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Abstract—GPUs have become indispensable accelerators for
many data-intensive applications such as scientific workloads,
deep learning models, and graph analytics; these applications
share a common demand for increasingly large memory. As
the memory capacity connected through traditional memory
interfaces is reaching limits, heterogeneous memory systems have
gained traction in expanding the memory pool. These systems
involve dynamic data movement between different memory
locations for efficient utilization, which poses challenges for
existing security implementations, whose metadata are tied to
the physical location of data. In this work, we propose a new
security model specifically designed for systems with dynamic
page migration. Our model minimizes the need for security re-
calculations due to data movement, optimizes security structures
for efficient bandwidth utilization, and reduces the overall traffic
caused by security operations. Based on our evaluation, our
proposed security support improves the GPU throughput by a
geometric mean of 29.94% (up to 190.43%) over the conventional
security model, and it reduces the security traffic in the memory
subsystem to 47.79% on average (as low as 17.71% overhead).

I. INTRODUCTION

With the growing emergence of memory-intensive appli-
cations, graphics processing units (GPUs) have become es-
sential accelerators in computing systems. Specifically, the
extensive parallelism and high memory bandwidth of GPUs
unprecedentedly speed up these applications by incorporating
thousands of processing elements (e.g., streaming multiproces-
sors) and dedicated high-bandwidth memory (HBM). In recent
years, general-purpose GPUs (GPGPUs) can execute not only
graphics applications (e.g., video codec, image processing) but
also more general tasks, for example, scientific computations
[60], big data analytics [41], and deep learning (DL) [6].

However, GPUs face a ”memory capacity wall” problem,
as the memory footprints of modern applications have been
continuously increasing. For example, training a state-of-
the-art DL model (e.g., GPT3) requires more than 600GB
of memory capacity to handle 175 billion parameters [8],
whereas the memory capacity of current GPUs (i.e., NVIDIA
H100) can only reach up to 80GB [54]. Typically, unified
memory [12], [18], [34], [67] and multi-GPU [7], [48], [50]
are used to overcome the capacity wall in GPUs. In unified
memory, the host memory is leveraged in conjunction with the
GPU device memory; however, transferring data from external
memory is considered inevitable in addition to frequent host
interactions for coordinating memory management, thereby
incurring significant performance overhead [34]. On the other
hand, multi-GPU distributes the working set over different

GPU device memories, and communication between GPUs
becomes a significant bottleneck [48].

Recently, several works [19], [27], [28], [40], [43] have
explored the potential benefits of system memory expansion
using Compute Express Link (CXL) [1], and also studied
page placement and paging policies that can be adopted for
efficient use of the expanded memory system. Thereafter,
CXL becomes a promising solution to scale memory capacity
and bandwidth in GPU systems in a cost-effective manner.
Specifically, CXL-expansion memory allows accessing differ-
ent memory technologies (e.g., DDR or NAND [29]) using
the abstract and common load/store syntax without intrusive
modifications of operating systems or device drivers. By
storing data in the CXL-expansion memory, GPU can manage
the data that cannot fit in its local GDDR/HBM memory
without interrupting the host or traversing long links to re-
motely access host memory or remote GPUs. Furthermore,
CXL features high-performance, low-latency cache-coherent
accesses compared to other remote memory technologies, as
CXL is defined over the PCIe physical layer with finer access
granularity. Consequently, the CXL memory expansion for
GPUs propels the population of cloud GPUs by offloading
application execution to GPUs without incurring tremendous
traffic overheads among different GPUs, ensuring high perfor-
mance and quality-of-service.

However, offloading critical applications to large-scale sys-
tems, such as cloud GPUs, puts them under a higher security
vulnerability of attacks targeting their data or computations.
Thus, providing confidential computing is essential in such an
environment. Confidential computing provides security guar-
antees against such attacks by introducing Trusted Execution
Environments (TEE). In addition to TEEs targeting general-
purpose processors [5], [44], there also have been several TEE
studies for GPUs [22], [23], [62]. TEE isolates application
data and computations from other sharing applications or
external entities. In the physical world, TEE defines a trusted
computing base (TCB) that represents the trust zone, which
is commonly the GPU chip; hence, any components beyond
the TCB, including off-chip memory, are considered untrusted,
and the use of these components requires security guarantees.
Particularly, ensuring memory security stands as a fundamental
cornerstone in creating a trusted environment for GPUs.

Unfortunately, the asymmetric bandwidths between CXL-
expansion memory and GPU device memory pose a new
fundamental challenge concerning both performance and se-



curity. Conventionally, heterogeneous memory systems (in
our case, CXL-expansion memory and GDDR/HBM) require
caching or page migration schemes to ensure high performance
by moving frequently accessed/to-be-accessed data to higher
bandwidth memory (e.g., HBM). Although extensive research
has been conducted to investigate memory security in GPUs
[2], [51], [65], [66], directly applying these security schemes
incurs significant performance overheads. This is because,
every data movement from the slow memory (i.e., CXL-
expansion memory) to the fast memory (i.e., GDDR/HBM)
triggers security-related operations (e.g., encryption and au-
thentications). For example, swapping data between the slow
memory (i.e., CXL-expansion memory) and the fast memory
(i.e., GDDR/HBM) requires both memories to perform secu-
rity operations when each memory sends/receives the data;
furthermore, both memories are requested not only for the data
but also security metadata. Consequently, the main challenge
of achieving high performance in a secure GPU that het-
erogeneously adapts CXL memory expansion is designing an
efficient security metadata management to reduce the security-
related traffic by considering both security requirements and
dynamic data movement.

To overcome this challenge, this paper presents a novel
security model tailored for GPUs with heterogeneous mem-
ories that necessitate dynamic data movement in runtime.
We loosely decouple the security metadata from the physical
location of data by unifying the security metadata for both
memories, eliminating the need for re-encryption during data
relocation. On top of that, we restructure encryption counter
blocks to efficiently share major counters among minor coun-
ters of the same interleaving granularity, yielding further min-
imal traffic on data relocations. Additionally, counter blocks
in less frequently accessed memory are compacted, ensuring
both efficient storage and traffic. Lastly, the traffic associated
with metadata accesses and writebacks is significantly reduced
by tracking the dirty information as bitmask format in CXL-
to-GPU mappings, occurring only when necessary. Based
on our evaluation, the proposed model effectively enhances
performance, resulting in a notable improvement of 29.94%.
In essence, our contribution can be summarized as follows:

• We propose a unified security model that decouples
security calculations from the physical data location.

• We design interleaving-friendly encryption counters with
restructured encryption counter blocks.

• Our proposed scheme compacts security metadata in the
last-tier memory (CXL) to reduce traffic.

• We optimize security metadata accesses and writebacks
by leveraging some bits in CXL-to-GPU mapping.

The remaining sections of the paper are organized as
follows. Section II provides an overview of the relevant back-
ground concepts. Section III presents the motivation behind
the work. The design and evaluation results are discussed in
Section IV and V, respectively. Section VI provides a summary
of related prior work. Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we provide information about the baseline
system and establish a foundation for understanding the related
security concepts.

A. Memory Security

With the proliferation of cloud environments as platforms
for running critical applications, the protection of confidential
data from both internal and external attackers is of utmost
importance. It is crucial to safeguard the data against unau-
thorized access or tampering attempts that may compromise
the integrity or functionality of the running system or program.
Therefore, the implementation of robust memory security mea-
sures becomes a necessity to prevent such malicious activities.

Memory security aims to protect data by providing three
main guarantees, confidentiality, integrity protection, and
freshness. Confidentiality obscures data through encryption
to block any attacker from understanding the data to prevent
snooping. In contrast, integrity verification protects data from
illegal changes performed by any entity other than the trusted
one; it verifies the authenticity and integrity of data by employ-
ing techniques such as message authentication codes (MAC).
However, ensuring data integrity alone does not guarantee that
the received data is the correct and up-to-date version; data
can undergo multiple updates during runtime. To address this,
integrity trees [20], [57] are commonly utilized for freshness.

1) Encryption: Memory encryption restricts data under-
standability to the trusted computing base (TCB), which refers
to the GPU chip in our threat model. By employing encryption
techniques, the data is transformed into a ciphertext that is
unintelligible without the appropriate decryption keys. This
renders physical attacks, e.g., bus snooping, ineffective in
gaining access to the original, readable data. Encryption can be
done in two ways, direct or counter-mode-encryption (CME).
In the former, the encryption algorithm (e.g., AES) is applied
directly to the data itself. Typically, data is encrypted at the
memory access granularity, e.g., 32B (or referred to as sec-
tor henceforth). The direct encryption algorithm exposes the
encryption/decryption latency to the critical path of write/read
operations consecutively. While write operations could tolerate
such extra latency, read operations are more sensitive as their
results are needed by the front-end of the system. On the other
hand, CME, shown in Fig. 1, applies the encryption algorithm
on a unique spatio-temporal initialization vector (IV). This
vector consists of the data address as a spatial uniqueness
factor and a special counter for providing temporal uniqueness,
referred to as either the encryption counter or freshness
counter. On each dirty cache block eviction, the associated
counter is incremented and used to encrypt the evicted block
before sending it back to memory. The encryption algorithm
applied to this IV results in One-Time Pad (OTP), which, as
its name suggests, should never be repeated while holding the
same security key to prevent attacks. Thereafter, the OTP is
XOR’ed with the plaintext data to get the final ciphertext. In
opposite to direct encryption, the OTP could be pre-generated



before data arrival at the memory controller, leading to lower
latency and higher throughput.

Fig. 1. Counter-Mode Encryption (CME)

Counters used for CME could be monolithic counters as
in Intel SGX [20], which uses 56 bits for each. The state-
of-the-art counters organization is called split counters [64]
as counters are divided into two parts, minor and major. The
advantage is that counters can be compacted in one counter
block with a group of minor counters sharing the major one.

2) Message Authentication Code (MAC): The trusted pro-
cessor writes data that eventually gets stored off-chip in
untrusted memories. These off-chip memories are susceptible
to physical attacks such as snooping, spoofing, splicing, and
replay attacks. Encryption can prevent the snooping but not
any of the rest. Hence, the integrity of the data produced by
the processor needs to be protected against any alteration or
tampering. Message authentication codes (MACs) are typically
used for this purpose. Basically, they are cryptographic hashes
generated over the data and a secure key. MAC codes could be
of different lengths depending on the required security level,
which increases as the length of the MAC code increases.
Intel SGX uses 56-bit MAC codes per data block [20], while
Partitioned and Sectored Security Metadata (PSSM) uses 32-
bit MAC per sector [66].

3) Integrity Trees: Although MACs ensure the authenticity
of the data read from memory, there is room for attackers to
replay old versions of the data, counter, and MAC, in a way
that makes all security operations pass; the memory controller
cannot tell that this data is stale. Thus, integrity trees are used
for tracking freshness. They achieve this by keeping the root
of a tree, hierarchically computed over all memory data, in
the system’s TCB. Integrity trees are built over either the data
itself [45] or one of the security metadata (i.e., counters or
MACs [20], [57]). Level by level, the tree grows upwards until
all of the data is covered by a single node, namely the root.
Thus, any replay attack attempt fails as it leads to different tree
nodes and root. Tree nodes could be simply hashes or MACs as
in Bonsai Merkle Tree (BMT) [57] shown in Fig.2, or it could
be a combination of version counters and a MAC per node
as in Intel SGX integrity tree [20]. BMT is used in systems
using counter-mode encryption for confidentiality, where it is
built over encryption counters. To prevent all possible replay
attacks, it is crucial to establish a link between tree nodes
and MACs using the counters in the MAC computation. This
linkage ensures that fresh counters are used in conjunction
with valid MACs and data, thereby preventing situations where

a fresh counter is present but the MAC and data are stale,
leading to potential security vulnerabilities.

Fig. 2. Bonsai Merkle Tree over Encryption Counters

B. Memory Expansion via CXL

Compute Express Link (CXL) [1] is a high-speed, high-
capacity cache-coherent interconnect utilizing a custom PCIe
interface. It enables low-latency communication between the
host and connected devices and memories. CXL protocol
supports three different types of devices: type-1 stands for
accelerators lacking memory, and they are connected to a host
through CXL. Type-2 is the same as type-1 but with local
memory, and finally, type-3 is a mere memory device used
for memory system expansion. The CXL transaction layer
consists of three protocols that are dynamically multiplexed
over a single link: CXL.io, CXL.cache, and CXL.mem.
Each of these protocols provides different capabilities and
functionalities in the CXL systems. The CXL.io proto-
col provides the input/output interface operations facilitating
data transfer between the host and connected devices. The
CXL.cache protocol works on maintaining the coherency
features when shared data is cached. The CXL.mem pro-
tocol manages memory-related operations and facilitates the
utilization of CXL-attached memories in multiple modes,
including: Memory Expansion, Memory Pooling, and
Memory Sharing. The memory expansion mode enables
the host system to expand its memory capacity by leveraging
additional memory modules connected via CXL as type-3
devices. This allows systems to process larger datasets and
memory-intensive applications. Both memory pooling and
memory sharing modes focus on efficient resource utilization
and cost optimization. In the pooling mode, multiple devices
connected through CXL can pool their memories, while offer-
ing exclusive access for each pooled portion. Memory sharing
mode, as the name suggests, enables the coherent sharing
of memory by a group of CXL-connected devices. With the
advancements in PCIe technology and the adoption of PCIe
5.0, the bandwidth offered by a CXL port is comparable to
the bandwidth achieved using conventional DDR5 memories
[40]. This highlights the potential of CXL to deliver high-
performance memory access and data transfer rates, further
enhancing system capabilities and performance. Due to these
attractive characteristics of CXL, many vendors are developing
and incorporating CXL-supported systems and memories, and
various products are already available [37], [46], [58].



C. Baseline System and Threat Model

Our system consists of a GPU connected to a High Band-
width Memory (HBM) device or GDDR memory through its
memory interface. To enhance the overall memory capacity
of the system, we incorporate memory expander modules
by utilizing the CXL protocol as type-3 devices through the
PCIe interface. The trust boundary of the system includes the
processor chip and the on-chip components, while off-chip
components, including memories, are untrusted and excluded
from the trust domain. In our threat model, we focus on
defending against physical attacks, such as bus snooping and
data tampering, which can be executed on data stored in
memory. Therefore, the system implements methodologies to
defend against such attacks, whereas side-channel attacks (e.g.,
power, timing, and electromagnetic [22], [30], [52]) are all
excluded in our assumed threat model. Data confidentiality in
the system is ensured by employing counter-mode encryption,
while the data integrity is protected through the use of message
authentication codes. Plus, data freshness is guaranteed using
bonsai merkle trees over the encryption counters. Each of the
local memory and expanison memory has its own security
metadata linked to its addresses and stored locally within the
respective protected memory. These metadata are stored in
a reserved fixed region of each memory. Addressing these
metadata depends of the start offset of this region plus the
local data address in the memory channel as defined in
PSSM [66]. To summarize, every memory unit independently
stores encryption counters, organized using a split counter
structure, along with MACs and BMT nodes computed over
its encryption counters. To enhance performance, as discussed
in literature, we install security metadata caches within the
controllers responsible for executing security operations.

D. Memory Organization

Generally, GPUs are designed to handle large amounts of
data in parallel, such as graphics processing and scientific
computations. To efficiently handle massive parallel compu-
tations and thus data transfers from and to the memory, GPUs
tend to have a high number of memory channels boosting
the achieved memory-level parallelism. Memory channels are
pathways for data transfer between GPU cores and memory
modules. The more memory channels a GPU has, the higher
the memory bandwidth it can achieve. This increased mem-
ory bandwidth allows faster data transfers, improving overall
system performance.

Having more memory channels alone does not guarantee
high performance; these channels need to be utilized efficiently
by interleaving accesses across the available channels [10].
With optimal interleaving, accesses that happen close in time
head for different memory channels in parallel, maximizing the
harvested system bandwidth. Different interleaving techniques
[21], [32], [56] have been explored to minimize channel access
conflicts and prevent partition camping. Generally, they all
aim to distribute memory traffic evenly across the available
memory channels to increase memory-level parallelism.

In previous work [10], the authors observed that the finer
interleaving granularity could improve the performance; this
is basically at the scale of one to few cache lines. Current
GPUs employ sub-page granularity for fine-grained memory
interleaving across memory channels [47]. Kim. H et al. [33]
showed that interleaving at the cacheline level performs 1.48X
better than page-level interleaving. In our model, the fine-
grained interleaving chunk size of 256B is assumed; hence,
moving a page from the CXL-connected memory to the GPU
device memory requires interleaving across multiple channels.

III. MOTIVATION

A. Memory Capacity Wall in GPUs

GPUs have gained significant popularity in the fields of
machine learning (ML) and data science due to their powerful
parallel computing capabilities. However, the limited memory
capacity of GPUs can indeed pose a challenge for memory-
intensive operations involved in ML and scientific applications.
For example, ML algorithms often require large amounts of
memory to store and manipulate intermediate results, model
parameters, and input data. These data grow at the order
of hundreds of Gigabytes to Terabytes [9], [17]. When the
memory requirements exceed the available device memory of
the GPU, the memory scarcity issue can result in performance
degradation as it requires accessing remote memories, e.g.,
host memory, when unified memory support is enabled. Due
to the aforementioned capacity limitations, the advancement
in the performance and accuracy of data science and ML ap-
plications is restricted by the availability of memory capacity.

Increasing the available memory capacity in GPUs faces
inherent limitations due to technological constraints. GPU
memory expansion encounters challenges such as reaching the
pin count limit for Graphics Double Data Rate (GDDR) or the
space limitations of High Bandwidth Memory (HBM) modules
[15]. Unlike CPUs, which can accommodate larger memory
capacities, GPUs prioritize maintaining high memory band-
width to meet the demands of their compute cores. As a result,
enlarging GPU memory capacity while preserving the required
bandwidth becomes a significant constraint, emphasizing the
need for alternative approaches like external memory expan-
sion to overcome memory capacity limitations and meet the
growing demands from memory-intensive applications.

Expanding the available GPU memory using external mem-
ories provides a viable solution for the capacity wall problem.
Unified memory and multi-GPUs are used to overcome the
capacity wall hit by applications’ demands. Unified memory
uses the host memory in conjunction with the device memory;
however, accessing data frequently from the host causes severe
performance degradation. Normally, page faulting is used to
move data between the CPU and GPU based on demand. When
a page fault occurs, the host’s operating system is interrupted
to remap the accessed page so that it can be migrated to
the GPU. This process can negatively impact performance,
as it introduces overhead and latency due to the context
switching and page migration [38], [42]. Multi-GPUs exploit
the aggregate memory of the connected GPUs to accommodate



larger datasets. However, data movement between GPUs can
create a performance bottleneck. Although multiple works
optimize the performance of multi-GPU systems [48]–[50],
these studies still require several accesses to remote GPUs.
Therefore, expanding the memory capacity locally is consid-
erably necessary while avoiding/minimizing remote access.

B. CXL-expanded Heterogeneous GPU Main Memory

The growing need for expanded memory capacity in CPUs
and GPUs has increased the adoption of heterogeneous mem-
ory subsystems [11], [24], [39], [40], [43]. These subsys-
tems consist of memories with diverse access characteristics,
requiring the implementation of specialized techniques to
ensure efficient utilization. Recently, CXL has emerged as a
promising solution for expanding the main memory of not
only CPUs but also GPUs due to its low latency and load/store
syntax that abstracts the underlying memory media types.

When a system is composed of heterogeneous memories,
without efficient distribution of the data during the application
runtime, the system suffers from serious performance degra-
dation. While CXL-connected memories offer lower latency
compared to traditional remote memories [19], [40], [43],
[59], they still introduce higher latency compared to memories
connected directly through memory interfaces. In the case of
GPUs, memories are often optimized to provide higher levels
of parallelism compared to conventional CPU systems; hence,
relying solely on expanded memories without careful memory
management can lead to significant performance degradation.
Previous work [7] has proved that fixing data location for
GPU applications when remote memories are used is detri-
mental to performance. This is due to the observation that
the distribution of data accesses for different pages changes
over time. Therefore, maintaining a static data placement
strategy for GPUs can lead to suboptimal performance, as
the hotness of data accesses fluctuates. To address this issue,
dynamic data movement techniques [3], [7], [34] have been
proposed to efficiently adapt to the changing access patterns
and hence improve overall performance, as the main objectives
of these studies are ensuring the majority of data accesses to
be directed to the fast high-bandwidth memory to keep the
system performance near the peak.

Prior proposals on heterogeneous memories advocate using
the fast high-bandwidth memory as a cache of the other
memory [24]–[26], [35], [39], [55]. This configuration results
in the automatic containment of the hot data within the high-
bandwidth memory, thereby harvesting the best bandwidth of
the system. Previous studies on DRAM caching have explored
two options: caching data at the cacheline granularity or the
page granularity [24]–[26]. These studies have found that
caching at the cacheline granularity can be beneficial for
capturing temporal locality. However, in the case of DRAM
caching, where temporal locality is already effectively cap-
tured by higher-level caches, the focus shifts towards capturing
spatial locality. It has been observed that larger granularities,
such as memory pages, are more effective in capturing spatial
locality. This is particularly relevant in the context of GPUs,

where multiple threads work in parallel on the same data
structures, increasing the likelihood of spatial locality patterns.
Similarly, GPU device memory is used to cache the most
recently accessed pages of the system data from the lower-
bandwidth memory (e.g., CXL-expansion memory).

C. Overheads of Security Management in GPU Heteroge-
neous Memory Systems

Memory security support is crucial to protect information
from unauthorized access and manipulation. However, it is
important to acknowledge that security implementations in-
troduce non-trivial performance overheads. One such overhead
arises from the use of metadata, which must be accessed and
processed whenever data is read from or written to its untrusted
off-chip storage location. The metadata is indexed based on the
address of the associated data, which is also used in generating
security metadata and ciphertexts. When the location of the
data changes, the corresponding metadata and ciphertext must
be updated accordingly. This introduces additional complexity
and computational costs to the system.

In GPU systems with heterogeneous memories where dy-
namic data relocations are performed for better memory uti-
lization, performance impacts originated from security con-
siderations become even costlier than traditional GPUs with
homogeneous memory. The movement of data between dif-
ferent memories can introduce additional security overheads
because security metadata is closely tied to the data location.
Anytime data is moved between different memories, data
decryption is required using the metadata associated with the
old location, and subsequently re-encrypting the decrypted
data with the metadata associated with the new location.
This process involves accessing and potentially updating the
security metadata for both locations.

In addition to the aforementioned overhead, the interleaved
nature of data across multiple memory channels further com-
plicates the situation. Recent works on GPU security [2], [66],
have organized security metadata locally per channel due to
several considerations, e.g., the coherence of security meta-
data, avoiding duplicates in memory. However, this approach
results in a single page having its corresponding security
metadata distributed across all the channels it is interleaved
over, requiring the retrieval of multiple security metadata
blocks from all the channels for a single page movement.

Consequently, using the conventional security metadata or-
ganization in a heterogeneous memory system can signifi-
cantly impact performance. The continuous relocation of data
driven by application access patterns introduces frequent se-
curity metadata accesses and updates, resulting in unnecessary
overheads. Moreover, in certain scenarios, a page may be
evicted from DRAM cache before all its distributed chunks in
multiple channels are accessed, rendering any security-related
traffic and operations for those unaccessed parts wasted.

In our evaluations of a CXL-expanded GPU memory sys-
tem, we observed that the security operations associated with
the data location adjustments during runtime result in acute
system slowdown. Specifically, as Fig. 3 depicts, the system



Fig. 3. Data Movement Security Overheads

experiences a performance slowdown of 2.04× compared to a
system that assumes no security overheads due to data move-
ment. This slowdown arises because security measures are
directly tied to the physical location of the data, besides these
security measures are distributed over multiple channels rather
than centralized; hence, such a factor causes inefficiencies
in managing security in a dynamic memory environment. In
other words, these overheads stem from two main sources: (a)
the re-encryption computation needed when the data location
changes, and (b) the security traffic associated with the re-
encryption process.

In fact, similar to the rationale behind moving the data to
the higher-bandwidth memory for better performance, access-
ing the security metadata from the CXL every time would
introduce a high penalty. On the other side, choosing the high-
bandwidth memory as the permanent host of the whole system
metadata, indeed, wastes much of the precious high-bandwidth
memory capacity. Moreover, the current organization of the
security metadata blocks, especially encryption counters, is
unfriendly for interleaving with dynamic re-locations. Refer-
ring to the design of split counters discussed in Section II-A1,
the page interleaving results in the counter block/sector being
shared by several channels in the high bandwidth memory. To
overcome these challenges, smarter security implementations
are desired to ensure data protection seamlessly while accom-
modating dynamic data relocations over multiple channels.

IV. DESIGN

This section discusses the design choices and optimizations
employed by our data-relocation-friendly security design. The
key is to show how security metadata can be efficiently
handled in the context of a CXL-expanded GPU memory.

A. Security Optimizations: Unified Security Model

Our proposed scheme addresses the security management
challenges discussed in Section III-C.

The coupling of the security metadata with the exact data
address, forces all these re-encryptions to happen when data

is transferred. Hence, by decoupling the security measures
from the physical location of data, we can avoid the need
for re-encryption when data is moved to different locations.
In our approach, we propose to compute a unique security
measure for each data unit that remains valid regardless of
data location in the memory system. This is achieved by
utilizing the GPU device memory as a cache for the CXL-
connected memory, allowing us to treat the CXL address as
a permanent physical address that remains unaffected by data
movements. Consequently, this address can be used for all
security computations.

In our approach, we eliminate the need for separate security
metadata models per physical memory. Any data unit has a
single security-related metadata, which can be used correctly
in any heterogeneous memory. When a page is moved to the
GPU device memory, this transition occurs seamlessly with-
out requiring additional security computations. The security
computations take place as in traditional systems with fixed
memory locations, triggered on last-level cache (LLC) misses
and writebacks.

Limitations of Previous GPU Memory Protection
Schemes: While data is transferred at the page granularity,
moving the metadata at the granularity of a single block
is more beneficial. Moving an entire metadata page would
encompass multiple data pages, which may not all be cached
in the GPU memory, resulting in wasted memory and loss
of locality in the security metadata. Previous research [66]
has shown that organizing security metadata in a contiguous
manner for sequential page blocks can result in difficulties
when dealing with memory partitions that have interleaved
pages. Thus, they proposed that each memory partition con-
tains the security metadata for its respective data. In other
words, each page has its data blocks distributed across multiple
memory partitions, and their associated security metadata are
also present in multiple partitions. However, this approach
introduces a challenge for the major encryption counter man-
agement. The dynamic movement of blocks between the CXL
memory and the GPU device memory results in different
blocks belonging to various CXL pages but residing con-
tiguously in a single memory partition in the device memory
sharing a single major counter, but they may not have the same
access pattern, resulting in different major counter values. As a
consequence, the necessity to share this counter with different
values would require re-encryptions to unify their counters.
The same problem arises when a CXL page is to be evicted
from the GPU device memory. The page is collected from a
group of partitions, each using a different major counter for se-
curing the page portion it has, potentially having different val-
ues that would require consolidation through re-encryptions.
To address this challenge, we propose interleaving-friendly
split counters (Section IV-A1). Furthermore, collapsed counter
(Section IV-A2), fine-grained fetching (Section IV-A3), and
fine-grained dirty tracking (Section IV-A4) are proposed for
bandwidth optimizations.

1) Interleaving-Friendly Split Counters: The conventional
design of split counters used for encryption and freshness in-



volves pairing a major counter with a group of minor counters.
The major counter is shared among minor counters, and each
minor counter is associated with one of the consecutive data
blocks in the physical memory. Each counter tracks the number
of writes to its respective memory location. The indexing
of these counters is based on the address of the memory
location, specifically the data address in the CXL-connected
memory. The current design of a counter block for GPUs [66],
as optimized for sectored caches, includes a major counter
shared among 32 minor counters / 8 data blocks. However,
this design makes counter management more complex when
the CXL page is distributed among multiple partitions in the
GPU device memory. As the single shared major counter,
covers data that exceeds the typical interleaving granularity
of 2 blocks, resulting in the challenges described above in
IV-A.

Fig. 4. Interleaving-Friendly Split Counters in the GPU-Device-Memory Side

As shown in Fig. 4, our interleaving-friendly split counters
divide minor counters into groups based on the interleaving
granularity. Each group of minor counters shares an individual
major counter. The aim is to have a unique different major
counter per data that resembles one interleaving chunk. This
eases the movement of counters between memories and elim-
inates the need for extra complex processing to duplicate the
major counter in multiple locations and handle overflows in
a non-localized manner. In our system, in the GPU device
memory, one major counter is shared among 8 minor counters.
This arrangement results in two groups of counters within
a single counter sector. Each of these counter groups is
associated with one interleaving chunk of data. These chunks,
despite belonging to different CXL pages, coexist in one
partition within the GPU device memory. A 32-bit tag is
associated with each counter group to identify the CXL page
it belongs to, this is needed for the optimization explained in
IV-A3.

With this interleaving-friendly counter block organization,
the transferred counters align perfectly with the transferred
data. This facilitates us to store the counters in the GPU
memory at specific addresses that can be indexed based on
the destination location of the transferred data. As a result, the
addressing of the counters in the GPU memory is independent
of the expansion memory addresses so that we keep maintain-
ing locality among the stored data in the GPU memory, while
security calculations use the expansion memory addresses to
allow for unified metadata across all system memories.

Fig. 5. MAC Sector with Collpased Major Counter at Transfer

2) Collapsed Checkpointed Counters: To minimize the
traffic between two heterogeneous memories even further
while benefiting from the fact that data is cached at the high-
bandwidth GPU memory, we propose that the fine-granularity
minor counters can be eliminated and collapsed into their sin-
gle major counter at the CXL memory side. This implies zero
value per each of the minor counters. As a result in the CXL,
we only have a single major counter of 32 bits per interleaving
chunk. However, the counters in the high-bandwidth memory
still apply the fine-grained split design to allow for finer-
grained per-sector tracking of data writes without incurring
extra re-encryptions and security operations due to the sharing
of a single counter. The difference is that the minor counters
are reset when the major counter is filled from the expansion
memory on page transfer. While on the opposite transfer to
CXL, if any of the minors is not zero, the major is incremented
and all minors are reset with the required re-encryptions for
the collapse process. In contrast to counters, MAC values
are independent of each other and have no shared values.
This makes them more friendly for interleaving with dynamic
relocations. A single MAC sector holds MACs for a single
data block. Additionally, 56-bit MAC can be used as Gueron
[20] has proved that it provides a sufficient security level. This
leaves room for embedding the corresponding major counter
in the same MAC sector at transfer between memories. In
other words, in our proposed scheme, the counter sector is
collapsed into the corresponding MAC sector, as shown in
Fig. 5. Hence, our approach completely eliminates the traffic of
counter blocks between memories, and only MAC blocks need
to be transferred, with corresponding counters held internally.
Freshness trees, on the other hand, are maintained locally
within each memory. This approach allows us to minimize
the amount of data that needs to be transferred while still
preserving the same security level.

Fig. 6. Counter Sector Design in CXL-side (Split Design of Collapsed Majors)

At the expansion memory, one option is to merge counters
into MAC blocks and use MAC blocks directly for building
the BMT. However, the BMT’s depth and width would signif-
icantly increase, as MAC blocks span a much larger memory
range than counters. To keep the BMT traffic in the already
scarce-bandwidth memory as small as possible, we propose
to maintain separate counter blocks, on top of which the
BMT is built. And as counters and MAC information needs
to move together to other memory, the required counter is
loaded to the corresponding transferred MAC sector for saving
bandwidth. The design of counter blocks in the CXL memory



side adopts the split counter design, but due to the collapsed
major counters, and to limit the minor counter overflow, the
size of each minor counter is doubled as shown in Fig. 6.
It functions as conventional split counters, as long as minors
share the same major, no extra operations are needed. Once a
minor overflows to use a different major, all minors are reset
and major is incremented and all affected data is re-encrypted.

3) Fetch Only On-Access: Prior works on DRAM cache
investigated both moving the whole page completely or using
prediction to move only the parts that are expected to be
accessed [25], [26], [63]. Our proposal works with any of
these, and regardless if all of the page data is moved at once or
not, the fetch on access for security metadata is applicable. A
page is distributed over multiple memory channels, and each
channel requires different security traffic to access its local
security blocks. However, not all moved parts of the page
receive access before the page is selected to be moved back to
the other memory. Therefore, there is an opportunity to save
some of the bandwidth wasted on transferring MAC blocks
for data that would be untouched/unchanged.

Fig. 7. Accessing Security Metadata in GPU Device Memory

Based on the observation above, we propose to fetch MAC
blocks opportunistically. This means there is a possibility that
the security metadata is not yet available in the high-bandwidth
memory, even though the data is there. To track this, we add
additional tags to the counter and MAC blocks in the high
bandwidth memory, the CXL Tag in Fig. 7, which identifies to
which data page they belong. This allows all security accesses
to proceed optimistically, assuming that the metadata has
already been moved to this memory. By performing a single
comparison against the tag, it can be determined whether the
access can continue or if a read from the expansion memory
(to retrieve the MACs) is required. Whenever the security
metadata is read from the expansion memory, the metadata
is populated into the security metadata caches located in the
device memory controllers and subsequently it is stored back
in the CXL memory upon evicting the page from the GPU
device memory to the CXL expansion memory. Page read and

eviction operations are shown respectively in Fig. 7 and Fig.
8.

4) Fine-granularity Dirty Tracking: On evictions, dirty
data has to be written back to the expansion memory. Typ-
ically, the dirty tracking happens at the page granularity
utilizing one bit from the page table entry to identify if the
page is dirty or not. This coarse tracking definitely results
in write amplification, because not necessarily all blocks are
dirty. Prior work Kona [11] has shown that most applications
write to a much smaller set of the page’s blocks, and they
propose finer-grain tracking for dirty parts of the page to
prevent write amplification. This can also be applied to GPU
applications [51], [65]. In a GPU page table entries design
[53], there is even no dirty bit. With unified memory support,
it is possible to oversubscribe the GPU memory while using
the host CPU memory as a swap space. Since the GPU page
table entries do not support dirty tracking, all evictions result in
writebacks to the host CPU. We utilize the fine dirty tracking
as Kona [11], to reduce the traffic for both data and security
metadata. The granularity of tracking used in our system is
the same as the interleaving granularity. We utilize some bits
in the address mapping to host the dirty tracking bits – more
on this in Section IV-B.

Fig. 8. Handling the Eviction to Expansion Memory

On a page eviction, the dirty tracking will be consulted to
determine which chunks of the page need to be written back
to the expansion memory, as shown in Fig. 8. The transferred
parts are the ones surrounded by the dotted black line. This
process requires collapsing counters into one major counter,
and thus re-encrypting the chunk with the new counter before
it is moved back to the expansion memory. This is indeed
much less overhead compared to the re-encryption needed for
an entire page at any movement.

B. Memory Cache Tags

In prior works on using memory as a cache [24], [35],
[39], various approaches have been explored for managing
memory caches and tagging the cached data. Some employ
traditional caching techniques, where each cached data item is
associated with a corresponding tag. In some cases, the tags
are stored in separate SRAM caches, while in others, they
are stored directly in the memory alongside the cached data
[24]. Alternatively, other approaches utilize additional tables



or mappings to keep track of the addresses of the cached
data in different memory locations [35], [39]. In the context
of Tagless DRAM cache [39], the management of DRAM
caching is achieved by designing the page tables to store
the DRAM cache address whenever data is cached in the
DRAM. Conversely, if the data is not cached in the DRAM,
the page tables hold the address of the data in the last-tier
memory. To track the location of cached data in the last-tier
memory, a separate table called the global inverted page table
is employed. This table maintains mappings from the DRAM
cache to the corresponding addresses in the last-tier memory.

Fig. 9. Caching Pages in Device Memory

Our work adopts the auxiliary mappings table approach,
rather than the traditional cache tags. This decision is made
to avoid the storage overhead associated with caching tags in
channels per a smaller granularity than a page. While storing
a single tag per page would require accessing two different
channels for each memory access, adding complexity and
inefficiency to the system. Fig. 9 shows the page caching in
the device memory.

While our work focuses on security optimizations and is
orthogonal to memory caching techniques, retrieving the CXL
address is crucial for security operations whenever off-chip
memory access occurs. In other words, the CXL address
must be obtained to perform necessary security checks. Given
this requirement and to optimize the overheads in a GPU
system with expanded memory, our work proposes flipping the
address translation order. The page table entries permanently
store CXL addresses, making them transparent to any page
caching or eviction to and from the GPU device memory;
hence, TLB shootdowns are avoided. Furthermore, the use
of CXL addresses in L1 data caches eliminates the need for
cache flushes, even if the data is no longer cached in the
GPU memory. This is because the addresses remain unique
and can be directly used for subsequent memory operations.
When memory access fails to find the requested data in L1, it
must be transmitted through the interconnect to the designated
L2 slice coupled to a memory partition. The address of the data
in the GPU device memory determines the routing decision.

Therefore, the first need to access the second mappings table
occurs before making the interconnect routing decision and
also before accessing L2, thus, L2 can be addressed based on
the GPU device memory addresses.

CXL mappings to the GPU memory are stored in a hashed
table for space efficiency. Each mapping sector of 32 bytes
holds 4 consecutive CXL mappings to preserve spatial locality
benefits. These are stored in the GPU memory interleaved,
similar to application data. Whenever a memory request passes
through the interconnect, the corresponding mapping is re-
quired to route the request to the designated memory partition.
Reverse engineering by Ahn, Jaeguk, et al. [4] revealed that all
streaming multiprocessors (SMs) within a Graphics Processing
Cluster (GPC) in the GPU share a single connection to the in-
terconnect. To optimize the retrieval of address mappings, we
augment each GPC connection with a CXL-to-GPU address
mapping cache, capable of storing 128 entries. This design
choice ensures reasonable logic complexity while maintaining
compatibility with the existing hardware. Memory requests
that hit the mapping cache can proceed with both the CXL and
GPU memory addresses to the appropriate memory partition.
However, if a memory request misses in the mapping cache,
it is directed to a dedicated control logic responsible for
handling mapping misses. This logic issues requests to read
the mappings from memory and verifies if the corresponding
page is already cached or not. If the page is resident in
the GPU memory, the mapping is eligible to be sent to the
requesting cache. On the other hand, if the page is not present
in the device memory, a request is made to copy the page to
the device memory, and a new mapping is established. Once
the copying and mapping process are complete, the mapping
cache request is fulfilled. To maintain free space at all times,
evictions from the GPU memory may occur in the background
as discussed in previous works [35], [39]. When evictions take
place, stale mappings need to be invalidated from the mapping
caches. The mapping miss handling logic could track expected
caches to have the translation, so invalidation is sent only to
a subset of the mapping caches to reduce generated traffic.

The control logic is also utilized for dirty tracking; it
is augmented by a 32-entry buffer that holds CXL-to-GPU
mappings of pages whose dirty bitmask has changed since
the translation was last accessed from memory. Whenever a
write access occurs, the control logic receives the CXL address
along with a write signal. Then, it checks if this mapping is
present in its buffer. If not, it reads the mapping from memory
and sets the corresponding dirty bit. If the mapping is already
buffered, it simply sets the corresponding dirty bit. The cached
mappings in the CXL-to-GPU mapping caches can be evicted
silently, as the most recent version of the dirty bitmask is either
in the controller buffer or the memory. When the buffer gets
full, the least recently used mapping gets evicted to memory
without any other processing.

Security Impact: Salus guarantees the same security level
achieved by other memory security models [2], [51], [66]. It
organizes the security metadata differently for efficient system
performance. The only difference is that different counters



TABLE I
BASELINE GPU CONFIGURATION

SM Config 80 SMs, 1132 MHz
Register File 256 kB/SM, 20 MB in total
L1 D-Cache 32 KB/SM
Shared Memory 96 KB/SM
L2 cache 2 banks/memory partition, each L2

cache bank is 96 KB, 6 MB in total
DRAM (HBM) 850 MHz, 32 partitions, 868 GB/s,

pseudo-random memory interleaving
CXL-Expansion Capacity up to 16TB, 1

16 th of the
device memory bandwidth

CXL-to-GPU Mapping Caches 128-entry, One per GPC, dual-ported

are used for the same memory address in the GPU memory,
which could result in the same value being used more than
once, however, this is protected against OTP reuse by using
the unique address of the data in the CXL memory.

V. EVALUATION

A. Simulation Environment

We use GPGPU-Sim v4.0 [31] to evaluate our CXL-
expanded memory system. The configuration of the base-
line GPU is shown in Table I, which is modeled based on
Nvidia’s Volta architecture. To simulate the expansion memory
connected via the CXL protocol, we modeled extra memory
modules of an aggregate bandwidth that is equal to 1

16 th of
the device memory bandwidth, which is nearly equal to PCIe
5.0 ×16 bandwidth.

The device memory is assumed to hold 35% of the appli-
cation footprint. Both L1 and L2 data caches are sectored by
default in Nvidia Volta architecture. Based on the proposals of
prior works on GPU security [2], [65], [66], metadata caches
are also sectored and use local partition addresses. Table II
shows the detailed configurations of used metadata caches.

TABLE II
METADATA CACHES AND SECURITY CONFIGURATION

MAC Cache, Each 2kB/memory partition,
Counter Cache, 128B blocks, 4-way sectored,
BMT Cache 256 MSHRs, allocate-on-fill policy
MAC Latency 40 cycles
Encryption Engine 1 pipelined AES/memory partition

We evaluate our system using a collection of benchmarks
from various benchmark suites, including Rodinia-3.1 [14],
Parboil [61], Lonestargpu-2.0 [36], and Pannotia [13]. The
benchmarks used in our study are chosen from different mem-
ory intensity categories. Stencil, B+tree, Lava, and NW are
categorized as low memory-intensity benchmarks, while the
remaining benchmarks have a memory bandwidth utilization
of at least 20% and are considered to have medium or high
memory intensity.

B. Experimental Results

1) Performance Improvement: Fig. 10 demonstrates the
instructions per cycle (IPC) improvement achieved by our
proposed security design compared to the impact of the
conventional security design on a GPU system equipped with

Fig. 10. Performance Improvement Driven by Our Security Design

heterogeneous memory configurations as in Tables I and II,
where data is dynamically relocated. The instructions per cycle
(IPC) are normalized to a system with the same memory
configuration but without any security support. Our data-
relocation-friendly security design achieves a 29.4% improve-
ment over the conventional security model.

This performance boost results from the reduced security
overhead, on both data transfer directions. First, all security
operations due to the transfer between the different memories
are eliminated as the metadata is unified to be used regardless
of the data location in the memory system. Second, the
security traffic is optimized to be minimal as possible so
that it occurs only when needed, utilizing minimal bandwidth.
Moreover, building the BMT in the last tier memory over
much coarser granularity counters shrinks its size and thus
its traffic, especially since it covers a larger memory capacity.
The workloads that experience the highest improvement are
those accessing fewer memory channels during the lifetime
of their pages in the device memory. Specifically, benchmarks
like NW, B+tree, and Lave fall into this category. For these
workloads, the majority of the pages have less than half
of their memory channels accessed before they are evicted
from the device memory. On the opposite side, benchmarks
like Backprop and Segmm experience either no change or
slowdown. This is because these benchmarks touch almost all
channels for the majority of the transfers. Moreover, these
accesses are spread out over time, resulting in more misses,
especially when traversing the BMT to verify counters, in
contrast to the baseline that verifies all page counters at once
and thus exhibits better locality.

2) Security Traffic: Fig. 11 shows the normalized security
traffic after applying our data-relocation-friendly security de-
sign. As a result of our approach, 52.03% of the security
traffic is reduced since data that remains unaccessed during the
page’s lifetime in the GPU device memory does not trigger any
security operations or traffic. This aligns with the explanations
in V-B1; hence, with our proposal, applications that access



Fig. 11. Security Traffic

fewer channels during their lifetime have much lower traffic
for security operations.

Fig. 12. Bandwidth Usage

3) Memory Bandwidth Utilization: Security metadata can
contend with normal data on the memory bandwidth. The
problem becomes more exacerbated with dynamic data reloca-
tion due to the increased security traffic. Our data-relocation-
friendly security design aims to reduce this traffic as much
as possible. Fig. 12 reflects the security bandwidth usage
achieved with our security design normalized to that of the
conventional security design. In our design, the utilization
of the CXL bandwidth is 14.92% less than the conventional
security design. Additionally, the security usage of the GPU
device memory bandwidth is 2.05% less than that of the
conventional design.

4) Sensitivity to CXL Bandwidth: The effectiveness of
our proposed security design is studied using different CXL
bandwidths, considering various bandwidth specifications of
underlying memory devices or physical layers. The main
evaluation is done using a bandwidth of 1

16 th of the GPU
device memory bandwidth. Fig. 13 shows the performance
results for different ratios of CXL bandwidth to the device
memory bandwidth, while the device memory bandwidth is
fixed as shown in Table I. Each of the values is normalized
to the performance number of the same memory configuration
with no security support. The figure indicates that Salus drives
better performance even with higher memory bandwidth for

Fig. 13. Sensitivity to CXL Bandwidth

the CXL-connected memory. Salus achieves 32.79%, 29.94%,
32.90% and 21.76% performance improvement over the con-
ventional security for CXL bandwidth of 1

32 th, 1
16 th, 1

8 th and
1
4 th of the device memory bandwidth, respectively.

Fig. 14. Sensitivity to Device Memory Capacity Ratio to Footprint

5) Sensitivity to Application Footprint Percentage in GPU
Device Memory: Fig. 14 shows the design sensitivity to the
GPU device memory capacity ratio to the footprint. The more
of the application’s footprint that can fit in the high-bandwidth
memory, the less frequent page movements we have. Con-
sequently, less observed security traffic is due to transfers.
Thus, the figure demonstrates how the improvements become
more noticeable as less of the footprint can be contained in
the GPU device memory. Specifically, our proposal achieves
51.64%, 34.48%, and 26.83% on average for device memory
to the application footprint ratios of 20%, 35%, and 50%,
respectively.

VI. RELATED WORK

GPU Memory Security: Memory security is taking in-
creased importance, especially with the offloading of applica-
tions to run remotely on clouds. In the context of GPUs, there
are proposals for trusted execution environments [22], [23],
[62], where the whole communication between the host and
the GPU is confidential and integrity protected. Other works
focus more on memory security against physical attacks. These
works employ the same security measures used in conven-
tional CPU systems but with adjustments and optimizations
specialized for GPUs, such as common counters [51] work that
optimizes encryption counters by grouping continuous data



that observe the same update pattern to use a single counter.
PSSM [66] changes the organization of security metadata to
be more friendly to the partitioned and sectored memory in
GPUs. Plutus [2] proposes optimizations for the bandwidth
usage due to metadata by using data similarity to perform
MACless integrity verifications. However, all these works
consider stable fixed data locations for the whole runtime, but
with the advancement in the use of heterogeneous memory and
the need for data migrations, there should be more optimized
management for the security metadata.

CXL-connected Memory: The introduction of CXL has
prompted researchers to explore various ways of integrating
CXL-connected memory into the system’s memory architec-
ture, offering benefits such as expansion and pooling. For ex-
ample, Pond [40] utilizes CXL to create memory pools, which
serve as remote memory for computation nodes. By combining
local memories with CXL-connected memory pools, the total
cost of the system can be reduced without overprovisioning
individual nodes with high-capacity memory. TPP [43], fo-
cuses on managing data movement between the main memory
and CXL-connected memory. The goal is to optimize the
placement of the hot set of data pages in the main memory,
maximizing system utilization and performance. Other works
[19] are also exploring the potential of CXL to enhance
computing capabilities. These efforts aim to leverage CXL
to drive advancements in large-scale computing systems. The
majority of these works target CPU systems, whereas our work
brings the power of CXL to the GPU world as well.

Heterogeneous Memory: The growing diversity of memory
types and the need for efficient memory management have
spurred research on heterogeneous memory systems. One area
of focus has been DRAM caching, which has been extensively
studied in various works. Initially, the cache management
was performed at the cacheline granularity [55], similar to
conventional CPU caches. However, this approach incurred
high overheads for cache management and did not fully
exploit spatial locality, as the temporal locality was already
captured by higher-level caches [24], [25]. Subsequent works
[24]–[26] explored caching at the page granularity, although
it increased pressure on memory bandwidth. This approach
showed improved performance by leveraging larger spatial
locality and reducing tag overheads. With the increased capac-
ity of DRAMs used as cache, using SRAM for tags became
impractical. As a result, researchers proposed storing tags in
DRAM itself, optimizing performance by colocating tags in
the same row as the data [55]. Recent works [16], [35], [39]
have replaced tags with changes to page table mappings that
are aware of the DRAM cache locations. This approach relies
on auxiliary tables to store mappings between the DRAM
cache and the other memory.

VII. CONCLUSION

The increasing demand for memory resources in GPU appli-
cations, such as machine learning and scientific applications,
has pushed the limits of traditional memory designs. As a

result, new solutions have emerged, involving additional mem-
ories working alongside the local device memory, especially
with the introduction of various memory technologies offering
larger capacities but with limited speeds or bandwidth. The
CXL protocol has played a significant role in advancing
this domain, with ongoing research exploring its potential.
However, the use of different memory types with distinct
characteristics necessitates data movements, whether following
caching procedures or custom algorithms. Security support in
such systems poses significant challenges and can severely im-
pact performance. To address this, our paper introduces a data-
relocation-friendly security design, which reduces security
traffic in the system and eliminates security operations related
to data movements. Our design improves GPU performance
by 29.94% compared to conventional security implementations
used for traditional memory systems.
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APPENDIX

A. Abstract

We evaluate Salus using GPGPU-sim v4.0 as described in
section V. In this artifact, we provide the extended version of
the simulator with Salus implementation along with required
instructions to build and run experiments to reproduce the main
performance results shown in Fig.10 - Fig. 12.
The artifact can be executed on any Linux distribution with
20GB disk space, though it is tested in Ubuntu 18.04 environ-
ment. It is recommended to run the artifact on a machine with
a high number of cores (e.g. 64) with 40GB main memory at
least for such a number of cores.

B. Artifact check-list (meta-information)

• Program: Extended GPGPU-SIM v4.0
• Compilation: GCC/G++ 7.5.0, python3
• Run-time environment: Ubuntu 18.04 or any other version
• Metrics: IPC, Memory Traffic
• Output: Files with statistics
• Experiments: Launched using the provided scripts
• How much disk space required (approximately)?: 20GB
• How much time is needed to prepare workflow (approxi-

mately)?: 15 minutes
• How much time is needed to complete experiments (approx-

imately)?: Depends on the number of cores, for 64 cores, it
takes one day and a half for all experiments

• Publicly available?: No

C. Description

We provide both a virtual machine with all dependencies
installed and a zipped folder to be downloaded directly on the
machine.

1) How to access: The two different options can be down-
loaded from this link https://drive.google.com/drive/folders/
15UfYMRVOGaauKyf7U5YR31ribBeI4mIK?usp=drive link

2) Hardware dependencies: For the virtual machine option,
it is highly recommended to have many cores accessible
for the VM because there are many workloads to run. It is
recommended to allocate 40GB of memory at least for the
VM along with 40GB of main memory. On the other hand,
if the artifact is downloaded directly on the machine, at least
20GB of disk space and 40GB of main memory are needed.

3) Software dependencies: If the artifact is downloaded di-
rectly on the machine, then a Linux system is required (tested
on Ubuntu 18.04). The following software dependencies are
required, which are listed on the github page of the simulator:

• CUDA Toolkit (we used 11.8.0)
• GCC/G++
• make and makedepend
• xutils
• bison
• flex
• zlib
• python-pip

D. Installation

1) First, download Salus artifact from the provided link.
2) Run the following commands to install the required

dependencies on Ubuntu 18.04, skip this step if you are
using the VM option:

$ sudo ap t − g e t i n s t a l l b u i l d − e s s e n t i a l
x u t i l s −dev b i s o n z l i b 1 g −dev f l e x
l i b g l u 1 −mesa −dev vim

$ wget h t t p s : / / d e v e l o p e r . download . n v i d i a
. com / compute / cuda /
1 1 . 8 . 0 / l o c a l i n s t a l l e r s /
cuda 11 . 8 . 0 520 . 6 1 . 0 5 l i n u x . run

$ sudo sh cuda 11 . 8 . 0 520 . 6 1 . 0 5 l i n u x . run
$ sudo a p t i n s t a l l python − s e t u p t o o l s

python −dev b u i l d − e s s e n t i a l
python − p i p

$ p ip3 i n s t a l l −− i g n o r e − i n s t a l l e d PyYAML
$ p ip3 i n s t a l l p s u t i l
$ p i p i n s t a l l numpy

3) Setup the GPGPU-sim environment and compile the
simulator by executing the following commands:

$ cd S a l u s A r t i f a c t / gpgpu − s i m d i s t r i b u t i o n /
$ source i n i t i a l i z e s c r i p t . b a s h r c
$ source s e t u p e n v i r o n m e n t
$ make

4) Compile the benchmarks and fetch the needed data to
run them by running the following commands, skip the
last line for the VM option:

$ cd . . / gpu −app − c o l l e c t i o n /
$ source . / s r c / s e t u p e n v i r o n m e n t
$ make a l l − i − j −C . / s r c

E. Experiment workflow

To run the experiments needed to generate the results shown
in Fig.10-Fig.12, the job spawning manager of Accel-Sim is
utilized, we created a script to launch the used workloads with
the correct configurations, to run jobs concurrently, please
make sure to have large number of cores on your machine,
as the process manager by default launch jobs equal to the
number of the cores in the system. To run the script, execute
the following:

1) Move to the directory of the script:

$ cd . . / u t i l / j o b l a u n c h i n g

2) To run the workloads with no security at all:

$ . / r u n n i n g s c r i p t . sh N

To be able to extract the results, the numbers of the
simulations have to be remembered, to do so, run
the following, and write down the first and last jobs
numbers:

$ . / j o b s t a t u s

3) To run the workloads with baseline security, run the
following command and save the simulation numbers:

$ . / r u n n i n g s c r i p t . sh B

https://drive.google.com/drive/folders/15UfYMRVOGaauKyf7U5YR31ribBeI4mIK?usp=drive_link
https://drive.google.com/drive/folders/15UfYMRVOGaauKyf7U5YR31ribBeI4mIK?usp=drive_link


4) To run the workloads with Salus, run this command and
do as above:

$ . / r u n n i n g s c r i p t . sh S

F. Evaluation and expected results

After running the experiments needed, the running time
depends on the hardware resources available on the machine.
It takes around one day to two to finish all experiments on a
64-core machine.
Once the simulations have finished execution, the output files
generated by GPGPU-Sim are stored in a folder (automatically
created if not existent) named sim run [cuda version] in the
main directory Salus Artifact. To extract the needed values
from the output files:

• Start by copying the collection scripts from the folder
directly to the results folder:

$ cd . . / . . / s c r i p t s
$ cp . / * . . / s im run 11 . 8 /

• Copy to the start of each script the number of the
simulations, in this format:

# No S e c u r i t y
simNums = range ( [ f i r s t j o b n o s e c u r t i y ] ,

[ l a s t j o b n o s e c u r i t y ] + 1 )
# B a s e l i n e S e c u r i t y
simNums = range ( [ f i r s t j o b b a s e l i n e ] ,

[ l a s t j o b b a s e l i n e ] + 1)
# S a l u s
simNums = range ( [ f i r s t j o b s a l u s ] ,

[ l a s t j o b s a l u s ] + 1 )

For regenerating the results of Fig.10:
1) To get the IPC results of the simulations, run the

salus results collection.py script once for each of the
configurations, by commenting the simNums lines for
the other configurations, do the following for each of
the configurations:

$ cd . . / s im run 11 8
$ py thon s a l u e r e s u l t s c o l l e c t i o n . py >

s o m e o u t p u t f i l e . t x t

2) Fig.V-B1 shows these results by taking normalizing the
IPCs of Baseline and Salus to the IPCs of No security.

For regenerating the results of Fig.11:
1) To get the security memory traffic (number of memory

requests), run the security traffic collection.py script
once for both Baseline and Salus configuration, by com-
menting the simNums lines for the other configurations,
do the following for each of the configurations:

$ cd . . / s im run 11 8
$ py thon s e c u r i t y t r a f f i c c o l l e c t i o n . py >

s o m e o u t p u t f i l e . t x t

2) Fig.11 shows these results by taking normalizing the
number of Salus traffic values to those of the Baseline.

For regenerating the results of Fig.12:

1) To get the bandwidth utilization of both CXL and HBM
memories, run the bw util collection.py script once for
both Baseline and Salus configurations, by commenting
the simNums lines for the other configurations, do the
following for each of the configurations:

$ cd . . / s im run 11 8
$ py thon b w u t i l c o l l e c t i o n . py >

s o m e o u t p u t f i l e . t x t

2) Fig.12 shows these results by taking normalizing the
number of Salus traffic values to those of the Baseline.

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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