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Abstract—Quantum computing is an emerging technology that
is poised to revolutionize computational capabilities. However,
errors from environmental noise and imperfect hardware can
significantly affect the fidelity of the computational results of
quantum circuits. In this paper, we put forth a hypothesis that
similar to classical computers, not all errors have the same effect
on the outputs.

To study the error impact at different qubits and at different
gates, we leverage the fault injection methodology from a recently
proposed framework, QuFI [1], which was designed to produce
a quantum vulnerability factor (QVF) heatmap based on all
possible fault injections. In our work, we use a similar fault
injection approach but focus on the impact of errors at different
regions of a circuit. Then, we propose to apply error mitigation
techniques selectively to protect the most vulnerable regions of a
circuit so as to reduce the overhead of error mitigation schemes.

Index Terms—Quantum, Error Sensitivity, Fault Injection

I. INTRODUCTION

Quantum computing represents a paradigm shift in com-
putational theory and practice, promising unprecedented com-
putational power and transformative capabilities for solving
complex problems that are intractable for classical computers.
At the heart of this revolutionary technology lies the qubit,
the fundamental unit of quantum information. Unlike classical
bits, which can only exist in one of two states (0 or 1),
qubits exploit the principles of quantum mechanics to exist
in a superposition of both states simultaneously, exponentially
expanding the computational possibilities.

Quantum computers, however, are less reliable compared
to classical computers. The first reason is that qubits are
inherently vulnerable to retention error. This error is either
caused by the qubit losing energy and decaying to the spin
0 state from the spin 1 state or by external interference
like other qubits. Second, recent publications have shown
that qubits constructed from superconducting technologies are
also susceptible to external radiation [2], [3]. This reduces
the reliability of quantum computers as ionizing particles
reduce the noise tolerance [4], [5]. These kinds of external
perturbations are not as sensitive in classical computers that
employ CMOS transistors. Additionally, the qubit state is also
modified by light particles like muons [5] and infrared lights
[6]. Furthermore, errors in quantum computers are much more
complex to resolve than in classical computers. While the

classical computer has just 0 or 1 state for its bits, a qubit
has its state situated in the Bloch sphere. A tiny amount of
rotation in the Bloch sphere can be propagated along the circuit
making it harder to pinpoint the issue. This means a simple
fault injector to flip from state 0 to state 1 is not enough to
gauge the effect on the quantum circuit.

Previous works on quantum fault injection tackle these
issues by calculating a vulnerability score for the entire circuit
based on a particular type of fault that is injected [1]. Our
paper makes use of their fault injection methodology but
focuses on vulnerability analysis of each region of the circuit
instead of the whole circuit. By identifying the vulnerable
regions of the circuit, measures can be taken to protect that
region using error mitigation or error correction techniques. In
this work, we employ Pauli Error Sandwiching to protect the
vulnerable regions of the circuit. Additionally, we take a deep
dive into some popular benchmarks to qualitatively reason the
cause of their vulnerability.

In this paper, we make the following contributions: (1) We
extend the idea from the existing work on quantum circuit
fault injection [1] to examine the sensitivity of errors at
different gates and different qubits in a quantum circuit. (2)
We analyze the circuits under our study to reveal insights into
why these circuits are vulnerable/robust to different errors. (3)
We propose to apply error mitigation selectively to protect the
most vulnerable part of the circuit.

The rest of the paper is organized as follows. Section II
summarizes the noise encountered in quantum computers,
provides the background on the error mitigation technique,
Pauli Check Sandwiching, and discusses the related works.
Section III describes our methodology for fault injection and
selective error mitigation. Section IV presents our results for
different types of faults injected in representative benchmarks
and analyzes the reasons for their vulnerability. Section V
concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Quantum Noise

The current capabilities of quantum computers are limited
by the inherent noise in the quantum computer. The errors
in a quantum computer can be divided into two categories:-
Coherence errors [7] and Operation errors.



Coherence error is caused because a qubit can retain its
state only for a limited amount of time. This retention issue
can take one of two forms. Either a qubit in a high energy
state loses its energy and transitions to a low energy state (T1
error) or other qubits and external environment can cause a
qubit to change its state (T2 error) [8].

The relaxation time T1 dictates the decay rate for a qubit
in state |1⟩ to state |0⟩ and is given by the equation,

P|1⟩(t) = P|1⟩(0)e
−t
T1 (1)

Here,P|1⟩(t) is the probability of the qubit being in state |1⟩
at time t [9]. At t = ∞ the probability that the qubit will
decay to state |0⟩ is 1. A similar equation is present for the
T2 relaxation time, which dictates the change of the phase
information for a quantum state.

To tackle these errors, work is done to improve the qubit
technology and incorporate error mitigation and error correc-
tion techniques.

B. Pauli Check Sandwiching

As discussed in Section I, after we obtain an error map
representing the vulnerability in the circuit, our next job is
to protect those most vulnerable areas. For the purpose of
this paper, we have employed Pauli Check Sandwiching (PCS)
[10]. PCS provides multiple advantages, one of which is less
resource overhead when we selectively protect a certain region
of the circuit.

Consider the unitary operation U, which we aim to protect
in the circuit, PCS requires an extra ancilla qubit and two
controlled gates C1 and C2, such that :

C1 = C ′
1 ⊗ |1⟩⟨1|+ I ⊗ |0⟩⟨0| (2)

C2 = C ′
2 ⊗ |1⟩⟨1|+ I ⊗ |0⟩⟨0| (3)

and
C ′

2UC ′
1 = U. (4)

The ancilla qubit is sandwiched between two Hadamard
gates and the result of the measurement is discarded when
the ancilla qubit reads 1. This is because if there is an error
present in the region that we are protecting, the ancilla qubit
will read 1 as the two controlled gates and the two Hadamard
gates do not cancel each other and will change the state of
the ancilla qubit. An example of the PCS-protected region in
a QAOA circuit is shown in Figure 2.

C. Related works

Previous works on quantum fault analysis focused on noise
and fault modeling. Recently, a fault injector framework, QuFI
[1], was proposed to track the effect of fault propagation. To
model the fault injector, the U gate was used as the injector
as it is the most flexible when it comes to modeling phase
shifts of different magnitudes. QuFI provided a Quantum
Vulnerability Factor (QVF) score to the entire circuit for
different configurations of the U gate.

In our work, we adopt this fault injection methodology to
assign an error sensitivity score to each region (e.g., one gate

upon a single qubit) of the circuit. This helps pinpoint the
most vulnerable region of the circuit. Upon identifying the
vulnerable region, we use PCS to detect and mitigate the errors
in this particular region.

III. METHODOLOGY

In this section, we describe the workflow of the fault injector
framework and how PCS can be used to mitigate errors
selectively.

A. Fault Injector

We first need to decide upon the type of faults we will be
introducing to our circuits. We adopt the same approach as
QuFI, i.e., using the U rotation gate to model a single-qubit
fault.

U(θ, ϕ) =

(
cos θ

2 − sin θ
2

sin θ
2 eiϕ cos θ

2

)
(5)

Here, ϕ is the angle defined in the XY plane of the Bloch
Sphere or is a rotation angle in the Z-axis. And θ is the angle
defined in the plane that includes the Z-axis.

Our fault injector framework takes as input a Quantum-
Circuit object of the Qiskit framework. For this circuit, we
collect all the unique positions in the circuit where a single-
qubit fault can be injected. For example, a simple circuit with
one qubit and one Hadamard gate has two positions where a
fault can be placed. One is before the Hadamard gate and the
other is after the Hadamard gate. Once the unique positions are
determined, we inject an error by adding a U gate there. We
repeat this procedure for each unique fault injection site. Then
we measure the outcome probability distribution from these
circuits and compare the probability distribution of the faulty
circuit with the ideal error-free circuit and give a vulnerability
score to the place where the error was placed. The vulnerability
score is determined using either Hellinger fidelity or Total
Variation Distance(TVD).

Hellinger fidelity is a measure of the similarity between
two probability distributions. It quantifies how close one
distribution is to another by comparing their shapes and mag-
nitudes. Specifically, Hellinger fidelity measures the square
of the overlap between the square roots of the probability
distributions. It is a symmetric measure that ranges from 0
to 1, where a value of 1 indicates that the distributions are
identical and a value of 0 indicates that the distributions have
no overlap. If P and Q are discrete distributions over the same
set of outcomes X , the Hellinger fidelity is computed as:

H(P,Q) =

(∑
x∈X

√
P (x) ·Q(x)

)2

where P (x) and Q(x) are the probabilities assigned by distri-
butions P and Q to outcome x, respectively.

Total Variation Distance (TVD) is a measure of the differ-
ence between two probability distributions. It quantifies how
much one distribution diverges from another by calculating
the total absolute difference between their probability mass
functions or probability density functions. A smaller TVD



indicates that the distributions are more similar or closer to
each other, while a larger TVD indicates greater dissimilarity
or distance between the distributions. If P and Q are discrete
distributions over the same set of outcomes X , the TVD is
computed as:

TVD(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|

where P (x) and Q(x) are the probabilities assigned by distri-
butions P and Q to outcome x, respectively.

As an example, consider a 5 qubit GHZ circuit as shown in
Figure 1a. With a single-qubit fault being modeled as the U
gate with θ = π and ϕ = 0, after injecting this fault at different
locations in the circuit, we contain an error map for the circuit
in Figure 1b. Here, each square in the grid represents the
unique point in the circuit where a U gate is placed. Since
there are 5 qubits in the GHZ circuit, the height of the error
map is 5. The width of the error map denotes the depth of
the circuit. Since the circuit consists of one Hadamard gate,
four CNOT gates, and one extra slot between the last CNOT
gate and the measurement register, the depth is six. The green
color signifies that the Hellinger fidelity is close to 1, meaning
that the region of the circuit is more robust, whereas the red
region represents that the Hellinger fidelity is close to 0 and
the region is vulnerable to this particular fault. By changing
θ and ϕ, we can obtain a set of error-sensitivity maps, one
for each (θ, ϕ) combination, as shown in Figure 1c. From the
figure, we can see that (1) the same fault injected at different
locations has different impacts. In particular, Figure 1b shows
that the fault injected before and after the Hadamard gate has
no impact on the output (as the fault is essentially a bit flip
error) while the same fault injected at other locations is much
more severe. (2) Different faults have different impacts. For
the GHZ circuit, the output is not sensitive to certain types of
faults, e.g., θ being either 0 or 2π, but is more sensitive to
others, e.g., θ being close π.

B. Making use of Error-Sensitivity Information

Based on the vulnerability analysis, we propose to apply
mitigation techniques selectively to protect the most vulnerable
regions. One option is to use PCS for such a purpose. For PCS,
the key is to find the operators C1 and C2. For each vulnerable
region we choose to protect, there will be also an overhead of
one ancilla qubit.

We demonstrate the use of PCS for the 3-qubit QAOA
circuit in Figure 2. In this example, we choose to protect the
second Rz gate for qubit q2. As U = Rz, C1 and C2 are
controlled-Z gate as ZRzZ = Rz. Any error that does not
satisfy this relation would be detected using PCS. For example,
consider a bit flip error occurred in this region. Since the bit
flip does not satisfy the commutation relation ZXRzZ ̸= Rz,
the ancilla qubit will be state 1 when the error occurs. We
can post-select only the results for which the ancilla qubit is
measured 0.

There are two reasons why we choose to protect the most
vulnerable region rather than the entire circuit. First, finding

Fig. 1. Error-Sensitivity map for a 5-qubit GHZ circuit. (a) The 5-qubit GHZ
circuit. (b) The error sensitivity map of an error, modeled as the U gate with
θ = π and ϕ = 0, injected at different depths (X-axis) and different qubits
(Y-axis) in the circuit. The error impact is quantified using the Hellinger
Fidelity w.r.t. to the error-free case. The fidelity value of 1 (green color)
means the injected error has a negligible impact on the output state while the
fidelity value of 0 (red color) means a high impact on the output state. (c) The
collection of error sensitivity maps of different single-qubit faults, modeled
with different combinations of θ and ϕ, injected at different sites.

C1 and C2 that satisfy C ′
2UC ′

1 = U would be easy when U
is a small region, e.g., one or few gates. In comparison, if
we use PCS to protect the entire circuit, calculating C1 and
C2 that commute with the entire circuit is usually much more
difficult and sometimes impossible. Second, the more latency
between C1 and C2, which would be the case for protecting
the entire circuit, the more likely an idling error may happen
on the ancilla qubit, affecting the mitigation capability of the
PCS circuit.

IV. RESULTS

We run our fault injection and analysis framework upon the
SuperMarQ benchmarking suite [11] and custom circuits. The
benchmarks include GHZ, QAOA, QFT, and a Full-Adder. Our
experiments are performed at the logical level (i.e., not specific
to the target device) on the IBM Qiskit QASM simulator. The
number of shots is set to 2048.

A. Understanding the results

As illustrated in Fig. 1, for each benchmark, we get a LxL
matrix of subimages. Here, L is the number of the angles for
each θ and ϕ from the range [0,2π]. On the horizontal axis,



Fig. 2. An illustration of using PCS to protect a region in a circuit. The top
circuit shows a 3-qubit QAOA circuit. The middle circuit shows the same
circuit with gate U (an RZ gate) being protected using PCS. The gate to be
protected is highlighted in the green box. The ancilla qubit is the extra qubit
we will need to carry out PCS. We selected C2and C1 such that C′

2UC′
1 = U

where C2and C1 are the controlled gate versions of C′
2 and C′

1. In our case U
= Rz; therefore, C2 and C1 will be the controlled-Z gates as shown by the box
highlighted in red as ZRzZ = Rz. We post-select only those measurements
for which the ancilla qubit measures 0. The bottom circuit shows the same
circuit but in this case, we are protecting the region highlighted in green
consisting of 2 CNOT gates and one RZ gate. In this case, U becomes U =
X.Rz.X . The C1 and C2 are again the controlled-Z gates since the Z gate
commutes with U.

angles of ϕ are increasing and θ is constant. On the vertical
axis, angles of θ are increasing and ϕ is constant.

Each sub-image is a further grid of M rows and N columns.
M represents the M qubits in the circuit. and each column
represents the unique positions for the placement of the fault
injection gate.

One observation from our experiments is that Hellinger
Fidelity and TVD essentially convey similar error sensitivity
although the exact values would differ. Therefore, we only
report Hellinger Fidelity in this section.

1) GHZ: The error sensitivity of GHZ is shown in Figure
1c. From the results, we observe that ϕ or the rotation around
the Z axis has no effect on the result. Only rotation around
the X axis in the Bloch sphere causes significant errors.
Additionally, we observe that the first two positions for the
first qubit are robust to errors. That is because if we place an
X gate in front of the Hadamard gate there is only a change in
the phase, not the magnitudes. And if the gate is placed after
the Hadamard gate, then there is no change to the qubit state.
This is not the case for the other qubits due to the entangling
CNOT gates.

2) Adder Circuit: The 3-qubit Adder circuit has its most
vulnerable region when there is considerable rotation around
the X-axis as we can see in Figure 3. And the most vulnerable
regions are around the CNOT gates. Rotation around the Z-
axis has minimal effect on the result as it only causes a change
in phase and does not affect the measurement result. The
errors are caused because of entanglement due to the numerous

Fig. 3. Error-Sensitivity map for a 3-qubit full-adder circuit with Hellibger
Fidelity as the metric. The X-axis shows the values for ϕ and the Y-axis
shows the values for θ for a particular image. The green boxes imply a value
close to 1 and the red boxes imply a value of 0.

CNOT gates which propagate the error to other qubits in the
circuit.

3) QFT Circuit: The error sensitivity map for the 4-qubit
QFT circuit is shown in Figure 4. We can see that the most
vulnerable region is when ϕ = [3π/4,5π/4]. And the most
vulnerable points are the Controlled Phase gates. Any rotation
around the Z-axis in around them will cause erroneous results.
QFT is unsurprisingly more robust to X rotation errors because
there are only Hadamard gates in the circuit that are robust to
X rotation errors.

4) QAOA: The error sensitivity of a 3-qubit and a 4-qubit
QAOA circuit is shown in Figure 6 and Figure 5, respectively.
The 3-qubit QAOA becomes vulnerable to faults where θ =
[3π/4,5π/4] or ϕ = [3π/4,5π/4]. On the other hand, as the
number of qubits increases to 4, the QAOA circuit becomes
much more robust as can be seen in Figure 5. We further
confirm this observation on a 10-qubit QAOA circuit when
the fault is modeled with θ = π and ϕ = π.

There are two reasons for this pattern. First, as the number
of qubits increases the circuit depth increases and the rotation
around the X-axis increases whereas the rotation around the Z-
axis reduces. So any error introduced in front of these rotation
gates is getting more time to be corrected and is having
relatively less effect on the result as compared to a smaller
circuit. Second, larger QAOA circuits have a more extensive
solution space due to the additional qubits, allowing them to
explore alternative solutions and potentially find more robust
outcomes despite the fault.

B. Protecting QAOA using PCS

We use the 3-qubit QAOA circuit to showcase how we apply
PCS to protect its most vulnerable regions. The 3-qubit QAOA



Fig. 4. Error-Sensitivity map for a 4-qubit QFT circuit with Hellibger Fidelity
as the metric. The X-axis shows the values for ϕ and the Y-axis shows the
values for θ for a particular image. The green boxes imply a value close to
1 and the red boxes imply a value of 0.

Fig. 5. Error-Sensitivity map for a 4-qubit QAOA circuit with Hellibger
Fidelity as the metric. The X-axis shows the values for ϕ and the Y-axis
shows the values for θ for a particular image. The green boxes imply a value
close to 1 and the red boxes imply a value of 0.

Fig. 6. Error-Sensitivity map for a 3-qubit QAOA circuit with Hellibger
Fidelity as the metric. The X-axis shows the values for ϕ and the Y-axis
shows the values for θ for a particular image. The green boxes imply a value
close to 1 and the red boxes imply a value of 0.

Fig. 7. Error-Sensitivity map for a 10-qubit QAOA circuit with Hellibger
Fidelity as the metric. The map is generated for the case when U gate has
θ = π and ϕ = π. The green boxes imply a value close to 1 and the red
boxes imply a value of 0.



Fig. 8. 3 qubit QAOA circuit.

Fig. 9. Error-Sensitivity map for the initial QAOA circuit with Hellinger
Fidelity as the metric. The map is generated for the case when the U gate has
θ = π and ϕ = π. The circuit in general is quite vulnerable. The cause can
be pinpointed to the latter rotation gates.

circuit is shown in Figure 8.
According to our previous analysis, the circuit is most

vulnerable to faults when the U gate has θ = π and ϕ = π.
Also, the most vulnerable position is the Rz and the Rx gates.
The Rz gates, in the beginning, are relatively robust as the
rotation errors are overshadowed by the latter rotations in the
circuit. This can be observed in the error map shown in Figure
9.

Now, we use PCS to protect all the rotation gates one at a
time and see their effect on the vulnerability of the circuit. For
the Rz gates, C1 and C2 are selected to be the Controlled-Z
gates. For the Rx gates, C1 and C2 are also the Controlled-X
gates. This is because Z gate commutes with Rz gates and X
gate commutes with Rx gates.

The error sensitivity map of the PCS-protected QAOA
circuits is shown in Figure 10. We see that the coordinates
corresponding to the first Rz gate for qubit q2 do not show
considerable improvement in fidelity. However, for subsequent
rotation gates, there is a strong improvement in the fidelity.
The most fidelity gain can be observed for the Rx gates at the
end of each qubit. This confirms that latter rotation gates are
more vulnerable as any rotation error introduced around them
has a lesser chance of being corrected. These gates benefit the
most from the PCS protection.

V. CONCLUSION

In this paper, we have introduced a fault injector system
that assesses the vulnerability of each region of the circuit. We

Fig. 10. Error-Sensitivity map for the PCS-protected QAOA circuit with
Hellibger Fidelity as the metric. The map is generated for the case when the
U gate has θ = π and ϕ = π. After protecting the rotation gates one at a
time, we see that the circuit becomes relatively more robust as indicated by
the new green boxes in the error map.

proceed to identify the most vulnerable regions in the bench-
marks of the SuperMarQ framework and analyze the reason
for their vulnerability. The fault injector system provides a
vulnerability map for each circuit to quantify which regions are
more prone to errors. Such information can be used to guide
the automatic insertion of error mitigation schemes like PCS
to protect the most vulnerable regions in the circuit. In this
paper, we mainly focus on PCS for selective error mitigation.
Another possible option is to leverage circuit cutting [12] or
knitting [13] technique so that the most vulnerable regions are
carried out on classical computers. Such exploration is left as
our future work.
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