
PBVR: Physically Based Rendering in Virtual Reality

Yavuz Selim Tozlu Huiyang Zhou

North Carolina State University

Raleigh, NC, USA

{ystozlu, hzhou}@ncsu.edu

Abstract

Virtual Reality (VR) is a rapidly growing domain that
requires high-fidelity graphics for immersion. To understand
and improve the VR architecture, an open-source, end-to-end
platform for VR research was recently proposed. However,
studying the stereo rendering aspect of VR applications
remains challenging due to the lack of infrastructure.

In this work, we augment the aforementioned open-
source platform, ILLIXR, by integrating a high-end, physically
based 3D rendering engine, Filament. This upgrade, named
PBVR, enables developers to render high-quality graphics in
a completely open-source VR platform.

As a case study, we leverage our proposed PBVR to look
into gaze-tracked foveated rendering and profile three different
scenes. We show that a handful of renderpasses consume
the most time and that readily available foveated rendering
solutions, such as Variable Rate Shading, might not provide
significant advantages. Moreover, our results reveal that eye
tracking can incur a significant overhead on the graphics
processing unit (GPU).

1. Introduction

Virtual Reality (VR) is deemed as the next generation

of entertainment platforms and has grown into a multi-

billion dollar industry [13] [14]. Establishing immersive and

high-quality VR entails a unique set of challenges. One of

the biggest challenges is low-latency, high resolution, high

frame rate stereo rendering. State-of-the-art VR headsets

feature resolutions that are upwards of 1440x1600 per eye,

with refresh rates ranging from 90Hz to 120Hz [5] [9] [12].

This problem is further exacerbated on mobile platforms

due the power constraints.

Although VR imposes significant research challenges,

there is limited research on VR system architecture from

academia, and the primary reason is the lack of infras-

tructure. Recently, an initiative has been formed to enable

and democratize VR research [3]. As part of this effort, an

open-source VR testbed, named ILLIXR, has been built

[21]. ILLIXR enables end-to-end analysis and study of

VR systems by integrating the fundamental components

of a VR system, including visual-inertial odometry, pose

prediction, asynchronous reprojection, eye tracking, scene

reconstruction, and more. Researchers can now investigate

and experiment with these components and evaluate the

overall performance of the system.

Nevertheless, stereo rendering, which is one of the

biggest bottlenecks in the VR pipeline [21], remains dif-

ficult to analyze and improve with the existing ILLIXR

infrastructure. This is mainly because ILLIXR provides the

components of a VR system, but it is up to the researchers

to develop applications and benchmarks that will be run on

ILLIXR. In other words, researchers have to spend ample

time developing 3D applications that can interface with

ILLIXR’s components. To address this problem, ILLIXR

enables support for OpenXR [34] applications through

Monado [6]. In practice, a game engine such as Godot

[2] or Unity [11] is used to develop OpenXR applications,

which can be run on ILLIXR. The catch, however, is that

game engines are extremely complex tools, making them

impractical to modify and extend for research purposes.

To support high-performance 3D rendering, in this work,

we integrate Filament [1] into ILLIXR. Filament is an open-

source, real-time, physically based rendering engine from

Google. It exposes a C++ programming interface that can

be effortlessly hooked up with ILLIXR. More importantly,

the software architecture of Filament is flexible and allows

for modifications and quick prototyping. To demonstrate

this, we use Filament to render three scenes with varying

complexities and breakdown frames for detailed analysis.

We also extend the existing eye tracking component in

ILLIXR to enable gaze estimation, which we use for foveated

rendering in Filament. We employ Nvidia’s Variable Rate

Shading [8] technology to implement foveated rendering.

Implementing foveated rendering in a game engine would

require substantially more effort and expertise, whereas,

with Filament, it is nearly trivial. Moreover, we avoid the

additional complexity of OpenXR, by using ILLIXR’s native

interface. Our experimental results show that eye tracking

consumes substantial GPU memory and computing power,

affecting the overall benefits of foveated rendering. Finally,

we open-source our augmented tool to foster VR graphics

research.

The remainder of the paper is organized as follows.

Section II provides the background and motivates our work.

Section III elaborates on Filament’s capabilities and how

we couple Filament with ILLIXR. Section IV demonstrates

an example use case of this augmented tool by analyzing

eye-tracked foveated rendering. Section V discusses the

related work. Section VI concludes.

2. Background and Motivation

2.1. The Canonical VR Pipeline

Contemporary VR systems consist of several funda-

mental building blocks, along with a number of optional

ones. Typically, the dataflow starts with the headset sensors,

which include inertial measurement units, cameras, or laser

emitters [4] [27]. The data from these sensors are processed

to determine the headset’s position and orientation using

visual-inertial odometry (VIO) algorithms. The position and

orientation data are then passed to the user application’s

graphics pipeline to render 3D scenes. Once a scene is

rendered, it is sent to the display device.

Most VR systems also feature hand controllers, which

are tracked in a similar fashion and used by the application

to interact with the virtual world.

Some of the most recent VR headsets also feature eye

tracking for foveated rendering and avatar expressions

[5] [9]. These headsets are equipped with integrated eye

cameras that image the user’s eyes at a high frequency.

These images are typically fed into a neural network to

perform eye segmentation [16] [40]. Once the images are

segmented, gaze estimation is carried out, which involves

ellipse fitting and other algebraic operations [40].

Pose estimation, eye tracking, hand tracking, and other

similar tasks are usually executed in parallel, as they are

independent. Fig. 1 shows a generic VR system that features

eye tracking.

In practice, VIO and stereo rendering may consume

too much time and become the primary contributors to

motion-to-photon (MTP) latency. Low latency is key to a

pleasant VR experience, and high MTP latency is known to

cause sickness and fatigue to the user [28] [32]. To mitigate

these problems, VR headsets implement pose prediction

and asynchronous reprojection [22] [35]. Asynchronous

reprojection, also known as timewarp, works hand in

hand with pose prediction. Pose prediction uses the pose

calculated by the VIO algorithm, and updates it based on

the latest sensor data. The updated pose is then used by

timewarp to transform the rendered frame to match the

latest headset pose. This whole update and transformation

process happens just before the display refreshes. Ultimately,

this technique reduces the MTP latency of the system, thus

improving the user experience [35].

2.2. The ILLIXR VR System

ILLIXR adopts a similar organization as in Fig. 1. It

consists of "plugins", i.e. components that run in parallel

and communicate with each other through a well-defined

interface. Users can easily add new plugins, modify existing

ones or remove them completely. By default, ILLIXR pro-

vides plugins for pose estimation, pose prediction, timewarp,

scene reconstruction, camera and inertial-measurement

unit(IMU) sensors, audio and more. A rudimentary plugin

for eye tracking is also provided, but it merely runs a neural

network for eye image segmentation and does not perform

gaze estimation. We discuss how we added gaze estimation

in Section IV. Fig. 2 depicts the plugins that we use and

how they are connected.

In its essence, ILLIXR is a C++ program that glues

together an array of plugins that are implemented as

C++ classes. Most plugins run in a dedicated thread, and

communicate with other plugins through callbacks and

thread-safe queues. The ILLIXR runtime, i.e., the entry

point of the program, dynamically loads the plugins and

initializes them.Plugins either run in a tight loop in a

dedicated thread, or they are invoked by these looping

plugins. For example, the offline IMU/Camera plugin runs

in a loop that reads stereo camera images and IMU sensor

data from disk at a rate of 30Hz, packs them into a structure,

and pushes a pointer to that structure into a thread-safe

queue. The VIO plugin is executed upon a callback from

the IMU/Camera plugin when a new data is pushed to

the queue. The plugin then reads this pointer from the

queue and accesses the underlying data. The plugins that

run in a loop are derived from the threadloop class that

ILLIXR infrastructure provides. This base class provides

two functions that are overridden by the derived class:

_p_thread_setup() and _p_one_iteration(). As the names

imply, the first function is executed just once as part of

setup the phase before the thread goes into a loop, where it

executes the second function in each iteration. Our custom

Filament plugin is also derived from this threadloop class.

Therefore, the only requirement for a plugin to hook up

with ILLIXR is to match this producer/consumer interface.

This allows ILLIXR to be highly modular and extensible.

Currently, there are two ways to run a VR application on

ILLIXR. The first way is to use the native interface of ILLIXR,

which involves writing an OpenGL application using a C++

base class that ILLIXR provides, and hooking up this plugin

with other plugins via the switchboard system of ILLIXR.

The second way is to provide ILLIXR with an OpenXR

application binary. In this case, the OpenXR application

runs using Monado, an open-source implementation of

the OpenXR standard. Monado, then, communicates with

ILLIXR and uses its plugins to read headset pose, submit

frames, and more. In other words, ILLIXR imitates a VR

headset in this case. Both of these approaches have pros and

cons. Using ILLIXR’s native interface is convenient because,

the whole VR pipeline is managed by ILLIXR, and the

additional complexity of OpenXR and Monado is avoided.

Moreover, in this way, ILLIXR is not limited by what the

OpenXR spec does and does not allow. The downside is

that users have to rewrite their applications just to interface

with ILLIXR. The main advantage of using the OpenXR

interface is that existing applications can be run directly on

ILLIXR, without any modifications. However, this means the

users now have to work with an even more complex system

consisting of ILLIXR and Monado. In this work, we use the

native interface of ILLIXR to develop our applications.

Figure 1: Organization of a generic VR system with eye tracking.

Figure 2: Simplified diagram of ILLIXR plugins used in this

work. Red rectangles represent heavily modified plugins.

Blue blocks represent thread-safe queues. Producer plugins

insert data to concurrent queues, which consumer plugins

read. Dotted arrows indicate that the plugin is invoked

through a callback when new data is pushed to the queue.

2.3. Physically Based Rendering

With the advent of powerful graphics processing units

(GPUs), more advanced and realistic graphics rendering tech-

niques are now possible. Physically Based Rendering(PBR)

is one such technique, and the idea is to model the materials

of objects as physically accurately as possible. Materials

are characterized by parameters such as color, metalness,

roughness, reflectance, anisotropy, etc. Collectively, these

parameters determine the behavior of light as it interacts

with the material, as physically accurate as possible. There-

fore, when rendered with PBR, the materials in a 3D scene

can look incredibly realistic under any lighting scenario.

Fig. 3 showcases different materials rendered in a PBR

fashion using the Filament engine.

Figure 3: A range of materials from metals to rock is

rendered in the Filament engine. Objects appear highly

realistic thanks to accurate modeling of their material

properties. Image attributed to Filament developers [1].

Nevertheless, PBR’s visual fidelity comes at a price. The

physically based calculations of how light interacts with

the material are typically carried out during the fragment

shading stage of the graphics pipeline. These calculations

can involve multiple expensive texture fetches for every

material, evaluating mathematical operations such as dot

products, trigonometric functions, exponents, roots, etc [17]

[31] [36]. Even though these operations are not complex

individually, they are executed in fragment shaders, which

are carried out multiple times for every pixel on the screen.

Thus, they can introduce a substantial overhead.

Nowadays, most 3D engines implement some form of

PBR to achieve the best possible visual fidelity [2] [7] [11].

Consequently, the state-of-the-art VR applications such as

games also benefit from this technology. The use of PBR

can be considered essential in achieving a high level of

realism and creating a captivating virtual world.

2.4. The Need For a Rendering Engine in ILLIXR

While the ILLIXR infrastructure provides most of the

necessary components of a VR system, it is up to the

user to develop the VR application itself. Currently, ILLIXR

only supports OpenGL applications. Therefore, the user

has to either write an OpenGL application from scratch

and use ILLIXR’s native interface, or write an OpenXR

application that uses OpenGL as its renderer. One possibility

is to employ game engines to develop OpenXR applications.

The problem with using game engines is that, they are

usually extremely complex pieces of software, and while

possible, the codebase is not designed to be modified or

extended by the user. This makes it difficult to add new

features or modify the rendering pipeline. Developing an

OpenGL application from scratch is another option, albeit

not practical, especially if high-quality graphics is desired.

The reason is that implementing PBR, shadows, and post-

processing effects in an optimized manner is no trivial

task. Therefore, we resort to using an existing rendering

engine, Filament, that has the best of both worlds. Filament

is basically an open-source C++ library for rendering high-

quality graphics. It supports OpenGL and has all the features

needed to render realistic graphics. With Filament, users

simply provide the 3D model, light sources, and graphics

settings, such as ambient occlusion, reflections, and anti-

aliasing, and Filament does the heavy lifting.

3. Augmenting ILLIXR

3.1. Coupling Filament with ILLIXR

Making ILLIXR and Filament work together involves

three main challenges as discussed below.

The first challenge is OpenGL context sharing. ILLIXR

creates and shares its own OpenGL context across the

entire application. This OpenGL context is used by the

main OpenGL plugin and the timewarp plugin. On the

other hand, Filament also requires an OpenGL context. For

the whole system to work, Filament and ILLIXR must share

the same OpenGL context. Fortunately, Filament makes

it simple to share an OpenGL context with ILLIXR, as

it has an option of passing an external OpenGL context

during initialization. It then proceeds to initialize its own

OpenGL backend using this context. Therefore, we can

simply forward the OpenGL context that ILLIXR creates to

Filament.

The second challenge is stereo frame sharing between

Filament and timewarp. In ILLIXR, the main OpenGL

application renders the stereo frames into a pair of OpenGL

textures. Once the rendering is finished, the handles to

these textures are then broadcast through ILLIXR’s interface.

The timewarp plugin reads these handles, and accesses the

textures to apply the transform. To prevent data races

between the timewarp and the OpenGL application, the

latter uses a double-buffering technique where two pairs of

textures are maintained. The OpenGL application renders

to one pair of textures, while timewarp reads from the

other pair. Indeed, we observed visual artifacts when a

single pair of textures was used. By default, Filament

renders the frames into an internal framebuffer, which

is not accessible from outside. However, Filament allows

the user to import OpenGL textures from outside, and use

them as the rendertarget. Thus, we create four (two pairs)

color textures and a depth texture, and import them to

Filament. As Filament renders the scene into these textures,

we broadcast their handles for the timewarp plugin.

The third challenge is run-time environment setup. To

build and link ILLIXR and Filament in the same environ-

ment, we resort to a Docker container. The reason is that

the ILLIXR infrastructure alone has a large number of

dependencies ranging from specific versions of OpenCV,

GTSAM to OpenGL headers and libraries. In addition, it

also requires a specific version of the clang++ compiler

to be built. As a result, it is nearly impossible to meet all

these requirements in every machine. The Filament project

also has its strict requirements before it can be built. In

particular, Filament expects clang++-7 compiler, whereas

ILLIXR expects clang++-10. Since these two versions of

clang are not fully compatible, we have to introduce minor

modifications to Filament’s codebase, such as explicitly

including standard library headers, and adding namespaces

to variable declarations. Moreover, by default, Filament uses

libc++, which is LLVM’s implementation of the standard

library, instead of libstdc++, which is GNU’s implementation

of the standard library. We observed that using libc++

instead of libstdc++ in ILLIXR causes deadlocks. Thus, we

forced Filament to use libstdc++. This is an unfortunate

by-product of the fragmented software ecosystem.

3.2. Writing an ILLIXR plugin using Filament

With our augmented ILLIXR tool, it becomes nearly

trivial to write the main application plugin. Algorithm 1.

shows the important pieces.

The plugin is derived from the threadloop class in

ILLIXR, which encapsulates a dedicated thread running

in a tight loop, as discussed in Section II. We add several

variables to this class for essential objects such as Engine,

View, SwapChain, and others that Filament requires. These

structures are initialized during the thread setup phase,

which is executed just once before the thread goes into

the loop phase. In the setup phase, the Filament engine

and other vital parts are initialized. The GLTF loader of

Filament starts importing the 3D model and its textures

asynchronously. We also create the OpenGL textures, import

them into Filament, and set them as rendertargets.

Algorithm 1 ILLIXR plugin using Filament.

_p_thread_setup() and _p_one_iteration() are inherited

from the threadloop base class.

1: procedure Filament Plugin

2: _p_thread_setup():
3: filament :: Engine : Create(glContext)
4: Create Swapchain
5: Create Renderer
6: Create Camera
7: Create View
8: Create Scene
9: Load 3D asset
10: Create GL textures
11: Import textures to Filament
12: _p_one_iteration():
13: Add entities to scene
14: Get headset pose
15: for i← 1, 2 do

16: Update camera
17: Update rendertarget
18: Render scene
19: end for

20: Publish texture handles
21: end procedure

Within the thread loop, the scene is populated with

asynchronously loaded objects. Next, the headset pose is

read through ILLIXR’s interface. This headset pose, which

consists of a position vector and a quaternion that describes

the head’s orientation in space, is transformed into a matrix

and used as the Filament’s camera model matrix. As the

last step before rendering the scene, the appropriate pair

of OpenGL textures are set as the rendertarget of Filament.

Finally, two render calls are issued to produce a stereo

image.

At any point within the plugin, graphics settings can

be adjusted. Filament features point, spot and directional

light sources that can cast shadows, image-based lighting,

anti-aliasing, screen-space ambient occlusion(SSAO), screen-

space reflections(SSR), screen-space refractions and more

[1].

Our augmented tool is open sourced and

available at github.com/yavuz650/ILLIXR and

github.com/yavuz650/filament, which include the custom

plugin along with the modified Filament source code.

4. Case Study: Gaze-tracked foveated render-

ing

We now demonstrate a use case of our augmented

tool. First, we further extend ILLIXR by implementing gaze

estimation. Then, we add Nvidia Variable Rate Shading

(VRS) to Filament, and use the estimated gaze to enable

foveated rendering in ILLIXR [8]. To conduct this study

without this augmented tool, we would have to spend a

great amount of time writing an OpenGL renderer and

the major tasks would include GLTF loading, where we

would need to parse a GLTF file and manage the vertices,

textures, and other attributes. We would also have to write

our own shaders, which would demand expertise and time

if PBR is desired. Moreover, any modern 3D application

would require lighting and shadows, which are not trivial to

implement. Thanks to our augmented tool, we do not have

to worry about any of these daunting tasks, as Filament

handles all that. Instead, we only need to invoke a few API

calls to Filament, as summarized in Algorithm 1, where we

provide the settings of the scene. We benchmark three

popular scenes and present the frametimes, motion-to-

photon latencies, and frame breakdowns, and analyze the

overhead of eye tracking.

4.1. Gaze Estimation in ILLIXR

In the context of VR, gaze estimation refers to the task

of determining where on the screen the user’s eyes are

looking at. Currently, the ILLIXR infrastructure features a

plugin that runs a convolutional neural network to perform

eye segmentation [16]. Eye segmentation is a computer

vision task that involves the identification and labeling of

different regions within an image of the human eye, such as

the iris, pupil, and sclera. However, additional steps beyond

eye segmentation are required to perform gaze estimation.

In this work, we adopt the open-source implementation

that DeepVOG [40] uses, which is based on ellipse fitting,

and unprojection algorithms [30] [33]. We used OpenCV

library’s [10] ellipse fitting functions, and implemented the

unprojection algorithm in C++. Ultimately, the eye tracking

plugin computes a pair of numbers that corresponds to the

screen coordinates where the user’s eyes are looking at.

We use the OpenEDS 2019 [19] dataset to stimulate

the gaze estimation system. This dataset consists of over

350,000 images collected from over 150 participants. The

images are grayscale and have a resolution of 400x640. We

feed the input images at a rate of 20 per second. Each input

consists of one image, which we duplicate in the plugin to

imitate a stereo-eye camera.

4.2. Foveated Rendering with Filament in ILLIXR

Foveated rendering is an optimization that exploits the

decrease in human visual acuity between the eye’s center

and the periphery. In this scheme, the frames are rendered

at the highest quality where the eyes are focused, and at

a gradually lower quality in the peripheral regions. This

curtails computation without sacrificing any visual quality

that is perceptible to the user [20] [29].

Foveated rendering has been the subject of ample re-

search, and there is a multitude of possible implementations

[18] [20] [26] [29]. While most of the existing meth-

ods require significant changes to the rendering pipeline,

Nvidia’s VRS technology offers a simple and effective way

of implementing foveated rendering [8]. VRS exposes a set

of API calls that allow developers to specify a shading rate

for every 16x16 pixel tile on the screen. The shading rate

corresponds to how many fragment shaders are invoked for

the associated tile. For example, the shading rate could be

1 invocation per 1 pixel in the eye fixation region; whereas

it could be reduced to 1 invocation per 2x2 pixels in the

periphery region, and 1 invocation per 4x4 pixels in the

outer periphery regions. The developer is responsible for

supplying a palette, which is a map that pairs numbers

with shading rates, and a 2D texture, which specifies the

shading rates for every 16x16 tile using the numbers in the

palette.

In this work, we modify the OpenGL driver of Filament

and incorporate the necessary API calls to enable VRS. We

only enable VRS for the color renderpass, and disable it

for other renderpasses such as shadowmaps, as the color

pass is where the scene is actually rendered from the user’s

perspective. All other passes can be considered as either

preprocessing or postprocessing.

Inside the ILLIXR plugin, we use the estimated gaze

position to construct a 2D array that contains the shading

rates of the 16x16 tiles. This 2D array is passed to Filament’s

OpenGL driver and is uploaded to the GPU as a 2D texture.

Algorithm 2 summarizes the important changes we made

to the existing code.

Algorithm 2 Important steps in foveated rendering with

ILLIXR augmented with Filament. Only changes to the

original code are shown.

1: procedure Compute the 2D VRS mask in ILLIXR

2: _p_thread_setup():
3: sriw ← display_width/16
4: srih ← display_height/16
5: mask.resize(sriw ∗ srih)
6: _p_one_iteration():
7: x, y← Latest gaze coordinates
8: for i = 0 to srih do

9: for j = 0 to sriw do

10: dist← sqrt(|j – x|2 + |i – y|2)
11: if dist > 19 then

12: mask[i× sriw + j]← 2
13: else if dist > 12 then

14: mask[i× sriw + j]← 1
15: else

16: mask[i× sriw + j]← 0
17: end if

18: end for

19: end for

20: renderer.setVRSMask(mask)
21: end procedure

22: procedure Enable VRS in Filament’s OpenGL Driver

23: beginRenderPass():
24: if if (enableVRS) then
25: glBindTexture(VRS_mask_texture)
26: glTexSubImage2D(VRS_mask)
27: glEnable(GL_SHADING_RATE_IMAGE_NV)
28: else

29: glDisable(GL_SHADING_RATE_IMAGE_NV)
30: end if

31: end procedure

Similar to [29], we use three eccentric layers of different

shading rates. Fig. 4 depicts the sizes of each layer.

Figure 4: Three eccentric layers used in this work. The eyes

are assumed to be looking at the center of the screen. The

red region is rendered with 1 fragment shader invocation

per 1x1 pixel, the green region is 1 invocation per 2x2

pixels, and the blue region is 1 invocation per 4x4 pixels.

The regions are not perfectly circular due to lens distortion.

We experimented with different shading rate configura-

tions but did not notice remarkable differences in terms of

performance. As the goal of this study is workload analysis,

the configuration shown in Fig. 4 is adequate.

4.3. Methodology

We conduct benchmarks lasting 60 seconds each, using

the three scenes described in Table 1. Intel Sponza [25] is

a new, PBR based model of the Sponza palace. This scene

features very high geometric complexity along with 4k

textures, and is the most intense scene that we use. Due to

GPU memory limitations, we downscaled the textures to

2k resolution. San Miguel [24] is another popular scene in

the graphics community with a large number of textures

with varying resolutions. Finally, Amazon Bistro [23] is

also widely used for research, and it consists of over 2

million triangles and high-resolution textures. All scenes

are illuminated with image-based lighting, and we added

multiple point-light sources to Sponza and San Miguel. All

light sources cast shadows. We also enabled SSR, SSAO,

and 4x multisample anti-aliasing.

TABLE 1: Scene statistics. Textures include base

colors, specular, normal, and roughness maps.

Scenes # of # of Total size of

triangles texture files textures

Intel Sponza 5,744,002 148 903MB

San Miguel 5,600,782 323 139MB

Bistro Exterior 2,828,266 231 679MB

We use the EuRoC MAV dataset [15] to emulate a real

camera and an IMU sensor. An offline camera, i.e., a dataset,

is also used to ensure that the benchmarks are consistent

across different runs, as the camera movement is identical

across different runs.

We run the benchmarks in four different configurations.

We start with no eye tracking or foveated rendering, which

is the baseline. Then, we enable eye tracking without

foveated rendering to determine its overhead. We then

enable both eye tracking and foveated rendering to see

how much performance, if any, is gained. Finally, we also

test foveated rendering without eye tracking by setting a

constant gaze at the center of the screen. We gather the

frametime, motion-to-photon latency, and GPU memory

usage. To provide more insightful analysis, we also measure

how much time each renderpass within a frame takes in

the Sponza scene. We incorporate OpenGL queries into

the OpenGL driver of Filament to measure the frametime

of every frame in the benchmarks. In a similar fashion,

we measure renderpasses of every 10th frame. We use

the existing logging infrastructure that ILLIXR has to

gather motion-to-photon latency. Finally, we use the nvidia-

smi tool to measure GPU memory usage. We run these

benchmarks on a workstation desktop machine with an

Intel Xeon E5-1650 CPU, 32GB of memory, and an Nvidia

RTX 2080 GPU.

4.4. Results and Discussion

We first present the frametimes and MTP latency in

Fig. 5 and 6 respectively. We clearly see the impact of eye

tracking on performance. Frametimes increase noticeably

in all scenes, and almost by 2x in Sponza. This level of

performance impact is understandable given that the GPU

is now burdened with running a large neural network in

addition to rendering graphics. Enabling foveated rendering

alleviates this overhead, though not completely. We also

note that foveated rendering alone does not provide any

meaningful performance gain. Finally, there is hardly any

change in MTP latency. This is mainly because MTP does

not directly depend on frametime, but rather on timewarp’s

performance. In ILLIXR, frames are sent to the display

by timewarp, regardless of whether the main OpenGL

application rendered a new frame or not. Timewarp will

always read the latest frame, predict the headset pose, apply

the transformation, and send it to the display. The only

way foveated rendering can improve MTP is by virtue of

releasing more GPU resources to timewarp.

Figure 5: Frametimes measured in different scenes with

different configurations.

We now present the average durations of renderpasses

in Fig. 7 for a deeper understanding of the system. As we

Figure 6: Motion-to-photon latency measured in different

scenes with different configurations.

mentioned before, VRS is only enabled during the main view

pass, i.e., the color pass. Therefore, it can only speed up the

color pass, which already appears to take a small portion

of the overall frametime. Moreover, VRS only reduces the

number of fragment shader invocations, which further limits

its potential. This implies that, with VRS, the performance

gain heavily depends on the scene. We observe that SSR and

shadowmap rendering takes the most time. One possible

optimization would be to render shadowmaps once, and

use them for both left and right eye views, as shadowmaps

are independent of the user’s view point.

Figure 7: Renderpasses measured in the Sponza scene. Other

passes include SSAO, color grading, and other trivial passes.

Fig. 8 shows the GPU memory consumption for all

configurations. We note that eye tracking introduces a large

memory footprint, approximately 3 GB, which increases

the pressure on caches and contributes to the performance

overhead.

At a first glance, it may appear as if foveated rendering

is not beneficial and the extra overhead of eye tracking

is unjustified. However, as discussed before, we use VRS

to implement foveated rendering, but there may be other

more efficient ways to implement it. Moreover, eye tracking

can be used for realistic personal avatar rendering, and

developers can incorporate special effects or features into

their applications based on the user’s gaze. In other words,

Figure 8: GPU memory usage.

the overhead of eye tracking can be amortized among

multiple tasks.

5. Related Work

5.1. Virtual/Augmented Reality Systems

The original ILLIXR work [21] conducts a detailed

performance and power analysis of the Virtual/Augmented

Reality system on both desktop and mobile systems and

reveals that almost all components fail to meet their targets

on mobile platforms, and that system-wide optimizations are

imperative. Another study that extends ILLIXR is conducted

by Zhao et al. [41], where they develop a customized

Augmented Reality(AR) system and use it to evaluate their

power-efficient design.

5.2. VR Accelerators

Xie et al. propose domain-specific accelerators that

utilize processing-in-memory to accelerate timewarp [39],

and exploit the data locality between stereo frames to

optimize stereo rendering [38]. Wen et al. profile 3D VR

applications and present an accelerator that optimizes the

post-processing stage of the graphics pipeline [37]. Our

augmented tool can be an open and customizable alternative

to the workloads used in these works.

6. Conclusion and Future Work

In this work, we extend an existing tool, ILLIXR, by

integrating a high-end rendering engine, Filament. This

augmentation allows researchers to render high-quality,

physically-based graphics in ILLIXR, paving the way for

more thorough research of VR graphics. We demonstrate

a use case of this augmented tool by investigating gaze-

tracked foveated rendering. We analyze the overhead of

eye tracking and the performance gains from foveated

rendering.

For future work, ILLIXR can be upgraded to use

the Vulkan API instead of OpenGL, which can improve

performance and consistency of the system. In addition,

integrating faster and more efficient eye-tracking systems

into ILLIXR can be beneficial.

Acknowledgements

We would like to thank the reviewers for their insightful

comments. This work is partly funded by NSF grant 1908406

and an AMD gift fund.

References

[1] “Filament Rendering Engine.” [Online]. Available: https://github.com/

google/filament

[2] “Godot Engine.” [Online]. Available: https://godotengine.org/

[3] “ILLIXR Consortium.” [Online]. Available: https://illixr.org/

[4] “Inside-out tracking,” Tech. Rep. [Online]. Avail-

able: https://learn.microsoft.com/en-us/windows/mixed-reality/

enthusiast-guide/tracking-system

[5] “Meta Quest Pro.” [Online]. Available: https://www.meta.com/quest/

quest-pro/tech-specs/

[6] “Monado - open source XR platform.” [Online]. Available:

https://monado.dev/

[7] “Moving Frostbite to PBR.” [Online]. Available: https://www.ea.com/

frostbite/news/moving-frostbite-to-pb]

[8] “Nvidia Variable Rate Shading.” [Online]. Available: https://developer.

nvidia.com/vrworks/graphics/variablerateshading

[9] “PlayStation VR2.” [Online]. Available: https://www.playstation.com/

en-us/ps-vr2/ps-vr2-tech-specs/

[10] “The OpenCV Library.” [Online]. Available: https://opencv.org/

[11] “Unity Engine.” [Online]. Available: https://unity.com/

[12] “Valve Index Headset.” [Online]. Available: https://www.valvesoftware.

com/en/index/headset

[13] “Virtual Reality Market Size, Share & Trends Analysis

Report.” [Online]. Available: https://www.grandviewresearch.com/

industry-analysis/virtual-reality-vr-market

[14] H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama,

“Virtual & Augmented Reality: Understanding the Race for the Next

Computing Platform ,” 2016.

[15] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,

M. W. Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle

datasets,” The International Journal of Robotics Research, 2016.

[Online]. Available: http://ijr.sagepub.com/content/early/2016/01/21/

0278364915620033.abstract

[16] A. K. Chaudhary, R. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bailey,

C. Kanan, G. DIaz, and J. B. Pelz, “RITnet: Real-time semantic

segmentation of the eye for gaze tracking,” in Proceedings - 2019
International Conference on Computer Vision Workshop, ICCVW 2019,
2019.

[17] R. L. Cook and K. E. Torrance, “A Reflectance Model for Computer

Graphics,” ACM Transactions on Graphics (TOG), vol. 1, no. 1, 1982.

[18] L. Franke, L. Fink, J. Martschinke, K. Selgrad, and M. Stamminger,

“Time-Warped Foveated Rendering for Virtual Reality Headsets,”

Computer Graphics Forum, vol. 40, no. 1, 2021.

[19] S. J. Garbin, Y. Shen, I. Schuetz, R. Cavin, G. Hughes, and S. S. Talathi,

“OpenEDS: Open Eye Dataset,” 2019.

[20] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated

3D graphics,” in ACM Transactions on Graphics, vol. 31, no. 6, 2012.

[21] M. Huzaifa, R. Desai, S. Grayson, X. Jiang, Y. Jing, J. Lee, F. Lu,

Y. Pang, J. Ravichandran, F. Sinclair, B. Tian, H. Yuan, J. Zhang, and

S. V. Adve, “ILLIXR: Enabling End-to-End Extended Reality Research,”

in Proceedings - 2021 IEEE International Symposium on Workload
Characterization, IISWC 2021, 2021.

[22] S. M. Lavalle, A. Yershova, M. Katsev, and M. Antonov, “Head tracking

for the Oculus Rift,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2014.

https://github.com/google/filament
https://github.com/google/filament
https://godotengine.org/
https://illixr.org/
https://learn.microsoft.com/en-us/windows/mixed-reality/enthusiast-guide/tracking-system
https://learn.microsoft.com/en-us/windows/mixed-reality/enthusiast-guide/tracking-system
https://www.meta.com/quest/quest-pro/tech-specs/
https://www.meta.com/quest/quest-pro/tech-specs/
https://monado.dev/
https://www.ea.com/frostbite/news/moving-frostbite-to-pb]
https://www.ea.com/frostbite/news/moving-frostbite-to-pb]
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://www.playstation.com/en-us/ps-vr2/ps-vr2-tech-specs/
https://www.playstation.com/en-us/ps-vr2/ps-vr2-tech-specs/
https://opencv.org/
https://unity.com/
https://www.valvesoftware.com/en/index/headset
https://www.valvesoftware.com/en/index/headset
https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market
https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-market
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

[23] A. Lumberyard, “Amazon Lumberyard Bistro, Open Research

Content Archive (ORCA),” 7 2017. [Online]. Available: http:

//developer.nvidia.com/orca/amazon-lumberyard-bistro

[24] M. McGuire, “Computer Graphics Archive,” 7 2017. [Online].

Available: https://casual-effects.com/data

[25] F. Meinl, K. Putica, C. Siqueria, T. Heath, J. Prazen, S. Herholz,

B. Cherniak, and A. Kaplanyan, “Intel Sample Library,” 2022.

[26] X. Meng, R. Du, M. Zwicker, and A. Varshney, “Kernel Foveated

Rendering,” Proceedings of the ACM on Computer Graphics and
Interactive Techniques, vol. 1, no. 1, 2018.

[27] D. C. Niehorster, L. Li, and M. Lappe, “The accuracy and precision

of position and orientation tracking in the HTC vive virtual reality

system for scientific research,” i-Perception, vol. 8, no. 3, 2017.

[28] S. Palmisano, R. S. Allison, and J. Kim, “Cybersickness in Head-

Mounted Displays Is Caused by Differences in the User’s Virtual and

Physical Head Pose,” Frontiers in Virtual Reality, vol. 1, 2020.

[29] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty,

D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-

tracked virtual reality,” ACM Transactions on Graphics, vol. 35, no. 6,
2016.

[30] R. Safaee-Rad, I. Tchoukanov, K. C. Smith, and B. Benhabib, “Three-

Dimensional Location Estimation of Circular Features for Machine

Vision,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5,
1992.

[31] C. Schlick, “An Inexpensive BRDF Model for Physically-based

Rendering,” Computer Graphics Forum, vol. 13, no. 3, 1994.

[32] J. P. Stauffert, F. Niebling, and M. E. Latoschik, “Latency and

Cybersickness: Impact, Causes, and Measures. A Review,” 2020.

[33] L. Świrski and N. A. Dodgson, “A fully-automatic, temporal approach

to single camera, glint-free 3D eye model fitting,” in Pervasive Eye
Tracking and Mobile Eye-Based Interaction (PETMEI), 2013.

[34] The Khronos Group, “OpenXR Overview - The Khronos Group Inc,”

2021.

[35] J. M. Van Waveren, “The asynchronous time warp for virtual reality

on consumer hardware,” in Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, VRST, vol. 02-04-November-

2016, 2016.

[36] B. Walter, S. Marschner, H. Li, and K. Torrance, “Microfacet models

for refraction through rough surfaces,” Eurographics, 2007.

[37] Y. Wen, C. Xie, S. L. Song, and X. Fu, “Post0-vr: Enabling universal

realistic rendering for modern vr via exploiting architectural simi-

larity and data sharing,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2023, pp. 390–402.

[38] C. Xie, F. Xin, M. Chen, and S. L. Song, “Oo-vr: Numa friendly

<u>o</u>bject-<u>o</u>riented <u>vr</u> rendering framework

for future numa-based multi-gpu systems,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.

New York, NY, USA: Association for Computing Machinery, 2019, p.

53–65. [Online]. Available: https://doi.org/10.1145/3307650.3322247

[39] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “PIM-VR: Erasing motion

anomalies in highly-interactive virtual reality world with customized

memory cube,” in Proceedings - 25th IEEE International Symposium
on High Performance Computer Architecture, HPCA 2019, 2019.

[40] Y. H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. zu Eulen-

burg, and S. A. Ahmadi, “DeepVOG: Open-source pupil segmentation

and gaze estimation in neuroscience using deep learning,” Journal of
Neuroscience Methods, vol. 324, 2019.

[41] S. Zhao, H. Zhang, C. S. Mishra, S. Bhuyan, Z. Ying, M. T.

Kandemir, A. Sivasubramaniam, and C. Das, “Holoar: On-the-fly

optimization of 3d holographic processing for augmented reality,”

in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association

for Computing Machinery, 2021, p. 494–506. [Online]. Available:

https://doi-org.prox.lib.ncsu.edu/10.1145/3466752.3480056

Appendix

1. Abstract

This Artifact presents the source code of our augmented

tool and instructions to run the benchmarks that are used

in this work.

2. Artifact check-list (meta-information)

• Program: ILLIXR

• Run-time environment: Ubuntu 20.04 Docker Container

• Hardware: Nvidia GPU with Variable Rate Shading

Support with at least 8GB device memory

• Metrics: Frametime, Motion-to-photon latency, frame

breakdown

• Output: Metrics

• Experiments: Three scenes with four configurations each

• How much disk space required (approximately)?:

25GB for Docker image

• How much time is needed to prepare workflow

(approximately)?: 1-2 hours in total to setup Nvidia

Docker Toolkit and pull our image.

• How much time is needed to complete experiments

(approximately)?: 15-20 minutes

• Publicly available?: Yes

• Archived (provide DOI)? Docker Image and the data

used for graphs: https://doi.org/10.5281/zenodo.8260684

3. Description

3.1. How to access. We provide a Docker image hosted

on Zenodo and Docker Hub that has the source code and

all the dependencies installed in it.

3.2. Hardware dependencies. To run the benchmarks, an

Nvidia GPU with Varible Rate Shading support is required.

At least 8GB of device memory is also required to be able

to run all benchmarks. We used an RTX 2080 GPU to run

our benchmarks.

3.3. Software dependencies. A Linux system with X11

window system is required, Wayland is not tested. Docker

engine and Nvidia Docker Toolkit must be installed in it.

We used an Ubuntu 22.04 system to run our benchmarks.

The augmented ILLIXR system and Filament have a large

set of dependencies, but they are very difficult to install

properly on every system, therefore a Docker container is

mandatory.

4. Installation

Start with installing the Docker engine if you have not

before, and then proceed to install the Nvidia Container

Toolkit. The latter is required so that the Docker container

can access your Nvidia GPU.

You can pull the Docker image from Docker hub using

the command below,

docker pull ystozlu/illixr-docker:iiswc2023

Or, you can download the image from Zenodo, and run

the following command.

docker load -i illixr-filament-docker.tar

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://casual-effects.com/data
https://doi.org/10.1145/3307650.3322247
https://doi-org.prox.lib.ncsu.edu/10.1145/3466752.3480056

You can check if the image is ready by running

docker image ls -a. You should see an image that takes

up roughly 25GB of space. Before starting a container from

this image, you need to run the following command so that

the Docker container can access your X windowing system.

xhost +local:root

Now you can start a container with the following

command. Make sure you change the image name if you

downloaded from Zenodo.

docker run -it --privileged --name iiswc-docker
-e "DISPLAY=${DISPLAY}" --hostname iiswc-docker
-v /tmp/.X11-unix:/tmp/.X11-unix
--gpus all ystozlu/illixr-docker:iiswc2023 /bin/bash

Once in the container, check if everything is properly

setup by running vkcube. This should create a small window

with a spinning cube in it.

5. Experiment workflow

While in the container, simply run ./iiswc2023.sh.
This will run the benchmarks one by one, and save the

results in .csv files. The script should take about 15 minutes.

6. Evaluation and expected results

Once the benchmarks finish running, the generated

metrics will be placed in three folders:

/opt/ILLIXR/iiswc_sponza_results
/opt/ILLIXR/iiswc_sanmiguel_results
/opt/ILLIXR/iiswc_bistro_results

You can use the scripts under

/opt/ILLIXR/metric_scripts to summarize the .csv files.

Note that the numbers you will get will not be same,

maybe not even close, to the numbers we present in the

paper. This is because ILLIXR is not a simulation, but a

real-time workload. Therefore, the numbers will depend on

your hardware. However, you should be able to observe

the insights and trends that we point out in the paper.

For example, when eye tracking is enabled for a given

scene, the frametime and MTP should increase drastically.

Likewise, when foveated rendering is enabled for a given

scene, frametime should decrease, albeit not much. These

observations should be particularly conspicuous for the

Sponza scene.

	Introduction
	Background and Motivation
	The Canonical VR Pipeline
	The ILLIXR VR System
	Physically Based Rendering
	The Need For a Rendering Engine in ILLIXR

	Augmenting ILLIXR
	Coupling Filament with ILLIXR
	Writing an ILLIXR plugin using Filament

	Case Study: Gaze-tracked foveated rendering
	Gaze Estimation in ILLIXR
	Foveated Rendering with Filament in ILLIXR
	Methodology
	Results and Discussion

	Related Work
	Virtual/Augmented Reality Systems
	VR Accelerators

	Conclusion and Future Work
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results

