperties, TraversalStack and min_thit fields

10



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 13: Normalized speedups for different RT warp buffer sizes with and w/o CoopRT. Baseline is 4-entry warp buffer
without CoopRT. 1 warp per thread block, 32 thread blocks in one SM at a time. Missing data points are due to consistently
crashing or timing out simulations.

Figure 14: Latency of the slowest warps, normalized to base-
line (4 buffer entries without CoopRT). Lower the better.

Figure 15: Normalized improvement in EDP for different RT
warp buffer sizes. Baseline is 4-entry warp buffer without
CoopRT.

Figure 16: L1 and L2 cache miss rates.

Figure 17: Speedups of CoopRT for AO and SH shaders nor-
malized to baseline.

in a warp buffer require a total of 768 bits of storage per thread,
assuming a 16-entry traversal stack. Here, RayProperties includes
the ray’s origin, direction, and a max_thit value. The extra fields in
the warp buffer include the 5-bit main_tid field per thread, and a
stack empty flag per thread. Assuming 4 warp buffer entries, and
32 threads per warp, the warp buffer takes up 98,304 (=4*32*768)
bits of storage.

This means the CoopRT hardware takes up less than 3.0% ((
2200+4*32*(5+1))/98304) of the warp buffer area. This comparison
also shows that CoopRT is much more area efficient than simply

Figure 18: Speed, power and energy of CoopRT on a mobile
GPU, normalized to baseline.

increasing the number of warp buffers as each warp buffer entry
takes 24,576 (=32*768) bits.

One way to reduce the area consumption is to implement a
subwarp scheme where only the threads within the same subwarp
are allowed to help each other. A subwarp is a smaller, fixed-size
group of threads in a warp. This slightly reduces the hardware cost,
as the per-thread structures shown in Fig. 7 do not need to have
32 inputs coming from 32 threads. The smaller the subwarp size,
the less area consumed. However, this also places a constraint on
which threads can help each other, therefore reducing the amount
of parallelism and performance.

One important design decision tomakewith the subwarp scheme
is if all subwarps are processed together in one cycle to find a pair
of helper-main threads for each subwarp, or if just one subwarp
is picked and processed every cycle. The former approach reduces
area consumption by reducing the number and sizes of the per-
thread OR gate and multiplexor in Fig. 7. It also replaces the PEs
with a smaller pair for each subwarp. The latter approach rescales
the number of gates and multiplexors to the subwarp size, poten-
tially eliminating significant amount of hardware. However, it also
requires additional hardware for subwarp scheduling. At each cycle,
the subwarp scheduler would have to look through the subwarps,
and pick a suitable one that has a main-helper pair candidate. In
terms of performance, both approaches would perform similarly, as
the latency of a trace_ray instruction is on the order of thousands
of cycles, which is long enough to hide any subwarp scheduling
latency.

Using the first approach described before, we synthesize CoopRT
hardware with subwarp sizes of 4, 8 and 16 to estimate area savings,
and also simulate in Vulkan-sim to understand the performance
trade off. Table 3 shows the area results for different subwarp sizes.
By decreasing the subwarp size to 4, almost 10% of the area can be
saved. Fig. 19 shows how the performance changes with subwarp
size. As expected, reducing the subwarp size leads to a decline in
performance. Average speedups are 1.72x, 1.97x, 2.09x and 2.15x
for 4, 8, 16 and 32 respectively. It is worth noting that both area

11



ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

Subwarp size # of cells Total
area(µm2)

Percent
change(Area)

32 16122 13347 0
16 15867 13104 1.8
8 15511 12661 5.1
4 15167 12055 9.7

Table 3: Area results for different subwarp configurations.
Percent change is relative to subwarp size 32.

Figure 19: Speedups of CoopRT for subwarp sizes of 4, 8, 16
and 32 normalized to baseline.

consumption and performance drop the most when changing the
subwarp size from 8 to 4.

8 Related Work
8.1 Ray Tracing on GPUs
Due to its parallel nature, ray tracing has been implemented and
studied onGPUs. Early research onGPU ray tracing utilized GPGPU
programming models such as CUDA, due to the lack of hardware
and API support. Aila et al. [9] implement a GPU ray tracer to assess
the performance and bottlenecks of ray traversal on GPUs. They
explore replacing early terminated rays with new ones, wider BVH
trees, and work queues to improve SIMD efficiency. In another work
[8], Aila et al. focus on incoherent (divergent) rays and explore a
treelet based BVH traversal scheme. The BVH tree is statically split
into smaller trees called treelets to shrink the working set and re-
duce the memory footprint and latency. Wald [42] proposes active
thread compaction to mitigate divergence in PT. At the beginning
of each ray bounce, active threads across multiple warps are com-
pacted together to form fewer but more efficient warps, which is
similar to the idea in [21]. Therefore, it may address the inactive
thread problem to some degree (as it needs to compact different
numbers of TBs or warps for each bounce), but not early finishing
threads.
8.2 Hardware Accelerated Ray Tracing
The recent introduction of specialized RT units in commodity GPUs
sparked architectural research for hardware acceleration of ray trac-
ing. Lufei et al.[34] propose an intersection prediction algorithm. A
dedicated hardware cache is used to store the intersection results
of previous rays. Future rays can look up the cache by calculating
a hash using the ray properties and predict intersections without
traversing the BVH tree. Although effective with localized rays that
AO and SH shaders generate, its effectiveness with PT is unknown.
Saed et al. [37] extend GPGPUsim 4.0 [31] by incorporating an RT
unit which is capable of simulating Vulkan ray tracing shaders.
Inspired by Aila [8], Chou et al. [15] propose a treelet based BVH
traversal and hardware prefetcher for ray tracing. Prefetching is a
viable solution for memory latency-bound workloads, such as PT.

In this context, the treelet prefetcher proves to be useful, though
it requires complex hardware, and a custom BVH organization.
CoopRT can be combined with a prefetcher, such as the Treelet
prefetcher, although the benefits would need more careful consid-
eration. The reason is that CoopRT increases parallelism and may
saturate the memory bandwidth. In this case, the bandwidth left
for prefetching would be limited. In a system where bandwidth is
abundant, CoopRT can benefit from prefetching due to reduced
memory access latency.

9 Conclusion
In this work, we propose a novel cooperative BVH traversal scheme,
CoopRT, to accelerate GPU ray tracing. We capitalize on two im-
portant insights: low SIMT efficiency of ray tracing workloads, and
the inherent parallelism of BVH traversal.

Ray tracing applications traverse millions of rays per frame, and
during the traversal, a large number of rays terminate early either
because they miss the scene or hit a light source. This causes the
threads to idle, while other threads continue their traversals. How-
ever, BVH traversal can be parallelized without losing functional
correctness. Therefore, we propose to utilize the idle threads to
help the busy threads finish their traversals faster by letting the
idle threads steal BVH nodes from busy threads’ traversal stacks.
We evaluate the performance of CoopRT in Vulkan-sim [37] by ex-
tending the baseline RT unit. We simulate CoopRT across 13 scenes
in Lumibench [35], and show that CoopRT achieves up to 5.11x
speedup, with an average of 2.15x compared to the baseline RT unit.
We also propose a hardware model for CoopRT and implement it
in RTL to estimate its area overhead. We show that CoopRT takes
less than 3.0% of the warp buffer area in the RT unit.

Acknowledgments
We thank the anonymous reviewers for their valuable comments.
The work is funded in part by NSF grants PHY-2325080 (with a
subcontract to NC State University from Duke University), and
OMA-2120757 (with a subcontract to NC State University from the
University of Maryland).

A Artifact Appendix
A.1 Abstract
This artifact provides the source code for the modified Vulkan-sim
which has newly added configuration options to enable CoopRT.
In addition, Python and shell scripts are provided to run all the
necessary simulations and generate the plots and figures in this
paper. To streamline the artifact evaluation process, we prepared
a docker image with all the software dependencies installed. As
simulations take a long time, we also included the raw simulation
outputs that we generated and used for this paper.

A.2 Artifact check-list (meta-information)
• Program: Vulkan-sim, RayTracingInVulkan
• Compilation: gcc/g++, ninja, meson, cmake, nvcc
• Run-time environment: Ubuntu 20.04
• Hardware: 32+GB RAM
• Metrics: Number of cycles, average power consumption
• Output: Vulkan-sim simulation outputs, figures.

12



CoopRT: Accelerating BVH Traversal for Ray Tracing via Cooperative Threads ISCA ’25, June 21–25, 2025, Tokyo, Japan

• How much disk space required (approximately)?: 30GB
• How much time is needed to prepare workflow (approxi-
mately)?: About 1 hour
• How much time is needed to complete experiments (approxi-

mately)?: 5 minutes to generate figures. One week for Vulkan-sim
simulations, if ran in parallel.
• Publicly available?: Yes
• Code licenses (if publicly available)?: Yes
• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.15103378

A.3 Description
A.3.1 How to access. We provide the Docker image which has
everything required to run the simulations and generate the figures.
You can download it from Zenodo using the archived link.

A.3.2 Hardware dependencies. Only requirement is 32+GB of mem-
ory.

A.3.3 Software dependencies. Only a Docker installation is re-
quired. All software dependencies are installed in the Docker image.

A.4 Installation
Download the docker image from Zenodo, and start a container
using the commands below,
docker load < cooprt-isca2025-ae.tar.gz
docker run -it cooprt-isca2025-ae:1.0 /bin/bash

A.5 Experiment workflow
Inside the container, we provide a shell script cooprt.sh that has
all the simulation commands needed to generate results. However,
due to the large number of simulations, we do not recommend run-
ning the shell script directly, as it runs the simulations sequentially.
Instead, depending on the resources, simulations should be run in
parallel. The shell script simply serves as a reference for simula-
tion commands. Workflow for launching parallel jobs depends on
the system being used, therefore we cannot provide a one-for-all
script to launch parallel simulations. To launch a simulation in the
container,
cd /home/root/vulkan-sim-root
source embree-3.13.4.x86_64.linux/embree-vars.sh
source vulkan-sim/setup_environment
cd RayTracingInVulkan/build/linux/bin
./RayTracer --scene 20 --width 256 \
--height 256 > ship_pt.log

We also provide all of the raw simulation logs and the Python
scripts that we used to plot the figures in this paper. To generate
the figures, following command can be used inside the container,
python3 figure1.py

This will generate fig1.png using the simulation logs under
cooprt_raw_simulation_results. Other figures can be gener-
ated in a similar fashion.

A.6 Evaluation and expected results
Running the Python scripts will generate the figures using the
existing simulation logs. To reproduce or replace the simulation
logs, the simulation commands in the shell script can be used.

References
[1] [n. d.]. Cyberpunk 2077: Technology Preview Of New Ray Tracing Overdrive

Mode Out Now. https://www.nvidia.com/en-us/geforce/news/cyberpunk-2077-
ray-tracing-overdrive-update-launches-april-11/

[2] [n. d.]. Intel Embree. https://www.embree.org/
[3] [n. d.]. Intel® Arc™ Graphics Developer Guide for Real-Time Ray Tracing

in... https://www.intel.com/content/www/us/en/developer/articles/guide/real-
time-ray-tracing-in-games.html

[4] [n. d.]. NVIDIA ADA GPU ARCHITECTURE. https://images.nvidia.com/aem-
dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf

[5] [n. d.]. NVIDIA AMPERE GA102 GPU ARCHITECTURE. https://www.nvidia.
com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

[6] [n. d.]. Real-Time Ray Tracing. https://dev.epicgames.com/documentation/en-
us/unreal-engine/hardware-ray-tracing-tips-and-tricks-in-unreal-engine

[7] [n. d.]. Real-time Raytracing for Interactive Global Illumination Workflows in
Frostbite. https://www.gdcvault.com/play/1024801/

[8] Timo Aila and Tero Karras. 2010. Architecture considerations for tracing inco-
herent rays. In Proceedings of the Conference on High Performance Graphics (HPG
’10). Eurographics Association, Goslar, DEU, 113–122.

[9] Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray traversal
on GPUs. In Proceedings of the Conference on High Performance Graphics 2009
(HPG ’09). Association for Computing Machinery, New York, NY, USA, 145–149.
https://doi.org/10.1145/1572769.1572792

[10] Aaron Ariel, Wilson W. L. Fung, Andrew E. Turner, and Tor M. Aamodt. 2010.
Visualizing complex dynamics in many-core accelerator architectures. In 2010
IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS). 164–174. https://doi.org/10.1109/ISPASS.2010.5452029

[11] Aaron Barnes, Fangjia Shen, and Timothy G. Rogers. 2024. Extending GPU
Ray-Tracing Units for Hierarchical Search Acceleration. In Proceedings of the
57th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’24). Association for Computing Machinery, New York, NY, USA.

[12] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyuktosunoglu, J.
Wellman, V. Zyuban, M. Gupta, and P.W. Cook. 2000. Power-aware microarchitec-
ture: design and modeling challenges for next-generation microprocessors. IEEE
Micro 20, 6 (Nov. 2000), 26–44. https://doi.org/10.1109/40.888701 Conference
Name: IEEE Micro.

[13] Brian Caulfield. 2018. What’s the Difference Between Ray Tracing and Rasteri-
zation? https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-
rasterization/

[14] Brian Caulfield. 2022. What Is Path Tracing? https://blogs.nvidia.com/blog/what-
is-path-tracing/

[15] Yuan Hsi Chou, Tyler Nowicki, and Tor M. Aamodt. 2023. Treelet Prefetching For
Ray Tracing. In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23). Association for Computing Machinery, New
York, NY, USA, 742–755.

[16] Per H. Christensen, Julian Fong, David M. Laur, and Dana Batali. 2006. Ray
Tracing for the Movie ‘Cars’. In 2006 IEEE Symposium on Interactive Ray Tracing.
1–6. https://doi.org/10.1109/RT.2006.280208

[17] Per H. Christensen and Wojciech Jarosz. 2016. The Path to Path-Traced Movies.
Foundations and Trends® in Computer Graphics and Vision 10, 2 (2016), 103–175.
https://doi.org/10.1561/0600000073

[18] Sana Damani, Mark Stephenson, Ram Rangan, Daniel Johnson, Rishkul Kulkami,
and Stephen W. Keckler. 2022. GPU Subwarp Interleaving. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 1184–1197.
https://doi.org/10.1109/HPCA53966.2022.00090 ISSN: 2378-203X.

[19] Ahmed ElTantawy, Jessica Wenjie Ma, Mike O’Connor, and Tor M. Aamodt. 2014.
A scalable multi-path microarchitecture for efficient GPU control flow. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 248–259. https://doi.org/10.1109/HPCA.2014.6835936 ISSN: 2378-203X.

[20] Robert Felbecker, Leszek Raschkowski,WilhelmKeusgen, andMichael Peter. 2012.
Electromagnetic wave propagation in themillimeter wave band using the NVIDIA
OptiX GPU ray tracing engine. In 2012 6th European Conference on Antennas
and Propagation (EUCAP). 488–492. https://doi.org/10.1109/EuCAP.2012.6206198
ISSN: 2164-3342.

[21] Wilson W. L. Fung and Tor M. Aamodt. 2011. Thread block compaction for
efficient SIMT control flow. In Proceedings of the 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture (HPCA ’11). IEEE Computer
Society, USA, 25–36.

[22] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow. In Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
40). IEEE Computer Society, USA, 407–420. https://doi.org/10.1109/MICRO.2007.
12

[23] Jeffrey Goldsmith and John Salmon. 1987. Automatic Creation of Object Hier-
archies for Ray Tracing. IEEE Computer Graphics and Applications 7, 5 (May
1987), 14–20. https://doi.org/10.1109/MCG.1987.276983 Conference Name: IEEE
Computer Graphics and Applications.

13

https://doi.org/10.5281/zenodo.15103378
https://www.nvidia.com/en-us/geforce/news/cyberpunk-2077-ray-tracing-overdrive-update-launches-april-11/
https://www.nvidia.com/en-us/geforce/news/cyberpunk-2077-ray-tracing-overdrive-update-launches-april-11/
https://www.embree.org/
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-ray-tracing-tips-and-tricks-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-ray-tracing-tips-and-tricks-in-unreal-engine
https://www.gdcvault.com/play/1024801/
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1109/ISPASS.2010.5452029
https://doi.org/10.1109/40.888701
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/what-is-path-tracing/
https://blogs.nvidia.com/blog/what-is-path-tracing/
https://doi.org/10.1109/RT.2006.280208
https://doi.org/10.1561/0600000073
https://doi.org/10.1109/HPCA53966.2022.00090
https://doi.org/10.1109/HPCA.2014.6835936
https://doi.org/10.1109/EuCAP.2012.6206198
https://doi.org/10.1109/MICRO.2007.12
https://doi.org/10.1109/MICRO.2007.12
https://doi.org/10.1109/MCG.1987.276983


ISCA ’25, June 21–25, 2025, Tokyo, Japan Yavuz Selim Tozlu and Huiyang Zhou

[24] R. Gonzalez and M. Horowitz. 1996. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits 31, 9 (Sept. 1996), 1277–1284.
https://doi.org/10.1109/4.535411 Conference Name: IEEE Journal of Solid-State
Circuits.

[25] Johannes Gunther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. 2007.
Realtime Ray Tracing on GPU with BVH-based Packet Traversal. In 2007 IEEE
Symposium on Interactive Ray Tracing. 113–118. https://doi.org/10.1109/RT.2007.
4342598

[26] Dongho Ha, Lufei Liu, Yuan Hsi Chou, Seokjin Go, Won Woo Ro, Hung-Wei
Tseng, and Tor M. Aamodt. 2024. Generalizing Ray Tracing Accelerators for
Tree Traversals on GPUs. In Proceedings of the 57th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’24). Association for Computing
Machinery, New York, NY, USA.

[27] Danping He, Bo Ai, Ke Guan, Longhe Wang, Zhangdui Zhong, and Thomas
Kürner. 2019. The Design and Applications of High-Performance Ray-Tracing
Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial.
IEEE Communications Surveys & Tutorials 21, 1 (2019), 10–27. https://doi.org/10.
1109/COMST.2018.2865724 Conference Name: IEEE Communications Surveys &
Tutorials.

[28] Jakob Hoydis, Faycal Ait Aoudia, Sebastian Cammerer, Merlin Nimier-David,
Nikolaus Binder, Guillermo Marcus, and Alexander Keller. 2023. Sionna RT: Dif-
ferentiable Ray Tracing for Radio Propagation Modeling. In 2023 IEEE Globecom
Workshops (GC Wkshps). 317–321. https://doi.org/10.1109/GCWkshps58843.2023.
10465179

[29] Thiago Ize, Ingo Wald, and Steven G. Parker. 2007. Asynchronous BVH con-
struction for ray tracing dynamic scenes on parallel multi-core architectures. In
Proceedings of the 7th Eurographics conference on Parallel Graphics and Visualiza-
tion (EGPGV ’07). Eurographics Association, Goslar, DEU, 101–108.

[30] James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4
(Aug. 1986), 143–150. https://doi.org/10.1145/15886.15902

[31] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486. https://doi.org/10.1109/ISCA45697.2020.00047

[32] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.
2009. Fast BVH Construction on GPUs. Computer Graphics Forum 28, 2
(2009), 375–384. https://doi.org/10.1111/j.1467-8659.2009.01377.x _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01377.x.

[33] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: enabling energy
optimizations in GPGPUs. ACM SIGARCH Computer Architecture News 41, 3
(June 2013), 487–498. https://doi.org/10.1145/2508148.2485964

[34] Lufei Liu, Wesley Chang, Francois Demoullin, Yuan Hsi Chou, Mohammadreza
Saed, David Pankratz, Tyler Nowicki, and Tor M. Aamodt. 2021. Intersection Pre-
diction for Accelerated GPU Ray Tracing. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21). Association for Com-
putingMachinery, New York, NY, USA, 709–723. https://doi.org/10.1145/3466752.
3480097

[35] Lufei Liu, Mohammadreza Saed, Yuan Hsi Chou, Davit Grigoryan, Tyler Nowicki,
and Tor M. Aamodt. 2023. LumiBench: A Benchmark Suite for Hardware Ray
Tracing. In 2023 IEEE International Symposium on Workload Characterization
(IISWC). 1–14. https://doi.org/10.1109/IISWC59245.2023.00011 ISSN: 2835-2238.

[36] J. David MacDonald and Kellogg S. Booth. 1990. Heuristics for ray tracing
using space subdivision. The Visual Computer 6, 3 (May 1990), 153–166. https:
//doi.org/10.1007/BF01911006

[37] Mohammadreza Saed, Yuan Hsi Chou, Lufei Liu, Tyler Nowicki, and Tor M.
Aamodt. 2022. Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
263–281. https://doi.org/10.1109/MICRO56248.2022.00027

[38] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett
Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi
Jenkal. 2007. FreePDK: An Open-Source Variation-Aware Design Kit. In 2007 IEEE
International Conference on Microelectronic Systems Education (MSE’07). 173–174.
https://doi.org/10.1109/MSE.2007.44

[39] Jundong Tan, Zhuo Su, and Yunliang Long. 2015. A Full 3-D GPU-based Beam-
Tracing Method for Complex Indoor Environments Propagation Modeling. IEEE
Transactions on Antennas and Propagation 63, 6 (June 2015), 2705–2718. https:
//doi.org/10.1109/TAP.2015.2415036 Conference Name: IEEE Transactions on
Antennas and Propagation.

[40] Aditya Ukarande, Suryakant Patidar, and Ram Rangan. 2021. Locality-Aware
CTA Scheduling for Gaming Applications. ACM Transactions on Architecture and
Code Optimization 19, 1 (Dec. 2021), 1:1–1:26. https://doi.org/10.1145/3477497

[41] Vulkan. 2024. Home | Vulkan | Cross platform 3D Graphics. https://vulkan.org/
[42] Ingo Wald. 2011. Active thread compaction for GPU path tracing. In Proceedings

of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG ’11).
Association for Computing Machinery, New York, NY, USA, 51–58. https://doi.
org/10.1145/2018323.2018331

[43] KathrynWilliams, Luis Tirado, Zhongliang Chen, Borja Gonzalez-Valdes, José Án-
gel Martínez, and Carey M. Rappaport. 2015. Ray Tracing for Simulation of
Millimeter-Wave Whole Body Imaging Systems. IEEE Transactions on Antennas
and Propagation 63, 12 (Dec. 2015), 5913–5918. https://doi.org/10.1109/TAP.2015.
2486801 Conference Name: IEEE Transactions on Antennas and Propagation.

[44] Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware ray tracing.
In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’22). Association for Computing Machinery, New
York, NY, USA, 76–89. https://doi.org/10.1145/3503221.3508409

14

https://doi.org/10.1109/4.535411
https://doi.org/10.1109/RT.2007.4342598
https://doi.org/10.1109/RT.2007.4342598
https://doi.org/10.1109/COMST.2018.2865724
https://doi.org/10.1109/COMST.2018.2865724
https://doi.org/10.1109/GCWkshps58843.2023.10465179
https://doi.org/10.1109/GCWkshps58843.2023.10465179
https://doi.org/10.1145/15886.15902
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1145/2508148.2485964
https://doi.org/10.1145/3466752.3480097
https://doi.org/10.1145/3466752.3480097
https://doi.org/10.1109/IISWC59245.2023.00011
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://doi.org/10.1109/MICRO56248.2022.00027
https://doi.org/10.1109/MSE.2007.44
https://doi.org/10.1109/TAP.2015.2415036
https://doi.org/10.1109/TAP.2015.2415036
https://doi.org/10.1145/3477497
https://vulkan.org/
https://doi.org/10.1145/2018323.2018331
https://doi.org/10.1145/2018323.2018331
https://doi.org/10.1109/TAP.2015.2486801
https://doi.org/10.1109/TAP.2015.2486801
https://doi.org/10.1145/3503221.3508409

	Abstract
	1 Introduction
	2 Background
	2.1 Ray Tracing and BVH Traversal
	2.2 GPU Architecture
	2.3 Hardware Support for Ray Tracing

	3 Thread Activity In Ray Tracing
	4 Cooperative BVH Traversal
	4.1 Baseline BVH Traversal
	4.2 Cooperative BVH Traversal

	5 CoopRT Architecture
	5.1 Overview of the Architecture
	5.2 Load Balancing Unit
	5.3 Synchronization Between Main and Helper Threads

	6 Experimental Methodology
	6.1 Modeling CoopRT in Vulkan-sim
	6.2 Benchmark Suite

	7 Results
	7.1 CoopRT Performance and Memory Bandwidth Utilization
	7.2 Memory Contention Under CoopRT
	7.3 Ambient Occlusion and Shadow Shaders
	7.4 Mobile GPU Configuration
	7.5 Area Overhead

	8 Related Work
	8.1 Ray Tracing on GPUs
	8.2 Hardware Accelerated Ray Tracing

	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

