
Plutus: Bandwidth-Efficient Memory Security for
GPUs

Rahaf Abdullah
North Carolina State University

Raleigh, USA
rmabdul2@ncsu.edu

Huiyang Zhou
North Carolina State University

Raleigh, USA
hzhou@ncsu.edu

Amro Awad
North Carolina State University

Raleigh, USA
ajawad@ncsu.edu

Abstract—Graphic-Processing Units (GPUs) are increasingly
used in systems where security is a critical design requirement.
Such systems include cloud computing, safety-critical systems,
and edge devices, where sensitive data is processed or/and
generated. Thus, the ability to reduce the attack surface while
achieving high performance is of utmost importance. However,
adding security features to GPUs comes at the expense of high-
performance overheads due to the extra memory bandwidth
required to handle security metadata. In particular, memory
authentication metadata (e.g., authentication tags) along with en-
cryption counters can lead to significant performance overheads
due to the memory bandwidth used to fetch the metadata. Such
metadata can lead to more than 200% extra bandwidth usage
for irregular access patterns.
In this work, we propose a novel design, Plutus, which enables
low-overhead secure GPU memory. Plutus has three key ideas.
The first is to leverage value locality to reduce authentication
metadata. Our observation is that a large percentage of mem-
ory accesses could be verified without the need to bring the
authentication tags. Specifically, through comparing decrypted
blocks against known/verified values, we can with high confidence
guarantee that no tampering occurred. Our analysis shows that
the probability of the decryption of a tampered (and/or replayed)
block leading to a known value is extremely low, in fact, lower
than the collision probability in the most secure hash functions.
Second, based on the observation that many GPU workloads
have limited numbers of dirty block evictions, Plutus proposes a
second layer of compact counters to reduce the memory traffic
due to both the encryption counters and integrity tree. Third,
by exploring the interesting tradeoff between the integrity tree
organization vs. metadata fetch granularity, Plutus uses smaller
block sizes for security metadata caches to optimize the number
of security metadata memory requests. Based on our evaluation,
Plutus can improve the GPU throughput by 16.86% (up to
58.38%) and reduce the memory bandwidth usage of secure
memory by 48.14% (up to 80.30%).

I. INTRODUCTION

GPUs can significantly accelerate workloads that demand
high throughput such as machine learning [21], graph an-
alytics [24], and scientific computing [29]. The significant
acceleration power of GPUs has driven their wide adoption by
different cloud service providers. While the users’ applications
are offloaded to remote untrusted clouds, ensuring the security
of the execution and data, through confidential computing,
becomes a necessity. Because users no longer have control
over the executing environment, physical attacks to leak and/or
tamper with data become even more plausible. In fact, even

within the same GPU board, it is common to integrate mem-
ory stacks and modules developed by a third-party vendor.
Thus, GPU vendors need to avoid memory vendor lock-in,
by ensuring memory security support from the GPU chip
side, hence protecting their reputation while integrating the
cheapest and/or the highest-performance options. Accordingly,
supporting GPUs with a trusted execution environment (TEE)
is crucial in this era. To create an isolated execution environ-
ment, three components are provided: encryption keys that are
hardware-managed, remote attestation, and memory security.

TEEs for CPUs, such as Intel Software Guard Extension
(SGX) [16] and ARM TrustZone, constrain the trusted com-
puting base (TCB) to the processor chip only, while any
other components located off the processor chip are considered
untrusted. As a result, data protection is required for any data
flows off-chip. For GPU TEEs, there have also been recent
proposals such as Graviton [32], HIX [10], and others [9],
[18], [35], [36]. However, memory security relies on metadata
stored in memory, which leads to high bandwidth consump-
tion. These bandwidth overheads of secure GPU memory
could become an obstacle to enabling secure execution while
ensuring high performance.

Memory security in CPUs provides three main guarantees:
confidentiality, integrity and replay prevention [7], [27], [34].
Confidentiality through data encryption protects data privacy
by cryptographically hiding it from any external entity, e.g.,
physical access to the memory by any entity except the pro-
cessor chip provisioned with the encryption key. Data integrity
prevents active attacks that introduce changes to the original
data. While message authentication code (MAC) satisfies this
goal, it fails to ensure the freshness of data, which makes the
system vulnerable to replay attacks. Accordingly, the freshness
of data is typically guaranteed through integrity trees, such
as Merkle Trees (MT) or Tree of Counters (ToC). Adopting
these from CPUs directly to GPUs results in significant
performance losses due to architectural differences between
GPUs and CPUs [36], [37]. Hence, many prior works exploited
the distinct behaviors and characteristics of either the GPU
architecture itself [36] or the nature of applications running
on GPUs [18], [35], to organize security metadata in better
ways that reduce security overheads and leave potential for
speedup.

Graviton [32] and HIX [10] trust the off-chip memory



and do not support any memory security model. However,
subsequent works emphasize the necessity of securing the
GPU memory. Na et al. [18] show that most of the memory
accesses in GPUs conform to patterns that render a number
of contiguous blocks in memory to have the same encryption
counter value. Based on their observation, they maintain a
common set of counters in the GPU boundary to reduce
counter traffic, which is consequentially reflected into reduced
Bonsai Merkle Tree (BMT) traffic. Yuan et al. [36] observe
that using the physical or virtual address directly to address
security metadata blocks leads to useless traffic for fetching
metadata corresponding to data in other memory partitions.
Accordingly, they propose using local partition addresses for
metadata organization. Additionally, they recommend using
sector granularity as the protection granularity for metadata
to eliminate any extra data traffic for the sake of security
checks. Adaptive security support for Heterogeneous Mem-
ory on GPUs [35] exploits the mostly read-only data of
GPU benchmarks, to skip the need for fetching counters and
performing integrity verification in case of a counter miss.
In summary, most of the prior works focus on optimizing
counters traffic due to its significance and direct effect on
BMT traffic too, but they track counters in a coarse granularity
which leads to missed optimization opportunities. In addition,
MAC traffic still consumes significant bandwidth, especially
for applications with poor spatial and temporal localities. In
this work, we propose a novel scheme, Plutus, to address these
critical challenges.

Plutus builds upon three key ideas. 1 Unlike CPUs,
additional latency in memory accesses is more tolerable than
increased bandwidth. However, we observe that certain en-
cryption schemes, e.g., AES-XTS, provide more resistance
to malleability; for each cipher block, e.g. 128-bit, produced
by one run of the encryption algorithm, any bit flip in this
cipher block will lead to a completely unrelated corresponding
part in the plaintext. Note that this is the inverse feature of
the avalanche effect desired upon encryption (one-bit change
in plaintext leads to many-bit changes in ciphertext). Ac-
cordingly, by leveraging the malleability resistance of AES-
XTS, we can guarantee no tampering with high probability by
comparing the decryption result with recently verified/known
values. Since it is malleability resistant, tampering results
in a known/correct value is extremely unlikely; in fact, we
prove that its probability is less than finding collisions in
secure MACs. Thus, by counter-intuitively checking if not
been tampered with, through checking if matches any recently
verified value, we can verify authenticity without fetching
MAC. This is in contrast with checking if tampered with by
computing MAC. 2 We observe that for GPU workloads,
the neighboring encryption counter values are both too small
and close to each other. Thus, Plutus employs a compact two-
level counters scheme to reduce the counter and BMT traffic.
Specifically, Plutus uses small counters along with a small
BMT to reduce the counter traffic. In the infrequent cases
when the small counters overflow, the original counters and
BMT are consulted. 3 Plutus explores the tradeoff between

the integrity tree organization and metadata fetch granularity
to optimize the metadata traffic. In GPUs, a finer granularity
than a cache block is generally used to access the main
memory. Specifically, sectors which are 32B typically can
be independently read/written to the memory module, even
though a full 128B block is reserved in the cache.

To the best of our knowledge, none of the prior works
explored eliminating MAC fetches even though they showed
it contributes to a large portion of the overheads [8], [18],
[31]. Similarly, even though the common counter scheme [18]
exploited the spatial similarity of counters, none explored how
the small values of counters can be used to build a first-
level integrity verification using a very small tree. Prior works,
e.g., PSSM [36], studied the trade-offs of whether to maintain
security metadata (e.g., MAC and counter) per sector, and
hence avoiding over-fetching but incurring high-storage and
bandwidth overheads, or maintaining the metadata per block
and hence simply disabling sectored caches. PSSM ignored
the harmony between such granularity and the integrity tree
verification. We observe that using block granularity to fetch
security metadata reduces the integrity tree depth and hence
reduces the number of integrity tree misses, but can over-
fetch metadata (i.e., a 128B integrity tree node block) to allow
verification from the next level. This striking tension between
metadata fetch granularity (smaller is better) and the tree depth
(shallower is better) requires careful examination. To the best
of our knowledge, this is the first paper to study the integrity
tree organization vs. metadata fetch granularity trade-offs in
the context of GPUs. To evaluate Plutus, we use GPGPU-Sim
v4.0 [13] with a diverse set of workloads from the Rodinia-
3.1 [4], Parboil [26], Lonestargpu-2.0 [14] and Pannotia [3]
benchmark suites. Our evaluation shows that Plutus improves
the GPU throughput by 16.86% (up to 58.38%) and reduces
the memory bandwidth usage of secure memory by 48.14%
(up to 80.30%), compared to PSSM.

The rest of the paper is organized as the following. First,
the background concepts are discussed in Section II. Second,
in Section III, the motivation behind Plutus is explained. Then,
the design and evaluation results are discussed in Section IV
and Section V, respectively. Section VI summarizes the related
prior work. Finally, we conclude the paper in Section VII.

II. BACKGROUND

A. Memory Security

Memory security aims to attain different types of guar-
antees: confidentiality, integrity, and/or replay protection.
confidentiality is achieved through encryption while integrity
usually is protected through message authentication codes
(MAC), whereas replay prevention can be added through
integrity trees over data or some of the security metadata [20].
Since processor memory is typically accessed using cache-line
size (e.g., 64 bytes), most memory security implementations
operate on that granularity; decrypt/encrypt a memory block,
and verify/protect its integrity.



1) Memory Encryption: Memory encryption limits the
plain data visibility to the trusted computing base (TCB)
only and hence makes it unintelligible for physical attacks
or bus snooping attacks. Two encryption approaches can be
used for this purpose: direct encryption or counter-mode
encryption. In direct encryption, the encryption algorithm, e.g.
AES, is directly applied to the data, which introduces the
encryption/decryption latency to the critical path for read/write
operations. This affects the performance negatively in CPUs
while GPUs are latency-tolerant due to their massive thread-
level parallelism, they can hide the latency by serving different
warps as shown in prior works [37]. However, if no extra
tweaks are included in the encryption process, this opens the
door for dictionary-based attacks. Thus, more secure modes
allow using a tweak as a part of the encryption process.
However, the tweaks can be used differently, for instance in the
commonly used counter-mode encryption (CME) mode, shown
in Figure 1, an encryption pad is generated by encrypting
the tweak, and the pad is consequently used to complete
encryption/decryption using bitwise XOR operation. Such a
solution offers high performance as it can hide the latency of
pad generation with fetching the ciphertext. However, since
CME relies on XOR’ing a pad with the plaintext to generate
the ciphertext, it suffers from malleability. In other words,
flipping certain bits in ciphertext would lead to flipping the
exact same bits in the plaintext upon decryption. On the other
hand, another option commonly used with storage, where
encryption latency is negligible, is the Tweakable block-cipher
with ciphertext stealing (XTS) mode. In XTS mode, a tweak
is used, however, the plaintext is also fed to the AES engines
rather than merely XORed with a pad. Accordingly, the XTS
malleability is merely at the cipher block size (typically 16B)
of the 64B, rather than at bit resolution as in CME. Whether
XTS or CME is used, tweaks are generally implemented as a
combination of address (for spatial uniqueness) and counters
(for temporal uniqueness).

Fig. 1. Counter-Mode Encryption

Counters are generally grouped into memory blocks that could
be cached in the processor chip to capture spatial and temporal
locality [27], [33], [34]. Counters could be organized in two
different ways: monolithic counters as used in Intel SGX [16]
[7], where 56-bit counters, one per cache block, are grouped
into groups of eight, in case of 64-byte cache blocks. The state-
of-the-art counters organization is split-counters [33], where
each counter composes a minor counter per data block, and a
major counter is shared among a group of data blocks.

2) Message Authentication Code (MAC): Memory integrity
means ensuring that the message has not been altered or
tampered with in transit to the processor or while residing in
memory. In other words, the read data is identical to the most
recent one written by the processor. This is partially attained
by MACs, which verify that the data has been produced by

the processor. In other words, it has not been tampered with.
MACs can detect spoofing and splicing attacks. However,
MAC values alone do not protect against replay attacks,
therefore, integrity trees are usually used for this purpose
[7], [17], [20]. MAC is a cryptographic hash calculated over
certain data with the use of a secret key [30]. The algorithm
used for the generation is one-direction, which makes it
impossible to get the actual message over which this MAC
has been computed even with the availability of the secret
key. The output, which is the MAC, is a fixed-size value.
As the size of the MAC increases, the MAC collision rate
decreases and hence having a higher level of security. In Intel
SGX for CPU trusted execution environment (TEE), 56-bit
MAC is used [7]. While in the partitioned sectored security
metadata work (PSSM) [36], a 32-bit MAC is used to mitigate
MAC storage overheads, especially after assigning a MAC per
smaller granularity (sectors).

3) Integrity Trees: are used for preventing replay attacks. In
general, there are two variations of integrity trees: Merkle Tree
(MT) [17] and Tree of Counters (ToC) [16], also known as a
parallelizable integrity tree. Both are shown in Figures 2 and
3. MTs protect the integrity of the memory data by a tree of
MACs/hashes that ends with one node called the root, which
is securely kept in the processor chip and never leaves it. On
each memory access, a path of MAC/hash values up to the
root is verified, and since the root never leaves the processor
boundary, it reflects the most recent state of the memory and
any tampering will be detected. Originally, MT is constructed
over the data itself leading to a relatively large tree. Another
version of MT is called Bonsai Merkle Tree (BMT) [20],
where the leaves of the tree are the encryption counters. In
addition, the encryption counters are used as tweaks for the
MAC generation as part of replay attack prevention. ToCs use
encryption counters as their leaves too. Unlike MT, ToC uses
other counters, called versions, in the upper levels of the tree
instead of hashes/MACs. Each node contains a MAC value
calculated over its data and its parent version counter. Hence,
no cumulative calculations are done which allows parallel
updates and verification.
To reduce the performance overheads associated with the tree
traversal, both of the update and verification processes stop at
the first node that hits in the cache, which is already verified.
For updates, when those nodes get evicted from the cache,
they propagate the update to their parents. This is referred to
as the lazy update scheme while the updates that go always
to the root are part of the eager update scheme.

Fig. 2. Bonsai Merkle Tree over Encryption Counters



B. Our Baseline

Our baseline is built over the state-of-the-art proposed designs
for GPUs equipped with secure memories. Plutus adopts the
PSSM [36] design as a baseline, where each memory partition
is equipped with its own security engines for MAC generation
and encryption using counter mode encryption (CME), and
hence each partition has its own BMT that is built over its local
counter blocks. In addition, every memory partition integrates
caches per each of counters, MACs, and BMT nodes, each of
2kB size, hence, 192kB in total (in case of Volta architecture
[11]) for the whole GPU. While PSSM uses a truncated MAC
of 4 bytes, Plutus uses an 8 bytes MAC to provide a higher
level of security.
Each memory block is 128B divided into 4 sectors serving
as the granularity for attaining security metadata. In other
words, each data block needs 4 counters and 4 MACs, one per
32B sector. Counters are organized using split-counter scheme
[33] modified by PSSM to comply with the sectored metadata
caches as shown in Figure 4. Sectored metadata caches are
used by PSSM to reduce useless metadata traffic. MAC caches
benefit from a such design on both read and write transactions,
while counters and BMT still need to get the whole block on
reads for integrity verification, which uses the whole block
as its hashing granularity. More sensitivity analysis for block
sizes and BMT hashing granularity is provided in Section V.

III. MOTIVATION

A. Performance Overheads of Security Metadata

To investigate the overheads of a secure GPU memory, the per-
formance of different memory-intensive GPUs’ benchmarks
has been analyzed by comparing a design equipped with
a security model against a baseline with no security. The
security model adopts the PSSM [36] design, as described
in Section II-B. The simulation details are provided later in
Section V. As shown in Figure 6, for the benchmarks in our
study, significant overheads are introduced due to the added
security protection. The reason is the bandwidth contention
due to security metadata, as shown in Figure 7. Each last-level
cache (LLC) miss requires extra metadata to verify it, which
could miss in their caches [27] too and result in extra memory
requests competing on the available memory bandwidth.

Fig. 3. Tree of Counters (SGX-Style Parallelizable Merkle Tree)

Fig. 4. A Counter Block in PSSM Sectored Design

Some previous works like common counters [18] and adaptive
security support for heterogeneous memory on GPUs [35]
addressed the traffic caused by counters and proposed de-
signs to reduce it by exploiting read/write characteristics of
GPUs applications. However, MAC traffic is still significant
as pointed out by these works, and as can be observed from
Figure 7. While minimizing MAC code size or computing a
MAC for a large memory region [35] can reduce MAC misses
in applications with good spatial locality. It is not the case for
applications with random accesses in addition to reducing the
security level by increasing the collision rate. Hence, a more
efficient way that keeps the same security level is needed for
optimizing the MAC bandwidth consumption in GPUs.

B. Data Value Locality

GPU workloads exhibit data similarity and homogeneity [5],
which could be exploited for optimizing security metadata
overheads. To study such patterns, we conduct an analysis of
the data access patterns of these benchmarks. Data read/written
from/to memory is studied in several ways. For a data sector of
32B, which is the access granularity, it is divided into multiple
values of a certain size, including 32-bit, 64-bit, and 32-bit
with masking its 4 least-significant bits. For each of these gran-
ularities, the reuse pattern among all data accesses is explored
by caching the most recent values seen in previous accesses.
The number of hits in this temporal value cache proves that
there is a high value-reuse locality in GPU workloads’ data
accesses. The reuse patterns studied for the 32-bit values are
explained in more detail below while represented in Fig. 8:
32-bit Values per Sector: If all 32-bit values - there are 8 in
a 32B sector - hit in the value cache, reuse is counted.
32-bit Values as Two Parts: Each sector is divided into two
halves. For now, let’s assume that to consider a sector half
reused, three out of the four small values should hit in the
value cache, then if both halves are marked as reused values,
the whole sector is marked as reused. Later in IV, we describe
why we have such restrictions for considering a value reused.
32-bit Values as Two Parts with Masking the 4 least-
significant bits: The 4 least-significant bits of studied chunks
are masked to capture nearby values. Then, it is processed as
in the previous case.
Figure 9 presents the reuse percentages for the aforementioned
different scenarios when a value cache of size 2kB, keeping
512 different 32-bit values, is used per memory partition in
Volta GPU architecture. For every memory read or write,
values are inserted into this value cache if they are not already.
On reads, before inserting values, the read value is checked
for reuse. As can be observed from the figure, a lot of data
values are identical to previously read/written values. Later,
in Section 4.3, we show how these value similarities could be

Fig. 5. A MAC Block in PSSM Sectored Design



Fig. 6. Performance Overheads of Secure Memory

Fig. 7. Bandwidth Overheads of Secure Memory

leveraged to securely verify the integrity of data without the
need to fetch its corresponding MAC.

C. Read-Only or Infrequently Updated Data

As many of the state-of-the-art works [18], [35] pointed out,
most of the GPU data are read-only or updated infrequently.
Counter values corresponding to such type of data either zeros
or small values. Prior works tried to track if any writes happen
to a region like 16kB. As long as no writes happen to this
whole region, counter value zero is used without any memory
requests for counters or BMT. However, on the first write
received by this region, the whole region is no more considered
read-only, and all new accesses have to get the original
counters from memory for security purposes. However, such
coarse-grain decisions could miss part of the optimization
chances, especially in random access applications. However,
tracking finer granularity requires more storage overhead and
some performance penalties if the tracking metadata is stored
in off-chip memory. Fig. 10 shows the breakdown of memory
requests as read or write requests for the used benchmarks.

Fig. 8. Patterns of Value-Reuse for Considering Data Unit as Reused

Fig. 9. 32-bit Values Reuse Percentage

IV. PLUTUS DESIGN

A. Threat Model

Plutus threat model is similar to prior works that address
memory security either in CPUs or GPUs [18], [20], [27],
[33], [35], [36]. Basically, the trusted computing base (TCB)
includes only the processor chip (GPU) and any internal com-
ponents residing on it. Every component out of the processor
chip is not trusted and is considered vulnerable to external
or internal attacks. Thus, caches, internal wiring, and memory
controllers are all parts of the trust base, and attackers cannot
tamper with any data in these structures. As in prior works, our
threat model only considers external physical attacks, while
different side-channel attacks e.g., timing, power, electromag-
netic, and template attacks [9], [12], [19] are all excluded in
our threat model. Moreover, access pattern leakage (including
due to accesses to security metadata blocks) is beyond the
scope of our threat model, however, can be addressed using
solutions such as Path-ORAM [25].

B. Security Guarantees

In our design, the following specific design details are used in
our implementation as our baseline:

• Encryption: AES-XTS encryption is used to guarantee
that any alteration of the ciphertext completely random-
izes the plaintext. As diffusion is needed for our model,
refer to IV-C, this justifies the choice of AES-XTS over
CME, in which tampering is localized. Although CME is
better at hiding encryption/decryption latencies by over-
lapping them with data fetches, while direct encryption
exposes it to the critical path but this is not an issue in
GPUs where thread-level parallelism hides it as indicated
by [37]. Along with the addresses, counters are still



Fig. 10. Read-Write Breakdown of Memory Traffic

used as tweaks to provide temporal uniqueness of the
generated ciphertexts for same plaintexts. They follow
the state-of-the-art split-counters [33] design in a sectored
fashion as proposed by PSSM [36], where a counter per
32B sector is used.

• Message Authentication Codes (MAC): are assigned
one per data sector, each of 8 bytes. However, Plutus
scheme is agnostic about the MAC code size.

• Bonsai Merkle Tree (BMT): An 16-ary BMT is built
over the encryption counters to guarantee their freshness
at the time they are fetched from the off-chip memory.
In our implementation, we adopt the lazy update.

In our baseline, security metadata is organized in memory
blocks/cachelines of 128B same as the data blocks. They are
cached to allow for faster operations and less overheads [27].

C. Value-Based Integrity Verification

Plutus introduces a novel way for verifying data integrity
without the need for fetching MACs from the off-chip memory,
regardless of the MAC code size, thus, reducing the bandwidth
consumed by security metadata. The Plutus method of integrity
verification relies on the data itself. It works by bookkeeping
the most recently seen values in the memory controller (e.g.,
a value cache) and using them to verify data arriving from the
off-chip memory. The key insight is to leverage the property of
cryptography, i.e., counter-mode encryption with AES-XTS,
that the plaintext of a tampered ciphertext does not exhibit
frequent value locality as observed in Section III.B. In other
words, the tampered plaintext has a much smaller possibility to
hit in the value cache than untampered plaintexts. Therefore,
if a plaintext hits in the value cache, it can be considered
untampered. For value cache misses, which are rare cases in
normal execution, MACs are used then to check the integrity.
The detailed security analysis is presented later in this section.
Note that the replay attacks using previous values are still
detected by counter verification using the integrity tree.
How does Plutus’ Integrity Verification Work?
When a memory request is issued from the L2 cache to the
memory controller, it could be read or writeback. The request
flow in both cases is illustrated in Figure 11. Let us start with
writes. As a writeback request 1⃝ arrives from the L2 cache

Fig. 11. Memory Requests Flow in Plutus

and as a preparation for leaving the trusted boundary, the data
is divided into values of size M bits (explained later), and
added to the list of recently seen values 8⃝. At the same time,
the counter for this piece of data is brought to the memory
controller 4⃝ and verified 13⃝ in case it is not cached already
3⃝. Usually, the MAC will be computed too, but in Plutus it

is deferred until it is needed. Once the counter is available, the
data and its counter are sent to both the encryption engine 5⃝
and the MAC engine 6⃝. Concurrently, the data is processed
by Plutus’ engine 7⃝ to see if the data is assured to pass the
value-based integrity verification the next time when brought
to memory (explained later). If so, there is no need to update
the normal MAC. Otherwise, as in conventional designs, the
new MAC is computed and written to the MAC cache 6⃝.
For MAC cache misses, the cache line is brought to the cache
and updated 10⃝. Finally, the encrypted data is passed to the
memory 12⃝.
For a read, when the request arrives at the memory controller
1⃝, the data needs to be verified and decrypted before sending

it to the requesting core. Thus, the counter assigned to the
read sector, if not cached 3⃝, is fetched 4⃝ and verified 13⃝.
Then, it is supplied to the decryption engine 5⃝ as part of
the AES-XTS tweak. Generally, the decryption process goes
concurrently with the data integrity verification using MACs.
In Plutus, we delay or eliminate MAC verification as we
hope to verify the data integrity via data value reuse and
avoid any extra memory requests due to MAC. Although this
could introduce some serialization to the security operations
and add some extra latency, GPUs can hide such latency
by scheduling other threads/warps by leveraging thread-level
parallelism. Thus, after getting the plaintext of the block, the
data is sent to Plutus Engine to perform integrity verification
using the book-kept recently-seen values following the
following steps, which are shown in Figures 11 and 12:

1) The data is divided into values of M bits as shown in the
bottom right of Figure 11.

2) Each M-bit value is probed in the value cache 8⃝. The
number of hits decides if it is sufficient to consider the



data unit verified or not.
3) If the data is proved to be integrity protected, it is passed

to the requesting core directly 11⃝. Otherwise, the MAC
has to be checked either from the MAC cache 9⃝ or by
fetching it from memory 9⃝, then after MAC verification,
data is sent to the requesting core 11⃝.

Why is Plutus Secure?
To verify a unit of data of N (e.g., N=32) bytes, it is divided
into a collection of M-bit values. Thus, as a total, there are
N∗8
M values in one unit of data. Each M-bit value probes the

value cache, which keeps K recently seen values.The cached
values are categorized into two types, pinned ones that never
get replaced or removed after pinning, and transient values that
could be replaced using the least recently used replacement
policy. Values start as transient, and while in the cache, might
get promoted to a pinned value based on their frequency of
accesses. A small counter is associated with a cached value and
it gets incremented on each hit on this value. Once the counter
reaches a certain threshold, the value becomes a pinned value.
Pining some values, the most frequent-accessed ones, is useful
for write requests as illustrated later. In our model, a quarter
of the value cache is reserved for these pinned values.

Given the space of M-bit values, 2M , the chance of hitting
in the value cache is K

2M
for an M-bit value. The reason is

that given the property of cryptography, i.e., AES-XTS, any
tampering on the ciphertext would be diffused to uniform
changes in the plaintext. In other words, as long as the
probability to see a tampered value hitting in the value cache
is sufficiently low, the values hitting the value cache can be
considered tamper-free or integrity verified. Next, to consider
the whole unit of data not tampered with, there should be a
minimum number of its M-bit values hitting in the value cache,
such that the probability of a tampered data unit passing the
value-based check would be similar to or lower than the MAC
collision rate.
The answer to this problem could be studied using the bi-
nomial distribution shown in equation 1 [1]. The binomial
distribution finds the probability to have x success events out
of n independent trials, given the success probability for a
single trial is p. In the MAC problem, we study the event of
the data being tampered with while the verification passes. The
n trials are represented by the number of M -bit values (i.e.,
n = 4) in the studied part of the data, whether it is a whole
sector or part of it. The probability of success, p, for a single
trial, is to have a value that hits in the value cache and it’s
actually a tampered value. It has been derived earlier in this
section, p = K

2M
. The answer to our question is x which is the

minimum number of M-bit values that hit in the value cache.
As it has been proved by Gueron in [7] that a forgery success
probability of 1

256 is sufficient, we need to select x such that
the inequation in equation 1 holds.

Besides x in equation 1, we also need to consider the
granularity that this probability Px should be checked. For
Plutus, as mentioned previously, AES-XTS is used for en-
cryption. Therefore, Plutus considers the size of the block
cipher of the AES-XTS encryption algorithm, i.e., 128 bits,

Fig. 12. Value-Based Integrity Verification Steps

as the granularity for value-based integrity verification. Thus,
considering a system where memory access granularity is A
bits, A

128 data units are studied together. If each of those
units meets the requirement for Plutus’ integrity verification,
which is discussed earlier, the whole data access is considered
verified. Otherwise, value-based integrity verification cannot
give a strong guarantee for not being forged. In such cases,
the corresponding MAC needs to be fetched from memory for
regular integrity verification.

Px =

(
n

x

)
px(1− p)n−x <=

1

256
(1)

Design Implementation
For our implementation, where Nvidia Volta GPU architecture
[11] is used, cache blocks are of size 128 bytes sectored blocks
with a memory access granularity of 32 bytes, i.e., A =256 bits.
Each memory access consists of two 128-bit blocks, requiring
two rounds of value-based integrity verification. For the value
size M , 32-bit is used in Plutus implementation where the
upper 28 bits of the value are used for the matching test.
Based on the acceptable forgery success probability and with
a 256-entry value cache, by solving the inequality 1 for x, out
of the four 32-bit values in every 128 bits, at least three of
them need to hit in the value cache. Obviously, both halves
(every 128 bits in one memory access) need to satisfy this to
skip the need for original MAC access. The exact flow for
Plutus verification for 128-bit value is shown in Fig. 12.
How does Plutus Know if Writes are Verifiable at Next
Read?
For a dirty data unit, if the number of hits in the value cache
satisfies the inequation 1 and the hits are in the pinned region
of the value cache, then the data is guaranteed to be verifiable
on next fetch from memory as shown in the right of Fig. 11.
Security Impact: similar to compression, value prediction,
and counter value analysis, timing side-channel attacks are
possible if MAC values show significant reuse. However, the



leakage is limited to how common are the values in certain
applications. Eliminating such side-channel is possible through
randomly obfuscating MAC blocks and issuing random ac-
cesses. As mentioned in our threat model, access pattern
leakage (including accessing MACs and data blocks) is beyond
the scope of our threat model, and can potentially be addressed
through optimized Oblivious RAM implementations [25].

D. Compact Mirrored Counters

To reduce the memory traffic due to counters and BMT, Plutus
leverages the fact that many cache lines are seldom updated in
GPU workloads. Although there are prior works exploiting a
such feature of GPU applications like Common Counters [18]
and Adaptive security support for Heterogeneous Memory on
GPUs [35]. They do track memory changes in large chunks
which results in many lost chances for optimizations.

With limited updates, counters for many cache lines are low
and their major counters are 0 if all minor counters are low. As
a result, the standard split counter organization leads to wasted
space as many bits in the major counter and minor counters
are zeros. To address this issue, Plutus introduces mirrored
counters in a compact way. For each cache line/sector, a
compact counter, e.g., 2 or 3 bits, is used for encryption until
it saturates, at that time, its value is propagated to the original
copy of counters, which follows the standard split counter
design [33]. To select whether the compact or the standard
split counter is to be used, a one-bit flag is also maintained
per cache line/sector, as shown in Fig. 11. When a compact
counter is used, its major counter is 0, and does not need to be
fetched. Note that as multiple minor counters share a major
counter, if a minor counter overflows, the major counter is
incremented and all the cache lines/sectors sharing the major
counter need to use the split counters instead of compact ones.

Based on the fact that a large portion of GPUs data is read-
only or rarely updated [35] [22], it suffices to capture these
infrequent updates using smaller counters in trade-off more
compaction and thus better cacheability and spatial locality.
Compared to prior works [18] [35], which track memory
changes in large chunks, Plutus uses the same fine granularity
as the original counters, one per data sector, but with a fewer
number of bits. Thus, it captures as much as possible of cases
that still can be served in an optimized way. These minimized
counters could be designed in different ways and sizes. Plutus
studies three different designs as discussed in the evaluation
section V. These designs are:

• 2-bit compact Counter per 32B sector: Thus, it pro-
vides 4X compaction compared with original counters but
overflows on the third write.

• 3-bit compact Counter per 32B sector: It provides more
flexibility for writes compared to a 2-bit counter and still
provides good compaction.
The drawback of the above two organizations is that for
applications that experience heavy write accesses to the
point where most of the compact counters get saturated, it
might end up with two accesses to memory for getting the

counter, first to compact ones, realizing that it’s saturated,
then accessing the original counters.

• 3-bit Adaptive Compact Counter: To eliminate the
severe effect of having to check two blocks before getting
the counter, an adaptive scheme is used. In this design, a
counter sector of 32B has 64 3-bit compact counters in
addition to a counter that keeps track of the number of
saturated counters in this block of compact counters as
shown in Figure 13. A third layer of access is needed,
however, it’s too compact to the point where its misses
are negligible. This layer assigns a bit for each compact
counter block, this bit is set to one once the number of
saturated counters reaches a certain threshold, in Plutus
this threshold is 8, based on the observation by prior work
[22] that mostly less than 25% of counters in a block is
accessed. Hence, half this number is used as a threshold
to convert to using the original counters for this block of
compact counters. However, to make later decryption for
data corresponding to those counters possible, all non-
saturated compact counters are copied to the original
ones, and the access to this compact counter block is
stopped by the control layer and no re-encryption is
needed. As this adaptive scheme provides 2X compaction,
only two original counters blocks are needed to synchro-
nize original counters to compact counters updates, given
that the memory access granularity is 32B.

Fig. 13. Counter Access Flow in Plutus Design
For access (a), it checks the enable bit corresponding to its small counter
block, since 0 means still enabled, it accesses the small counter, reads the
value is less than the overflown value of 7, which means it is a valid value.
Same with access (b), but b’s counter is overflown (7), which means it needs
a second access to the original counter (9). However, for access (c), it reads 1
from enable bits, which indicates that direct access to original counters should
be made (12).

The security guarantees of the counters are kept by having
a small BMT over these counters to validate their integrity
before using them by the processor. Due to the small number
of blocks to be protected by this BMT compared to the original
ones, it has better locality and cacheability which makes its
traffic to the off-chip memory small.



E. Achieving Finer Granularity Security Metadata Blocks

The previous work, PSSM [36], suggested using sectored
caches for security metadata to avoid fetching extra metadata
uselessly. It works for MAC read and write accesses, but not
for counters and BMT, where the whole block still has to be
brought completely to the memory controller to accomplish
the integrity verification. Basically, this comes from using
the whole counter block as a unit for generating the BMT
hash/MAC. Once a counter misses in the counter cache and is
fetched from off-chip memory, its integrity has to be verified
via BMT traversal. To generate the parent hash/MAC of the
counter in the BMT, the unit used for the hashing algorithm
is the 128B block. As a result, another three sectors have
to be fetched to the memory too. The same applies to BMT
intermediate node verification.

In Plutus, we propose finer granularity counter blocks for
building the BMT to eliminate any useless memory traffic for
both counters and BMT. When the size of the BMT leaf is
reduced, e.g., from 128B to 32B, one memory access, instead
of four, is needed to fetch the leaf for verification purposes.
However, as one intermediate node covers the same number
of leaves but of smaller sizes, more intermediate nodes are
needed to build the tree and, hence, extra storage. Note that
more intermediate nodes may or may not lead to a taller tree,
as one can adjust the number of children of the root as long as
it does not exceed the arity. For example, an 8-ary tree, with
128 leaves would have a height of 4 (the number of nodes at
each level is 128-16-2-1) while an 8-ary tree with 512 leaves
has the same height (the number of nodes at each level is
512-64-8-1).
Three BMT design options are studied, shown in Fig. 14:

• Security metadata block size as 128 B: This is the
design used by prior works. It leads to a more compact
tree. However, it consumes high memory bandwidth and
affects performance adversely.

• Counter/MAC blocks of 32B while the BMT nodes
use 128B: Only the leaf level differs from the previous
design, whereas the rest of the tree still has the same
structure. Due to the increased number of leaf nodes -
each previous hash value now is replaced by four-, the
tree size increases and the height might as well.

• All security metadata (Counter / MAC / BMT) use
32B blocks: In addition to using 32B counters, BMT
nodes are shorthanded into 32B with a fourth of the
previous arity. The size of this BMT design is the same
as the one above. However, this one grows vertically and
consequently has a larger height whilst the above one is
more flattened.

Fig. 14. The Different Design Options for the BMT

F. Hardware Overheads

The hardware overheads of Plutus are as the following. First,
value-based integrity verification requires a value cache of 256
32-bit entries, 1kB, including the counter used for pinning
values. Compact counters require two caches, one for counters
and another for BMT nodes, each of 2kB, so 4kB in total.
For the finer granularity security metadata blocks, the storage
required for BMT increases due to the decreased arity. It goes
from 145.125kB to 1.33MB.

V. EVALUATION

A. Simulation Environment

We use GPGPU-Sim v4.0 [13] to evaluate Plutus. The con-
figuration of the baseline GPU is shown in Table I, which is
modeled based on Nvidia Volta architecture.

TABLE I
BASELINE GPU CONFIGURATION

SM Config 80 SMs, 1132 MHz
Register File 256 kB/SM, 20 MB in total
L1 D-Cache 32 KB/SM
Shared Memory 96 KB/SM
L2 cache 2 banks per memory partition, each L2

cache bank is 96 KB, 6 MB in total
DRAM 850 MHz, 32 partitions, 868 GB/s,

pseudo-random memory interleaving

A device memory of 4GB is assumed to be the range of
protected memory. The cacheline size is 128B. As shown in
Table I, the data caches, both L1 and L2 are sectored by
default in Nvidia Volta architecture. And by applying PSSM
design, metadata caches for counters, MACs, and BMTs are
also sectored and use partition local addresses. The detailed
configurations of metadata caches are shown in Table II.

TABLE II
METADATA CACHES AND SECURITY CONFIGURATION

MAC Cache, Each 2kB/memory partition,
Counter Cache, 128B blocks, 4-way sectored,
BMT Cache 256 MSHRs, allocate-on-fill policy
MAC Latency 40 cycles
Encryption Engine 1 pipelined AES/memory partition
AES-XTS Latency 40 cycles
Value Cache 1kB, Fully-associative, 25% pinned

We use a collection of benchmarks from Rodinia-3.1 [4],
Parboil [26], Lonestargpu-2.0 [14] and Pannotia [3]. They are
selected based on their memory bandwidth utilization. Both
high and medium memory-intensive applications are included
in our evaluations. An application that uses more than 50%
of available memory bandwidth is considered high memory
intensive, and if not while using more than 20%, it’s classified
as medium memory intensive. We simulate the first two billion
instructions from each of these selected benchmarks unless
they have less number of instructions. For Plutus scheme,
to enable data-based integrity verification, a value cache of
size 256 32-bit entries (28 bits value and 4-bit frequency use
counter), 1kB, is used per partition. For the compact mirror
counters, two new caches are used, for the new counters and



their BMT, each of the same size of the original metadata
caches, 2kB per partition.

B. Experimental Results

First, the performance improvement of each proposed tech-
nique is evaluated separately. Then, the combination of these
schemes is simulated.

1) Value-Based Data Integrity Verification: The data in-
tegrity verification based on data-reuse locality is evaluated
and the results are shown in Figure 15. The figure shows
the number of instructions per cycle (IPC) normalized to a
system with no security support. The comparison is made
with our baseline PSSM [36]. From the figure, we can see that
value-based integrity verification improves the performance by
4.94% on average and up to 19.89%.

Fig. 15. Performance Improvement due to Value-Based Integrity Verification

We observe that although some applications have high value-
reuse rates, they do not show high performance improvement.
One reason is that writes cannot be verified using value reuse
unless they hit only with pinned entries to guarantee the ability
to verify them the next time they are fetched from off-chip
memory. Also, in some cases, when two data units (sectors)
share the same MAC sector, if they happen to be requested by
the processor closely in time, and one is value-verified while
the other is not, then, the benefit is nearly nullified.

2) Finer-grain Security Metadata Blocks: Figure 16 com-
pares the performance among three different designs presented
in Fig. 12. As can be seen in the figure, the two designs with
finer-grain metadata blocks have much better performance
compared to the baseline. The third design, where all security
metadata have blocks of size 32B, has the best performance,
10.57% on average with up to 74.85% over the baseline.

3) Compact Mirrored Counters: As discussed in Section
IV.D, we explore three design options using different compact
mirrored counters and Figure 17 shows their performance
results. From the figure, we can see that 2-bit compact counters
tend to overflow quickly, which results in extra traffic for
accessing two layers of counters. In comparison, 3-bit compact

Fig. 16. Performance Improvement due to Different Metadata Block Granu-
larities

counters perform better in many of the benchmarks. The
adaptive compact counter scheme learns from the application
behavior and achieves the best performance, 2.07% on average
and up to 8.28% performance improvement.

Fig. 17. Performance Improvement due to Different Compact Counter
Designs

4) Plutus Overall: By combining all three schemes, Plutus
achieves high performance as shown in Figure 18. It improves
the IPC by 16.86% over the PSSM design, and by 8.97% over
common counters combined with PSSM, where both use CME
while Plutus uses AES-XTS. As in Fig. 19, Plutus reduces
security metadata traffic by 48.14%.
Given the recent works that address the overheads of counters
and integrity trees of other types of accelerators, such as MGX
[8], TNPU [15], and softVN [31], Plutus remains effective.
Figure 20 shows the performance of Plutus when the integrity
tree traffic is totally eliminated.

5) Sensitivity to value cache size: As Figure 21 shows, a
value cache size larger than the value used in the calculations
of inequality 1 does not bring much improvement; 256 entries
per partition can capture most of the repeated values.
C. Power Saving

Figure 22 shows the overall average power consumed by
Plutus scheme normalized to consumed power in a system



Fig. 18. Overall Performance Improvement of Plutus Design

Fig. 19. Security Metadata Bandwidth Consumption Reduction in Plutus

with no security. Plutus reduces these security overheads from
36.9% in 8B-MAC-PSSM scheme to 17.8%.

VI. RELATED WORK

Memory Protection: In the last two decades, there has been
a significant amount of work targeting the confidentiality and
integrity protection of data residing in an untrusted memory
[6], [17], [18], [20], [22], [23], [27], [28], [33]–[37].

Memory Encryption: For confidentiality, the authors of
[27] introduced using counter-mode encryption (CME) instead
of direct Advanced Encryption Standard (AES) to hide decryp-
tion latency. Both [27], [34] pointed out that caching counter
values used for encryption helps reduce the time needed for
generating the OTPs. Yan et al. proposed split counters to be
used for CME instead of monolithic counters. The counters in
this design consist of two parts, minor counters dedicated to
each data block, and a major counter shared by several blocks.
It reduces per-counter size which improves the on-chip caching
of counters. Common Counters [18] studies the uniformity
of counter values in GPUs applications and they figured out
that blocks are mostly updated in a uniform manner. From
this finding, they proposed a scheme that stores a set of

Fig. 20. Performance Comparison between Plutus and Other Memory Security
Designs

Fig. 21. Performance Sensitivity to Value Cache Size

common counter values in the trusted boundary, these values
are the ones common among a large number of data blocks.
This improves the counter fetch latency since, in most cases,
counter values are get from the on-chip set of counters. PSSM
[36] proposed partitioned and sectored security metadata that
fits GPUs design more than non-sectored metadata since
having security data per sector avoids the need for fetching
all block sectors for the sake of security checks. Adaptive
security support for Heterogeneous Memory on GPUs [35]
exploits some of the GPUs workloads’ features as read-only
data and streaming accesses to propose optimization for the
security handling of such data. It introduces a predictor for
read-only regions, and another one for streaming accessed
regions along with memory access trackers for analyzing such
accesses. Read-only regions use one shared counter stored
on-chip, hence counter traffic is eliminated for such regions.
They also proposed dual-MAC granularity to optimize for
streaming accessed regions. SoftVN [31] manages counters
in the software layer in a coarse granularity for a group of
memory locations that share the same update pattern, reducing
the number of kept counters to one. However, this design has
some restrictions to work as the updates should happen in
sequential order and one at a time per a group of tracked
locations. Also, both MGX [8] and TNPU [15] are optimizing
counters as well as integrity tree storage plus traffic for specific
accelerators such as DNN, by holding one counter value per



Fig. 22. Normalized Energy per Instruction

whole data structure and using computations to get VNs based
on the regularity of access patterns in the applications used
for such accelerators. However, they don’t optimize for MAC
traffic, here Plutus bandwidth-less integrity verification could
be applied. Thus, MGX is orthogonal to our work, and it can
be enabled on the same system as Plutus.

For Integrity Verification: The hardware-based scheme
used to prevent replay attacks, is the integrity trees. Mainly,
there are two types of integrity trees, one that consists of
MAC/HASH and it is called Merkle Trees [17]. The other one
is built of counters, usually referred to as version counters.
Basically, the original design that uses Merkle Trees for
memory integrity computes MAC or hash values over the
whole memory data. The root is kept secure on-chip. However,
other nodes can leave the processor chip. Internal nodes can
be cached to fasten the process of integrity verification by
avoiding going to the off-chip memory many times for verifi-
cation. In addition, once an internal node hits in the cache, the
verification stops at this node and it’s considered secure as if
it’s the root. Since this scheme uses all data blocks to construct
the tree, it requires a lot of storage. Hence, Bonsai Merkle Tree
[20] has been proposed. It proposes computing stateful MACs
over data blocks and counters while the integrity check is only
needed for counters used in MAC generation.

GPU TEEs: With the popularity of GPUs as accelerators
in untrusted remote cloud systems, an increased urge to
have TEEs for GPUs has been posed. Recent works such as
Graviton [32], HIX [10] and Telekine [9] have suggested TEE
designs for GPUs inspired by ones used for CPUs such as
Intel SGX [16] and ARM TrustZone [2].

VII. CONCLUSION

Although trusted computing is increasingly on demand,
memory security has a high cost of metadata storage and
memory traffic. Since GPUs are bandwidth-intensive, secure
memory with low-bandwidth overhead is highly desired.
Plutus comes up with three novel techniques that optimize
bandwidth usage for secure memories in GPUs. It exploits the
patterns of having repeated or close data values that could
be verified without MACs with an accuracy level comparable
to or better than the collision rate of the state-of-the-art
MAC functions. It minimizes the counter and BMT traffic
with two complementary approaches. First, it introduces a
layer of compact counters to achieve better cacheability and

locality. Second, by exploring the trade-off between the BMT
organization and metadata granularity, Plutus chooses to use
small counter blocks (32B) to avoid fetching extra ones on
verification. Our evaluation shows that Plutus improves the
throughput of GPUs by 11.65% on average and saves around
42.14% of security metadata needed bandwidth compared to
the state-of-the-art approach.

ACKNOWLEDGEMENT

Part of this work was funded through Office of Naval
Research (ONR) grants N00014-21-1-2809 and N00014-21-1-
2811, and the National Science Foundation (NSF) grants CNS-
1814417, 1908406, CNS-1908471, and CNS-2008339, and an
AMD gift fund. The views, opinions, and/or findings expressed
are those of the authors and should not be interpreted as
representing the official views or policies of the Department of
Defense or the U.S. Government. Approved for public release.
Distribution is unlimited.

REFERENCES

[1] Binomial Distribution. New York, NY: Springer New York, 2008, pp.
44–45. [Online]. Available: https://doi.org/10.1007/978-0-387-32833-
1 34

[2] T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

[3] S. Che, B. Beckmann, S. Reinhardt, and K. Skadron, “Pannotia: Under-
standing irregular gpgpu graph applications,” 09 2013, pp. 185–195.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[5] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,
and S. W. Keckler, “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 926–939.

[6] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings., 2003, pp. 295–306.

[7] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptol. ePrint Arch., vol. 2016, p. 204, 2016.

[8] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Mgx: Near-
zero overhead memory protection for data-intensive accelerators,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 726–741. [Online]. Available:
https://doi.org/10.1145/3470496.3527418

[9] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel, “Telekine: Secure computing with cloud gpus,” 2020.

[10] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous
isolated execution for commodity gpus,” 04 2019, pp. 455–468.

[11] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the nvidia volta gpu architecture via microbenchmarking,” ArXiv, vol.
abs/1804.06826, 2018.

[12] E. Karimi, Z. H. Jiang, Y. Fei, and D. Kaeli, “A timing side-channel
attack on a mobile gpu,” in 2018 IEEE 36th International Conference
on Computer Design (ICCD), 2018, pp. 67–74.

[13] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[14] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A
suite of parallel irregular programs,” in ISPASS ’09: IEEE International
Symposium on Performance Analysis of Systems and Software,
2009. [Online]. Available: http://iss.ices.utexas.edu/Publications/Papers/
ispass2009.pdf



[15] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “Tnpu: Supporting trusted
execution with tree-less integrity protection for neural processing unit,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 229–243.

[16] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution,” in Proceedings of the
2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, ser. HASP ’13. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2487726.2488368

[17] R. C. Merkle, “Protocols for public key cryptosystems,” in 1980 IEEE
Symposium on Security and Privacy, 1980, pp. 122–122.

[18] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common counters:
Compressed encryption counters for secure gpu memory,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 1–13.

[19] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh, “Side
channel attacks on gpus,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 4, pp. 1950–1961, 2021.

[20] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os- and performance-friendly,” in 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007,
pp. 183–196.

[21] J. Ryoo, M. Fan, X. Tang, H. Jiang, M. Arunachalam, S. Naveen, and
M. T. Kandemir, “Architecture-centric bottleneck analysis for deep neu-
ral network applications,” in 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2019,
pp. 205–214.

[22] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao,
and M. K. Qureshi, “Morphable counters: Enabling compact integrity
trees for low-overhead secure memories,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-51. IEEE Press, 2018, p. 416–427. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00041

[23] O. Shafi and J. Bashir, “Freqcounter: Efficient cacheability of
encryption and integrity tree counters in secure processors,” Journal of
Systems Architecture, vol. 119, p. 102252, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762121001727

[24] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua,
“Graph processing on gpus: A survey,” ACM Comput. Surv., vol. 50,
no. 6, Jan. 2018. [Online]. Available: https://doi.org/10.1145/3128571

[25] E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: An extremely simple oblivious
ram protocol,” J. ACM, vol. 65, no. 4, apr 2018. [Online]. Available:
https://doi.org/10.1145/3177872

[26] J. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. Liu, and W. Hwu, “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

[27] G. Suh, D. Clarke, B. Gasend, M. van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003, pp. 339–350.

[28] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
SIGPLAN Not., vol. 53, no. 2, p. 665–678, mar 2018. [Online].
Available: https://doi.org/10.1145/3296957.3177155

[29] M. Taher, “Accelerating scientific applications using gpu’s,” in 2009 4th
International Design and Test Workshop (IDT), 2009, pp. 1–6.

[30] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS IX. New York, NY, USA: Association
for Computing Machinery, 2000, p. 168–177. [Online]. Available:
https://doi.org/10.1145/378993.379237

[31] M. Umar, W. Hua, Z. Zhang, and G. E. Suh, “Softvn: Efficient
memory protection via software-provided version numbers,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 160–172. [Online]. Available:
https://doi.org/10.1145/3470496.3527378

[32] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 681–696. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/volos

[33] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in 33rd International Symposium on Computer
Architecture (ISCA’06), 2006, pp. 179–190.

[34] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36., 2003,
pp. 351–360.

[35] S. Yuan, A. Awad, A. W. B. Yudha, Y. Solihin, and H. Zhou, “Adaptive
security support for heterogeneous memory on gpus.”

[36] S. Yuan, Y. Solihin, and H. Zhou, “Pssm: Achieving secure memory for
gpus with partitioned and sectored security metadata,” in Proceedings
of the ACM International Conference on Supercomputing, ser. ICS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
139–151. [Online]. Available: https://doi.org/10.1145/3447818.3460374

[37] S. Yuan, A. W. B. Yudha, Y. Solihin, and H. Zhou, “Analyzing secure
memory architecture for gpus,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE,
2021, pp. 59–69.


