
Dynamic Runtime Assertions in Quantum Ternary
Systems

Ehsan Faghih
North Carolina State University

Raleigh, USA
sfaghih@ncsu.edu

Huiyang Zhou
North Carolina State Uiversity

Raleigh, USA
hzhou@ncsu.edu

Abstract—With the rapid advancement of quantum computing
technology, there is a growing need for new debugging tools for
quantum programs. Recent research has highlighted the potential
of assertions for debugging quantum programs. In this paper,
we investigate assertions in quantum ternary systems, which are
more challenging than those in quantum binary systems due
to the complexity of ternary logic. We propose quantum ternary
circuit designs to assert classical, entanglement, and superposition
states, specifically geared toward debugging quantum ternary
programs.

Index Terms—Quantum computing, Quantum assertion,
Quantum ternary circuit.

I. INTRODUCTION

Quantum computing has distinctive advantages compared to
classical computing, and the latest breakthroughs in quantum
computer hardware have ignited optimistic prospects for un-
locking the extraordinary potential of this field. Furthermore,
it is shown that realizing quantum computing structures using
multi-valued logic can bring many advantages over its binary
counterpart [1], [2]. A careful examination of the product of
the number’s width (amount of digits) and the depth of digit
(maximum number of symbols in each digit) as an influential
factor of hardware cost in digital systems showed that the most
economical radix is three. Quantum systems are no exception
[3], [4]. Recent studies have shown that the design of quantum
computers based on qutrit, the unit of quantum information
in ternary representation, brings 37% more compactness than
the quantum computer based on qubit, the unit of quantum
information in binary representation [5], [6]. Quantum Ternary
logic finds practical applications in the development of ternary
computers such as quantum multiple-valued decision diagrams
(QMDD) [7]. Ternary logic outperforms binary logic in several
ways, one of which is its capacity to convey more information
using fewer digits. This advantage enhances the flexibility
for encoding and processing data. Additionally, it simplifies
circuitry by reducing the necessity for numerous gates and
connections, ultimately leading to reduced energy consump-
tion [7]. It was also shown recently that quantum circuits via
qutrits can introduce asymptotic improvements [8]. In quantum
mechanics, ternary circuits can be physically realized with
various technologies such as ion-trap [1].

The development of quantum computing systems at a
large scale, enabling the execution of algorithms on extensive

datasets, calls for better tools. Assertions are a primitive
that can be used for both program debugging [9], [10] and
error mitigation [11]. However, these prior works on quantum
assertion were developed for quantum circuits with qubits.
To further enhance the concept and leverage the benefits
of quantum ternary logic, this paper focuses on supporting
assertions in quantum circuits with ternary bits or qutrits.

The remainder of the paper is organized as follows. Section
II provides background on quantum ternary gates and their
operations and summarizes the prior works on quantum as-
sertion. In Section III, we delve into our proposed designs for
dynamic assertions in quantum ternary circuits, elaborating on
their functioning. Section IV comprises an evaluation utilizing
predefined test cases. Finally, Section V concludes.

II. BACKGROUND

A. Quantum Ternary Logic
Quantum ternary-valued logic processors are a class of

quantum systems in which each information unit, referred to as
a qutrit, can be represented using three distinct 3×1 matrices.
The states |0⟩, |1⟩, and |2⟩ are considered the fundamental
states, aka the computational basis states, of a qutrit, each
possessing a distinctive representation as follows:

|0⟩ =

10
0

 |1⟩ =

01
0

 |2⟩ =

00
1

 (1)

When considering complex numbers α, β, and γ, a qutrit
can exist in a superposition state, simultaneously occupying
a linear combination of the computational basis states |0⟩, |1⟩,
and |2⟩. This superposition state is denoted by |ψ⟩ = α|0⟩ +
β|1⟩ + γ|2⟩, where |α|2 + |β|2 + |γ|2 = 1. For an n-qutrit
system, there are 3n different computational basis states. For
instance, in a two-qutrit system, the state can be represented
as: |ψ⟩ = α00|00⟩ + α01|01⟩ + α02|02⟩ + α10|10⟩ + α11|11⟩ +
α12|12⟩ + α20|20⟩ + α21|21⟩ + α22|22⟩, where α is a complex
coefficient, and

∑
δ∈{0,1,2}2 |α|2 = 1.

There are six single-qutrit [Z] gates, and each of them
is associated with a corresponding unitary 3×3 matrix, as
illustrated below. Their functionalities are shown in Table 1.

Z(0) =

1 0 0
0 1 0
0 0 1

 Z(+1) =

0 0 1
1 0 0
0 1 0

TABLE I
PERMUTATIONS OF 1-QUTRIT M-S GATES

PERMUTATIONS
Input Z(0) Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 0 1 2 0 1 2
1 1 2 0 2 0 1
2 2 0 1 1 2 0

Z(+2) =

0 1 0
0 0 1
1 0 0

Z(01) =
0 1 0
1 0 0
0 0 1

Z(02) =

0 0 1
0 1 0
1 0 0

 Z(12) =

1 0 0
0 0 1
0 1 0

In the context of qutrit systems, it is widely accepted that

the quantum cost associated with single qutrit gates (like [Z]
gates) and a controlled-[Z] gates is considered to be equal to
unity [12] It is because, as far as our knowledge extends, there
is currently no established benchmark for ternary quantum
systems. In this study, we adopt the convention of assigning a
quantum cost of unity to each M-S gate and Chrestenson gate.

Ternary Muthukrishnan-Stroud (M-S) Gates: A M-S
gate consists of two types of primitive ternary quantum gates,
namely 1-qutrit and 2-qutrit gates. Single-qutrit gates operate
based on the Z transforms mentioned before, whereas two-
qutrit gates include a control input for performing the Z
transform, i.e., Controlled-[Z] gates. It means that only when
the control qutrit is |2⟩, the gate triggers the Z transformation
on the target qutrit.

Chrestenson basis: Analogous to the Hadamard basis, i.e.,
|+⟩ and |−⟩ states, in qubit systems,

the Chrestenson basis [13] serves as a natural extension
to the Hadamard basis in qutrit systems. There are two
Chrestenson gates known as Ch1 and Ch2 which correspond
to Hadamard gates in qubit systems. It is important to note
that Ch1Ch2 = I (identity matrix). Here, ω is the cube root
of unity, i.e., ω3 = 1, and 1 + ω + ω2 = 0 [14].

|+⟩ = 1√
3
(|0⟩+ |1⟩+ |2⟩)

|−i⟩ =
1√
3
(|0⟩+ ωi|1⟩+ ω2i|2⟩) i ∈ {1, 2}

||i⟩ =
1√
3
(|0⟩+ ω2i|1⟩+ ωi|2⟩) i ∈ {1, 2}

Ch1 =

1 1 1
1 ω ω2

1 ω2 ω

 Ch2 =

1 1 1
1 ω2 ω
1 ω ω2

B. Quantum Assertions

Huang et al. [15] proposed a statistical approach for quan-
tum assertion. They identified three essential types of asser-
tions for debugging quantum programs: classical assertions,

superposition assertions, and entanglement assertions. Clas-
sical assertions involve checking quantum variables against
classical values to determine if they match the desired values.
Superposition assertions are used to verify whether a quantum
variable is in a desired superposition state. Entanglement
assertions focus on checking whether the entangled quantum
variables exhibit the desired correlation. Statistical assertions
require measurements of the qubits of interest, thereby being
disruptive to program execution.

Liu et al. introduced the concept of dynamic quantum asser-
tions [10], which means that the assertion check is performed
during program execution and the program continues execu-
tion if there is no assertion error. In this paper, we introduce
dynamic assertion circuits for classical, superposition, and
entangled states in the context of ternary logic.

Liu et al. further proposed two systematic approaches
for dynamic quantum state assertion, capable of asserting a
broader range of quantum states, including pure and mixed
states [16].

Li et al. introduced Proq, a runtime assertion scheme for
quantum program testing and debugging [17]. Proq utilizes
projections based on Birkhoff-von Neumann quantum logic,
enabling efficient assertion verification through minimal mea-
surements. Their work demonstrates the efficacy of projection-
based assertions for bug detection and ensuring program
semantics in both exact and approximate quantum programs.

Enabling runtime assertion in ternary quantum circuits
shares similar challenges to those found in binary quantum
computing and is demanding for two primary reasons. Firstly,
the non-cloning theorem poses a fundamental limitation by
prohibiting the exact replication of qubits, making conven-
tional debugging and assertion checks challenging. Secondly,
measuring a qubit results in the collapse of its superposition
state into a classical state, leading to the loss of inherent
parallel information. This unique challenge persists in the
verification of assertions within quantum states. Additionally,
in the context of ternary quantum circuits, there is a notable
deficiency of strategies for error correction or bug detection.
One potential reason is that the additional quantum state
introduces more opportunities for errors. Designing robust
error correction or detection systems that work effectively
with ternary logic is an area of active research. Furthermore,
designing and optimizing quantum gates for ternary logic is
more complex compared to binary gates. Ternary gates, such
as Toffoli gates with ternary inputs, have to account for three
quantum states, making gate design and optimization more
intricate [3].

III. QUANTUM TERNARY CIRCUITS FOR DYNAMIC
ASSERTIONS

Our approach to enabling dynamic assertions revolves
around the introduction of additional quantum bits, referred
to as ancilla qutrits. These ancilla qutrits provide information
about the qutrits under test. Instead of directly measuring
the qutrits under test, we measure the ancilla qutrits. This
allows us to verify assertions without disrupting the program

execution. However, it is crucial to ensure that measuring the
ancilla qutrits does not impact the original quantum circuit.
In the following sections, we outline our proposed circuits for
each type of assertion.

To develop these assertion circuits, we first design two
simple ternary circuits called A1 and A2 gates, depicted in
Fig. 1.

|ψ⟩ +1 +2

≡
|a⟩ +2 +1 A1

(a)

|ψ⟩ +1 +2

≡
|a⟩ +1 +2 A2

(b)

Fig. 1. The A1 and A2 circuits and their gate scheme symbol. |a⟩ is an
ancilla input.

An A1 gate adds its control qutrit value to its target qutrit.
In the figure, the target is |a⟩, and the control qutrit is |ψ⟩. For
example, if the control qutrit is set to 1 and the target is 0, the
target would become 1 after A1, and the control qutrit remains
the same. Similarly, A2 employs a similar principle to add (2
* controller value) to the target. Using the same example, if
the controller is also set to 1, it will add 2 to its target. The
gates A1 and A2 are formally defined as follows. Note that
these gates become identity gates when the control bit is 0,
and i ∈ {1, 2}.{
A1 : if (control = i) then target = | target+ i⟩ mod 3.

A2 : if (control = i) then target = | target+ 2i⟩ mod 3.

As shown in Fig. 1, the implementation of the gates involves
the use of two 1-qutrit and two 2-qutrit gates. Consequently,
the quantum cost of these operations is equal to 4, and their
depth is also 4.

A. Dynamic Assertion for Ternary Classical Values

By asserting for ternary classical values, we aim to support
assert(|ψ⟩ == |i⟩), where |ψ⟩ is the qutrit of interest and
i ∈ {0, 1, 2}. To achieve this, we propose the circuit depicted
in Fig. 2. The circuit shown in Fig. 2 checks whether the state
of |ψ⟩ is equal to |0⟩. The ancilla qutrit is initially set to |0⟩
and is measured after the A1 gate operation. By initializing
the ancilla qutrits to |i⟩, the same circuit can be used to assert
(|ψ⟩ ==|2i mod 3⟩).

Proof. Let us consider the case where the ancilla input is
set to |0⟩, and we are asserting whether |ψ⟩ is equal to |0⟩.
If |ψ⟩ is in a classical state, taking values of either |0⟩, |1⟩,
or |2⟩, the resulting states of the |ψ0⟩ can be represented as
|00⟩, |10⟩, or |20⟩. Therefore, the resulting states, denoted as
|ψ1⟩ , would be |00⟩, |11⟩, or |22⟩, respectively. Consequently,

|ψ⟩

|0⟩ A1

ψ0 ψ1

Fig. 2. Circuit for classical-value assertion, assert(|ψ⟩ == |0⟩).

when the ancilla qutrit is measured and yields the state |0⟩, it
signifies that |ψ⟩ must be |0⟩, indicating no assertion error. If
the measurement outcome is |1⟩, it implies that |ψ⟩ must be
|1⟩, and if it is |2⟩, |ψ⟩ must be |2⟩, indicating an assertion
error.

If the |ψ⟩ is in a superposition state, represented as |ψ⟩ =
a|0⟩ + b|1⟩ + c|2⟩ due to a bug or runtime error, the resulting
|ψ0⟩ becomes a|00⟩ + b|10⟩ + c|20⟩ and |ψ1⟩ becomes a|00⟩ +
b|11⟩ + c|22⟩, indicating an entangled state. This entanglement
leads to a unique behavior during the measurement of the
ancilla qutrit. If the measurement outcome is |0⟩ (no assertion
error), the qutrit under test is projected into the classical state
|0⟩, denoted as |ψ′⟩ = |0⟩. Conversely, if the measurement
outcome is |1⟩ (an assertion error), it is projected into the
classical state |1⟩. In the context of an assertion check (|ψ⟩
== |0⟩), the proposed circuit has the potential to automatically
correct the qutrit if it is in a superposition state, resulting in
no assertion error. However, if the qutrit cannot be corrected
into the expected classical state, an assertion error occurs. The
probability of obtaining a measurement result of |0⟩, |1⟩ or
|2⟩ is determined by the squared magnitudes of coefficients
|a|2, |b|2 and |c|2, respectively. The probability distribution of
assertion errors over multiple runs can be used to estimate a,
b, and c, as needed.

The cases when the ancilla qutrit is set to |1⟩ and |2⟩ can
be derived similarly to assert for |2⟩ and |1⟩, respectively.

B. Dynamic Assertion for Entangled States
We propose dedicated circuits to check whether two qutrits

under test are in certain entangled states. Fig 3 shows the two
groups of commonly used entangled states, and we propose
two circuits as shown in Fig 4 to assert them, respectively.

a|00⟩ + b|12⟩ + c|21⟩
a|01⟩ + b|10⟩ + c|22⟩
a|02⟩ + b|11⟩ + c|20⟩

(a)

a|00⟩ + b|11⟩ + c|22⟩
a|02⟩ + b|10⟩ + c|21⟩
a|01⟩ + b|12⟩ + c|20⟩

(b)

Fig. 3. Two entangled groups of ternary states

In Fig. 4, circuit (a) is designed for asserting entangled states
in group (a) of Fig. 3. By setting the ancilla qutrits to different
initial states, this circuit verifies whether the qutrit of interest
|ψ0⟩ is in one of the entangled states listed in group (a). Next,
we explain the assertion process for asserting the ternary state
a|00⟩ + b|12⟩ + c|21⟩, when the ancilla bit is set to |0⟩).

Proof. |ψ0⟩ = a|000⟩ + b|120⟩ + c|210⟩
|ψ1⟩ = a|000⟩ + b|121⟩ + c|212⟩

|ψ2⟩ = a|000⟩ + b|120⟩ + c|210⟩ = |ψ⟩⊗ |0⟩

|ψ⟩⊗ |0⟩ is the ternary entangled state that we intended to
assert, along with an un-entangled ancilla qutrit. By measuring
the ancilla bit, we can determine if we have successfully
achieved the desired state without collapsing the entangled
state. If the measurement yields a zero, it indicates that the
system is in the correct state and the entanglement is preserved.

|ψ⟩

|a⟩ A1 A1

ψ0 ψ1 ψ2

(a)

|ψ⟩

|a⟩ A1 A2

ψ0 ψ1 ψ2

(b)
Fig. 4. Two proposed circuits to assert ternary entanglement. (a) Proposed
circuit to assert the entangled state in group a of Fig 3. (b) Proposed circuit
to assert the entangled state in group b of Fig 3.

If the input qutrits are not entangled in the expected state,
it can be expressed as |ψ⟩ = a|00⟩+ d|01⟩+ g|02⟩+ e|10⟩+
h|11⟩+ b|12⟩+ i|20⟩+ c|21⟩+ f|22⟩. Then, the circuit produces
the following states:

|ψ0⟩ = [a |000⟩+ d |010⟩+ g |020⟩+ e |100⟩+ h |110⟩+ b |120⟩
+ i |200⟩+ c |210⟩+ f |220⟩].

|ψ1⟩ = [a |000⟩+ d |010⟩+ g |020⟩+ e |101⟩+ h |111⟩+ b |121⟩
+ i |202⟩+ c |212⟩+ f |222⟩].

|ψ2⟩ = [a |000⟩+ d |011⟩+ g |022⟩+ e |101⟩+ h |112⟩+ b |120⟩
+ i |202⟩+ c |210⟩+ f |221⟩].

TABLE II
TERNARY CIRCUIT OUTPUTS BASED ON CORRESPONDING ANCILLA AND

|ψ⟩ STATES, REFERRING TO FIG. 4. AND FIG. 3.

Circuit |ψ⟩ Ancilla value Output

Fi
g.

4b a |00⟩+ b |11⟩+ c |22⟩ |0⟩ |ψ⟩ ⊗ |0⟩
a |02⟩+ b |10⟩+ c |21⟩ |2⟩ |ψ⟩ ⊗ |0⟩
a |01⟩+ b |12⟩+ c |20⟩ |1⟩ |ψ⟩ ⊗ |0⟩

Fi
g.

4a a |00⟩+ b |12⟩+ c |21⟩ |0⟩ |ψ⟩ ⊗ |0⟩
a |01⟩+ b |10⟩+ c |22⟩ |2⟩ |ψ⟩ ⊗ |0⟩
a |02⟩+ b |11⟩+ c |20⟩ |1⟩ |ψ⟩ ⊗ |0⟩

When measuring the ancilla qutrit, the result can be either
|0⟩, |1⟩ or |2⟩. If the result is |0⟩, the state |ψ2⟩ is projected to
a|000⟩ + b|120⟩ + c|210⟩ = (a|00⟩ + b|12⟩ + c|21⟩) ⊗ |0⟩,
forcing the input qutrits into an entangled state. Likewise,

if the result is |1⟩ or |2⟩, the state |ψ2⟩ is projected to the
(d |011⟩ + e |101⟩ + f |221⟩) or (g |022⟩ + h |112⟩ + i |202⟩)
terms, respectively representing different entangled states. In
these cases, an assertion error would be reported as the
measurement result is not 0. The probability of measuring |0⟩,
|1⟩ or |2⟩ can be used to compute the coefficients a to i, if
needed.

Following similar steps, we can see that by initializing the
ancilla qutrits to |1⟩ or |2⟩, the same circuit can be employed
to assert whether the state |ψ⟩ is equal to a|02⟩ + b|11⟩ + c|20⟩
or a|01⟩ + b|10⟩ + c|22⟩ respectively. This allows for the reuse
of the circuit with different initializations of the ancilla qutrits
to verify different desired states.

The same proof can also be applied to assert the entangled
states within the group b. Table II lists the states to be asserted
along with the proper ancilla qutrit settings and the circuit to
be used.

C. Dynamic Assertion for Superposition

In binary quantum computing, a common pattern is to use
Hadamard gates to put input qubits into an equal/uniform
superposition state, denoted as |+⟩ = 1√

2
(|0⟩ + |1⟩). As

mentioned earlier, in ternary quantum computing, Ch1 and
Ch2 gates, which operate based on the Chrestenson basis,
serve a similar purpose. To verify such uniform superposition
states, including |+⟩, |−1⟩ or |−2⟩, we propose a circuit as
shown in Fig. 5.

|ψ⟩ A1

|0⟩ Ch1 Ch2

ψ0 ψ1 ψ2 ψ3

Fig. 5. Circuit for asserting equal superposition.

Proof. As shown in Fig 5, if |ψ⟩ is equal to |+⟩ and the
ancilla is initialized to |0⟩, the circuit produces the following
states:

|ψ0⟩ = a |00⟩+ b |10⟩+ c |20⟩ , (a = b = c = 1√
3
)

|ψ1⟩ = 1
3
[|0⟩ ⊗ (|0⟩+ |1⟩+ |2⟩) + |1⟩ ⊗ (|0⟩+ |1⟩+ |2⟩)

+ |2⟩ ⊗ (|0⟩+ |1⟩+ |2⟩)]
= 1

3
[(|00⟩+ |01⟩+ |02⟩) + (|10⟩+ |11⟩+ |12⟩)

+ (|20⟩+ |21⟩+ |22⟩)]
|ψ2⟩ = 1

3
[|00⟩+ |11⟩+ |22⟩+ |10⟩+ |21⟩+ |02⟩+ |20⟩

+ |01⟩+ |12⟩]

|ψ3⟩ = 1

3
√
3
[|00⟩+ |01⟩+ |02⟩+ |10⟩+ ω2 |11⟩+ ω |12⟩+ |20⟩

+ ω |21⟩+ ω2 |22⟩+ |10⟩+ |11⟩+ |12⟩+ |20⟩
+ ω2 |21⟩+ ω |22⟩+ |00⟩+ ω |01⟩+ ω2 |02⟩
+ |20⟩+ |21⟩+ |22⟩+ |00⟩+ ω2 |01⟩+ ω |02⟩+ |10⟩
+ ω |11⟩+ ω2 |12⟩]
=>

|ψ3⟩ = 3

3
√
3
[|00⟩+ |10⟩+ |20⟩] = |+⟩ ⊗ |0⟩

Given that (ω3 = 1) and (ω2 + ω + 1 = 0), and if
the qutrit is in the uniform superposition state, denoted as
|ψ⟩ = |+⟩, then the coefficients a, b and c are equal to
1/
√
3. In this case, |ψ2⟩ would be as described in the above-

mentioned Proof. The expression of |ψ2⟩ clearly indicates
that the two qutrits in the circuit are entangled. To resolve
this entanglement, an additional Ch2 gate is included at the
end of the circuit. Consequently, the state |ψ3⟩ will be equal
to 1√

3
[|00⟩ + |10⟩ + |20⟩] = |+⟩ ⊗ |0⟩. We can follow the

same process to assert for other uniform superposition states
as shown in Table III.

TABLE III
OUTPUT ANALYSIS OF THE CIRCUIT IN FIG. 5 FOR VARIOUS ANCILLA

AND |ψ⟩ STATES.

|ψ⟩ Ancilla value Output
|+⟩ |0⟩ |+⟩ ⊗ |0⟩
|+⟩ |1⟩ |+⟩ ⊗ |1⟩
|+⟩ |2⟩ |+⟩ ⊗ |2⟩
|−1⟩ |0⟩ |−1⟩ ⊗ |2⟩
|−1⟩ |1⟩ |−1⟩ ⊗ |0⟩
|−1⟩ |2⟩ |−1⟩ ⊗ |1⟩
|−2⟩ |0⟩ |−2⟩ ⊗ |1⟩
|−2⟩ |1⟩ |−2⟩ ⊗ |2⟩
|−2⟩ |2⟩ |−2⟩ ⊗ |0⟩

As listed in Table III, various uniform superposition states
can be asserted using the circuit presented in Fig 5. For
instance, if the expected state is |ψ⟩ = |−1⟩, then the
ancilla qutrit needs to set to |1⟩. In this configuration, the
ancilla qutrit measurement result of 0 indicates the absence
of an assertion error, while a different measurement outcome
suggests otherwise.

IV. EVALUATION

In this section, we present various use cases to assess the
efficacy of our proposed assertion circuits.

A. Asserting Classical States

We commenced by testing a ternary quantum half-adder
(HA) circuit from the prior work [6]. Our objective is to vali-
date the final results through sample inputs. Let us consider a
specific scenario where the input states are set as |AB⟩ = |22⟩.
As a result, the expected output should be |SC⟩ = |11⟩ with an
overflow occurred since the carry-out (Cout) should be equal
to one. In this case, we select our assertion circuit and set |2⟩ as
its ancilla input to assert(carryout == |1⟩). Upon measuring

the outcome of the ancilla qutrit, when the Cout is |1⟩, we
obtain |0⟩ without disturbing the original HA circuit. However,
should the Cout have a value of |0⟩ or |2⟩, it indicates that the
overflow is incorrect. This leads to an assertion error, as the
ancilla qutrit is no longer |0⟩.

To illustrate the process of debugging the HA circuit, let’s
hypothetically consider a scenario where a bug was introduced
during the design phase. For instance, let’s assume that a [+1]
gate was mistakenly used before the controlled-[+2] gate as the
initial gate in the HA circuit (as illustrated in Fig.6). Despite
this discrepancy, the initial values remain consistent for both
|AB⟩ and the two additional qutrits. However, it is important
to note that since the Cout qutrit should be checked

it must be the qutrit that controls the [A1] gate. After inte-
grating the suggested assertion circuit with an ancilla state of
|2⟩, an error becomes evident upon measuring the fourth qutrit
(the bottom-most qutrit). In this case, an undesired outcome
would arise for the Cout. Instead of the intended value of
1, it would be 2. Consequently, with the proposed classical
assertion circuit to detect a value of 1, the measurement
outcome would yield a non-zero result, leading to an assertion
error.

Given that the quantum cost of utilizing each MS gate is one
unit, the quantum cost (QC) of the classical assertion circuit is
calculated to be 4. The depth of the classical assertion circuit
would be 4, reflecting the number of logical levels within the
circuit.

B. Asserting Superposition States

To illustrate the use of the proposed circuit in asserting
ternary superposition states, we conducted a test using a ref-
erence circuit designed to produce the expected superposition
state 1√

3
[|0⟩+ω |1⟩+ω2 |2⟩]. This state is the result of applying

a [Ch1] gate to the input value |1⟩. In a hypothetical scenario,
we inadvertently employed a [Ch2] gate instead of a [Ch1]
gate while starting with an initial input state of |1⟩, as shown
in Fig.7, which led to the creation of a hypothetical bug. As
a result, we obtained 1√

3
[|0⟩ + ω2 |1⟩ + ω |2⟩] instead of the

expected state. By using the superposition assertion circuit, we
detected this discrepancy, confirming it as an assertion error.
According to the Table III, as the expected state is |−1⟩, the
ancilla qutrit is initialized to be |1⟩.

proof. According to Fig 7, if |ψ⟩ is equal to |1⟩, the circuit
produces the following states as a result of the mentioned bug:

|ψ0⟩ = 1√
3
[|01⟩+ ω2 |11⟩+ ω |21⟩]

|ψ1⟩ = 1
3
[|0⟩ ⊗ (|0⟩+ ω |1⟩+ ω2 |2⟩) + ω2 |1⟩ ⊗ (|0⟩+ ω |1⟩

+ ω2 |2⟩) + ω |2⟩ ⊗ (|0⟩+ ω |1⟩+ ω2 |2⟩)]
= 1

3
[(|00⟩+ ω |01⟩+ ω2 |02⟩) + (ω2 |10⟩+ |11⟩+ ω |12⟩)

+ (ω |20⟩+ ω2 |21⟩+ |22⟩)]

BUG

CLASSICAL ASSERTION

A +1 +2 +1 Sum (S)

B 12 12 +1 +2 B

|0⟩ +1 Cout (C)

|2⟩ A1

|2202⟩

|0202⟩

|2202⟩

|2102⟩

|2102⟩ |2202⟩

Fig. 6. Classical assertion in a half adder circuit for |1⟩ using the proposed circuit in Fig. 2 with ancilla qutrit being |2⟩. The functionality of the gates, e.g.,
the ’12’ gate, is shown in TableI. Here, a non-zero output will be measured because of the bug, leading to an assertion error (There is no overflow, though it
is expected).

|ψ2⟩ = 1
3
[|00⟩+ ω |11⟩+ ω2 |22⟩+ ω2 |10⟩+ |21⟩+ ω |02⟩+ ω |20⟩

+ ω2 |01⟩+ |12⟩]
|ψ3⟩ = 1

3
√
3
[|00⟩+ |01⟩+ |02⟩+ ω |10⟩+ |11⟩+ ω2 |12⟩+ ω2 |20⟩

+ |21⟩+ ω |22⟩+ ω2 |10⟩+ ω2 |11⟩+ ω2 |12⟩+ |20⟩+ ω2 |21⟩
+ ω |22⟩+ ω |00⟩+ ω2 |01⟩+ |02⟩+ ω |20⟩+ ω |21⟩+ ω |22⟩
+ ω2 |00⟩+ ω |01⟩+ |02⟩+ |10⟩+ ω |11⟩+ ω2 |12⟩]
=>

|ψ3⟩ = 3

3
√
3
[|02⟩+ ω2 |12⟩+ ω |22⟩] = |−2⟩ ⊗ |2⟩

As it can be seen, we did not obtain a |0⟩ as our output for the
second qutrit, which is essential for confirming the correctness
of the final result. Since a value other than |0⟩ is measured (in
this case, |2⟩), an assertion error is reported.

BUG SUPERPOSITION ASSERTION

|ψ⟩ Ch2 A1

|1⟩ Ch1 Ch2

ψ0 ψ1 ψ2 ψ3

Fig. 7. Checking the uniform superposition generation using the assertion
circuit in Fig. 5 with ancilla qubit being |1⟩.

C. Asserting for Entangled States

To showcase the efficacy of our proposed circuit for as-
serting a ternary entangled state, we apply it to another
circuit presented in reference [18] for generating entangled
states. The circuit is shown in Fig. 8. We aim to ascertain
the accuracy of the circuit’s output and detect any potential
bugs. Let us consider a scenario where the input state has
changed because a [+1] gate is added mistakenly on the second
qutrit. |αβ⟩ is set to |00⟩. In this specific case, the expected
output from the circuit should be a|00⟩ + b|11⟩ + c|22⟩,
where a = b = c = 1√

3
. To ensure the accuracy of the

result, we employ our proposed assertion circuit for checking
the expected entangled state. Based on the anticipated output
1√
3
(|00⟩+ |11⟩+ |22⟩), we find that the appropriate circuit for

asserting the target state, which belongs to group b in Fig.3, is
the second circuit in Fig.4(b) with the ancilla = |0⟩ as shown
in Fig.8. In the case that the circuit’s outcome aligns with
the predetermined expected state, the measured value will be
|0⟩. Otherwise, deviations from the expected state will yield
measured values of |1⟩ or |2⟩, both signifying the occurrence
of an assertion error. With the abovementioned bug, i.e., the
erroneous application of a [+1] gate on the first qutrit, a non-
zero value will be measured for the second qutrit, resulting in
an assertion error.

CIRCUIT [18]

ENTANGLED ASSERTION

BUG

|α⟩ Ch1

|ψαβ⟩
|β⟩ +1

|0⟩ A1 A2

Fig. 8. Checking entangled qutrits introduced in [18] using the proposed
assertion circuit in Fig. 4b to detect the bug. The entangled circuit with ancilla
qutrit being |0⟩ asserts for 1√

3
(|00⟩+ |11⟩+ |22⟩).

However, our assertion circuit for checking entangled states
can only detect changes in classical values and is unable to
identify variations in phase characteristics. For instance, the as-
sertion circuit cannot distinguish among 1√

3
(|00⟩+|11⟩+|22⟩)

and 1√
3
(|00⟩+ω |11⟩+ω2 |22⟩) and 1√

3
(|00⟩+ω2 |11⟩+ω |22⟩)

states. To remedy this limitation, we propose to employ both
the superposition assertion circuit and the entangled assertion
circuit, as depicted in Fig. 9. This way, all the qutrit states
listed in Table IV can be asserted. For example, suppose the
anticipated entangled state is 1√

3
(|00⟩+ |11⟩+ |22⟩). However,

when utilizing the original circuit [18] with the considered bug,
i.e., a [+1] gate on the first qutrit before the [Ch1] gate on the

same qutrit, the output will be 1√
3
(|00⟩ + ω |11⟩ + ω2 |22⟩),

with distinct phases. In order to discern this distinction, we
added our proposed superposition assertion circuit, denoted as
the SA block. Because the [Ch1] gate’s output will not be
1√
3
(|00⟩+ |11⟩+ |22⟩) with the same phases, the [SA] circuit

alters the state of the fourth ancilla qutrit, resulting in a state
other than |0⟩ (here, |2⟩). Hence, even though the entangled
asserting circuit, which found no errors, keeps its initial input
intact, the third and fourth ancilla qutrits’ outputs will be in
the |01⟩ state because [SA] found an asserting error. Given that
|00⟩ is the sole correct assertion, any output other than |00⟩
for the last two qutrits is categorized as an assertion error. To
assert and debug the other scenarios, only the ancilla qutrits in
Fig. 9. need to be adjusted according to the expected stated.
This information is provided in both Table II and Table III. The
quantum cost of the merged technique is 14. The evaluation
information is summarized in Table V. With this table, one
can determine the logical delay and quantum cost associated
with the use of each quantum ternary asserting circuit.

BUG

SUPERPOSITION ASSERTION

ENTANGLED ASSERTION

|α⟩ +1 Ch1 SA
|ψαβ⟩

|β⟩

|0⟩ EA

|0⟩

Fig. 9. Asserting entangled qutrits introduced in [18] using the proposed
combined assertion circuits to detect phase errors. The assertion circuit with
ancilla qutrits equal to |00⟩ asserts for 1√

3
(|00⟩ + |11⟩ + |22⟩). The [SA]

circuit is the proposed superposition assertion in Fig. 5, and the [EA] circuit
is the proposed entanglement assertion in Fig. 4b.

TABLE IV
TABLE OF THE TEST CASE CIRCUIT RESULTS AND THE ANCILLA QUTRITS
INITIALIZING FOR ASSERTING THEM BASED ON FIG. 9. (FOURTH QUTRIT

IS THE BOTTOM-MOST)

Measurement
Output

Input |αβ⟩ Output of Third Fourth
[18] circuit [18] qutrit qutrit
|00⟩ 1√

3
(|00⟩+ |11⟩+ |22⟩) 0 0

|01⟩ 1√
3
(|01⟩+ |12⟩+ |20⟩) 1 0

|02⟩ 1√
3
(|02⟩+ |10⟩+ |21⟩) 2 0

|10⟩ 1√
3
(|00⟩+ ω |11⟩+ ω2 |22⟩) 0 2

|11⟩ 1√
3
(|01⟩+ ω |12⟩+ ω2 |20⟩) 1 2

|12⟩ 1√
3
(|02⟩+ ω |10⟩+ ω2 |21⟩) 2 2

|20⟩ 1√
3
(|00⟩+ ω2 |11⟩+ ω |22⟩) 0 1

|21⟩ 1√
3
(|01⟩+ ω2 |12⟩+ ω |20⟩) 1 1

|22⟩ 1√
3
(|02⟩+ ω2 |10⟩+ ω |21⟩) 2 1

TABLE V
EVALUATION SUMMARY FOR EACH QUANTUM TERNARY ASSERTING

CIRCUIT

Proposed Circuit Cost Delay
Fig. 2. 4 4
Fig. 4. 8 7
Fig. 5. 6 6
Fig. 9. 8+6 7+6

V. CONCLUSION

This paper presents our proposed circuits for assertions in
quantum ternary circuits. The supported assertions include
classical states, a set of entangled states, and uniform super-
position states. With our proposed designs, we show that it
is feasible to support dynamic assertions in quantum ternary
logic, although they may be more conceptually complex than
their binary counterpart. We then provide use cases to show
how such assertions can be used to capture bugs in ternary
quantum logic.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments. The work is funded in part by NSF grants 1818914,
2325080 (with a subcontract to NC State University from Duke
University), and 2120757 (with a subcontract to NC State
University from the University of Maryland).

REFERENCES

[1] A. De Vos and Y. Van Rentergem, “Multiple-valued reversible logic
circuits.” Journal of Multiple-Valued Logic & Soft Computing, vol. 15,
2009.

[2] A. Muthukrishnan and C. R. Stroud Jr, “Multivalued logic gates for
quantum computation,” Physical review A, vol. 62, no. 5, p. 052309,
2000.

[3] M. H. Khan and M. A. Perkowski, “Quantum ternary parallel
adder/subtractor with partially-look-ahead carry,” Journal of Systems
Architecture, vol. 53, no. 7, pp. 453–464, 2007.

[4] K. A. G. R. R. JC and C. Saavedra, “Qutrit quantum computer with
trapped ions,” Phys. Rev. A, vol. 67, p. 062313, 2003.

[5] E. Faghih, M. Taheri, K. Navi, and N. Bagherzadeh, “Efficient realization
of quantum balanced ternary reversible multiplier building blocks: A
great step towards sustainable computing,” Sustainable Computing:
Informatics and Systems, p. 100908, 2023.

[6] M. Haghparast, R. Wille, and A. T. Monfared, “Towards quantum re-
versible ternary coded decimal adder,” Quantum Information Processing,
vol. 16, pp. 1–25, 2017.

[7] D. M. Miller and M. A. Thornton, Multiple-Valued Logic: Concepts and
Representations. Springer Nature, 2022.

[8] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown, and
F. T. Chong, “Asymptotic improvements to quantum circuits via qutrits,”
in Proceedings of the 46th International Symposium on Computer
Architecture. ACM, jun 2019.

[9] Y. Huang and M. Martonosi, “Qdb: from quantum algorithms towards
correct quantum programs,” arXiv preprint arXiv:1811.05447, 2018.

[10] J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic runtime
assertions in quantum computation,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1017–1030.

[11] P. Li, J. Liu, Y. Li, and H. Zhou, “Exploiting quantum assertions for
error mitigation and quantum program debugging,” in Proceedings of
the 40th IEEE International Conference on Computer Design, 2022.

[12] M. Mohammadi and M. Eshghi, “On figures of merit in reversible and
quantum logic designs,” Quantum Information Processing, vol. 8, pp.
297–318, 2009.

[13] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. London ; Toronto : Academic Press, 1985.

[14] D. Gottesman, “Fault-tolerant quantum computation with higher-
dimensional systems,” in NASA International Conference on Quantum
Computing and Quantum Communications. Springer, 1998, pp. 302–
313.

[15] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns
and finding bugs in quantum programs,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 541–553.

[16] J. Liu and H. Zhou, “Systematic approaches for precise and approximate
quantum state runtime assertion,” in 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 179–193.

[17] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-
based runtime assertions for testing and debugging quantum programs,”
Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, pp. 1–29, 2020.

[18] S. Çorbaci, M. D. Karakaş, and A. Gençten, “Construction of two qutrit
entanglement by using magnetic resonance selective pulse sequences,”
Journal of Physics: Conference Series, vol. 766, no. 1, p. 012014, oct
2016.

