
LITE: A Low-Cost Practical Inter-Operable GPU TEE
Ardhi Wiratama Baskara Yudha

yudha@knights.ucf.edu
University of Central Florida

Orlando, Florida, USA

Jake Meyer
jmeyer1124@knights.ucf.edu
University of Central Florida

Orlando, Florida, USA

Shougang Yuan
syuan3@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Huiyang Zhou
hzhou@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Yan Solihin
Yan.Solihin@ucf.edu

University of Central Florida
Orlando, Florida, USA

Abstract
There is a strong need for GPU trusted execution environ-
ments (TEEs) as GPU is increasingly used in the cloud envi-
ronment. However, current proposals either ignore memory
security (i.e., not encrypting memory) or impose a separate
memory encryption domain from the host TEE, causing a
very substantial slowdown for communicating data from/to
the host.

In this paper, we propose a flexible GPU memory encryp-
tion design called LITE that relies on software memory en-
cryption aided by small architecture support. LITE’s flexibil-
ity allows GPU TEE to be co-designed with CPU to create a
unified encryption domain. We show that GPU applications
can be adapted to the use of LITE encryption APIs without
major changes. Through various optimizations, we show that
software memory encryption in LITE can produce negligible
performance overheads (1.1%) for regular benchmarks and
still-acceptable overheads (56%) for irregular benchmarks.

CCS Concepts: • Computer systems organization →
Computer architecture; Confidentiality; GPU; • Memory-
Encryption;

Keywords: GPU TEE, software encryption, memory encryp-
tion, GPU enclave

ACM Reference Format:
ArdhiWiratama Baskara Yudha, JakeMeyer, Shougang Yuan, Huiyang
Zhou, and Yan Solihin. 2022. LITE: A Low-Cost Practical Inter-
Operable GPU TEE. In 2022 International Conference on Supercom-
puting (ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3524059.3532361

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9281-5/22/06. . . $15.00
https://doi.org/10.1145/3524059.3532361

1 Introduction
Secure and private computation in the cloud is increasingly
demanded by cloud computing users. To cater to that, chip
manufacturers provide CPU TEE (Trusted Execution En-
vironment), through which the processor provides a root
of trust for guaranteeing confidentiality (and sometimes
integrity) of computation and data against vulnerabilities
in system software. A typical CPU TEE includes key fea-
tures such as key management, attestation, and memory
security [14] (memory encryption and/or integrity verifica-
tion). Note that memory security is far costlier than others
due to its continuous application during execution.
GPUs are increasingly widely used in the cloud. How-

ever, since current GPUs do not support TEEs, users sacri-
fice security and privacy when offloading computation to
GPUs. Recently researchers have looked at providing TEE
on GPUs [7, 23, 26, 27]. While these solutions work, they
do not address inter-operability with CPU TEE. The CPU
and GPU have their own encryption domains where each is
the only one that can decrypt data it encrypted previously.
Therefore, for a CPU to send data to a GPU, the data must
be decrypted (by the CPU), re-encrypted in software, trans-
mitted to GPU memory, decrypted in software, and then re-
encrypted into the GPU encryption domain. Such encryption
domain crossing, ignored in prior studies, incurs high costs.
Figure 1 shows that the crossing overheads contribute to 60%
higher execution time and up to 4.2× slowdown (322% over-
head), which is much higher than 16% performance overhead
from memory security alone. While these numbers were col-
lected across different platforms, it is clear that encryption
domain crossing dominates performance concerns.

Achieving inter-operability with CPU requires CPU/GPU
TEE co-design, but co-designing is difficult for various rea-
sons, e.g., GPU manufacturers may be different than CPU
manufacturers, their design cycles may be different, etc. Fur-
thermore, as an accelerator for the CPUs, the GPU TEE
scheme should support a variety of GPU usage scenarios. For
example, it may be paired with CPUs that vary in architec-
tures, ISAs, types of CPU TEEs supported, andwhether GPUs
are paired with a single virtual machine (VM) vs. shared be-
tween VMs, etc. Given the wide variety of contexts in which

https://doi.org/10.1145/3524059.3532361
https://doi.org/10.1145/3524059.3532361

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

237.71% 322.31%

Figure 1. Execution time overheads of memory security with
a state-of-the-art scheme (PSSM [27]) and domain crossing
re-encryption overheads. The former was collected from
GPU simulation with machine configuration from [27], while
the latter is from a real machine described in Section 5.

GPUsmay be deployed, it is important that GPU TEE support
is as flexible as possible.
A flexible GPU TEE design provides additional benefits.

Some workloads may process sensitive data, hence confiden-
tiality is required, but confidentiality may not be a priority
for many others (e.g., graphics rendering or gaming). Fur-
thermore, even for a single GPU kernel, in some cases, both
input and output may be confidential, or only one of either
input or output may be confidential.
However, the need for a flexible GPU TEE conflicts with

the need to co-design GPU and CPU TEE. Co-designing them
requires early coordination of CPU and GPU TEE design,
which is difficult to achieve across companies. Furthermore,
the wide variety of contexts and workloads in which GPUs
could be used is hard to anticipate that early. Building many
types of GPU TEEs to provide flexibility incurs a high fixed
cost, e.g., supporting a single GPU memory security scheme
already requires high die area overheads: one encryption
engine for each memory partition, plus metadata caches to
keep counters, MACs, and Merkle Tree nodes [27].
To achieve GPU/CPU TEE co-design without sacrificing

flexibility, we propose software-based memory encryption,
which we refer to as LITE. LITE requires only small hard-
ware support for GPU TEE, and it relegates memory en-
cryption to software. LITE achieves flexibility because soft-
ware can choose different encryption algorithms to be in
accordance with host TEE, selectively choose applications
to apply encryption to, and select the subset of data to en-
crypt in an application, etc. LITE is possible in a GPU be-
cause GPU architecture supports explicit data movement
(e.g., global to shared memory), unlike a CPU which relies
only on caches that implicitly move data. LITE provides a
library and APIs that the compiler/programmer can use to
keep data encrypted in memory and only decrypt it before
use.

To summarize, this paper makes the following contribu-
tions:

1. We propose a lightweight GPU TEE (LITE) solution
that allows flexible CPU-GPU TEE co-design through
the software layer.

2. We present three optimizations, masked shuffle, de-
layed shuffle, and selective padding, to LITE that sig-
nificantly improve its performance.

3. We show that despite relying on software for encryp-
tion, the optimized LITE incurs low performance over-
heads, with a geometric mean slowdown of 1.1% for
regular applications. However, irregular workloads in-
cur high performance overheads (55.7% on average).
This overhead could be reduced by partial encryption
to only 10.0% and 44.3% for input-only and output-only
encryption, respectively.

The remainder of the paper is organized as follows. Section
2 presents the background, including GPU architecture and
unified virtual memory (UVM), TEE on the host side, and the
AES-XTS encryption mode. Section 3 discusses the threat
model of our work. Section 4 presents the design of the
LITE and our proposed optimizations. Section 5 presents
our experimental methodology, and Section 6 evaluates the
results. Section 7 concludes our work.

2 Background and Related Work
2.1 GPU Architecture and Unified Memory
A GPU consists of an array of Streaming Multiprocessors
(SMs), and each SM has its own control unit, register file,
L1 cache, and software-managed shared memory [16, 22].
Multiple SMs share an on-chip L2 cache with multiple banks
to provide high L2 access bandwidth. One or more L2 banks
are then connected to a memory controller to provide high
bandwidth to access device memory. With discrete GPUs,
data is typically moved between CPU main memory and
GPU device memory over the PCI-e interface.
GPUs use Single-Instruction Multiple-Thread (SIMT) ar-

chitecture to achieve high throughput. As a result, GPUs can
tolerate/hide long latency by leveraging massive thread-level
parallelism. However, they tend to be sensitive to bandwidth
due to the high number of concurrent threads.
Prior to UVM [16], programmers had to manage mem-

ory explicitly by allocating memory in the host and device
memory and moving data between the host and the device.
A way to automate this is to use direct store to move data
from CPUs to GPUs by exploiting data producer-consumer
relationship [28] . With UVM, programmers can avoid ex-
plicit memory management and rely on on-demand paging
managed by UVM. UVM enables CPU and GPU to share the
virtual memory space. Programs executed on the GPU are no
longer limited by the size of device memory and can instead
access host physical memory through a GPU virtual address.

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

2.2 Host-side TEE
A TEE may be designed to protect an application, a system,
or memory. For the former, a ring-3 secure execution en-
vironment for code and data is provided by hardware (e.g.,
Intel SGX enclave) to protect against system software (OS
and hypervisor) vulnerabilities as well as other code por-
tions of the application that run outside the enclave. For the
latter, a ring-0 secure execution environment is provided
by hardware to protect a system (OS and applications) from
vulnerabilities in the hypervisor or other systems. Exam-
ples include AMD Secure Encrypted Virtualization (SEV) [8]
and Intel Multi-Key Total Memory Encryption (MKTME) [6].
AMD SEV and Intel MKTME are geared toward virtualized
cloud computing servers where multiple virtual machines
may share the same physical server. Each VM is provided a
unique hardware ID with associated unique keys. Finally, the
memory may be protected with encryption without regard
to the software environment, such as in Intel Total Memory
Encryption (TME) [6] and AMD Secure Memory Encryp-
tion (SME) [8]. TME is especially important for non-volatile
memory with data remanence problems. A common support
across all three types of execution environments is memory
encryption. However, the type of memory encryption differs
based on the goal of the memory security protection.
User-level enclaves such as SGX rely on counter-mode

encryption and integrity verification relying on MACs and
integrity tree [5]. Counter mode encryption is vulnerable to
revealing plaintext of data if the counter can be changed or
replayed by the adversary [25]. Thus, MACs and the integrity
tree are an integral and necessary part of guaranteeing confi-
dentiality in counter mode encryption, in addition to detect-
ing integrity violations. In contrast, XTS mode encryption
(shown in Figure 2) is often deployed without integrity veri-
fication as data confidentiality is not dependent on integrity
verification. Thus, since the XTS encryption mode is not
prone to revealing plaintext, integrity verification is only
needed for detecting integrity violations. Without integrity
verification, the attacker may modify the ciphertext of data
in memory without being detected; however, the tampered
ciphertext will be decrypted to an unpredictable plaintext
value, which may be of little value to the attacker. Since Intel
SGX usage is currently limited to a small portion of an ap-
plication that is highly security sensitive, and our goal is to
provide a TEE for a whole application or system, we instead
focus on non-counter mode memory encryption.
Intel Total Memory Encryption (TME) [6] allows for the

encryption of the entire physical memory of a system using
the AES-XTS algorithm with a 128-bit key. The encryption
key is generated using a hardware random number generator
residing in the System-on-Chip (SoC). Multi-Key Total Mem-
ory Encryption (MKTME) [6] extends the TME to support
multiple keys, and each page in the physical memory can
be associated with a key. A process or the OS can read the

Encryption

Encryption

aj

Key2

Key1

128-bit tweak 128-bit Plaintext

128-bit Ciphertext

Key1:
The first key with 128-bit length

The block sequence number

Key2:
The second key with 128-bit length

aj:

Figure 2. The block diagram of the AES-XTS encryption
mode used in Intel MKTME.

plaintext of a page only when it has the right key in its page
table entry for the page. The SoC supports a fixed number of
encryption keys, and software can use the keys to encrypt
any page in the memory.

Similarly, AMD Secure Memory Encryption (SME) [8] pro-
vides main memory encryption using a single key generated
by the AMD Secure Processor (AMD-SP). Encryption is per-
formed by AES encryption engines located in on-die memory
controllers using a 128-bit key. AMD Secure Encrypted Virtu-
alization (SEV) [8] extends SME by providing cryptographic
isolation for a VM from the hypervisor and other VMs. This
isolation is achieved by assigning a hardware tag and key to
each VM and tagging pages for that VM. This assures that
the plaintext of the VM pages to only be readable by the VM
itself.
Figure 2 illustrates the AES-XTS with 128-bit keys and a

tweak to encrypt a 128-bit plaintext. The tweak represents
the address of the data being encrypted or decrypted [1] to
ensure the same plaintext value at different addresses results
in different ciphertexts. Compared to counter-mode encryp-
tion, the AES-XTS mode does not require counters to be kept
to perform its operations, hence eliminating the counter in-
tegrity problem. Thus, other metadata (MACs and integrity
tree) are also no longer needed to ensure confidentiality.

2.3 Related Work
There are a few recent proposals for TEE on GPUs. HIX [7]
extended the Intel SGX interface to support the GPU enclave,
which focuses on securing the GPU driver. The MMU design
was also enhanced to prevent unauthorized access to the
GPU memory-mapped I/O region. ZeroKernel [10] proposed
a secure execution model that relies only on on-chip storage.
This model assumes all of the kernel code can fit into the
instruction cache and be stored there. It also assumes all of
the PTE is cached in the TLB, then it removes all of the PTE
from device memory and prevents page table reconstruction.
These two proposals require no hardware changes to the
GPU. Graviton [23] requires small hardware changes on the
peripheral components. It assumes that the GPUs are using

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

3D stack memory, making it difficult to perform physical
attacks. In Graviton, secure context isolation is achieved
through an ownership tracking table. Using this table pre-
vents unauthorized access to the victim address space. The
focus of these three studies is to provide secure GPU execu-
tion without a lot of overheads, hence they did not include
memory encryption.
Another approach to TEE is to bring CPU solutions to

GPUs. The common counter scheme [15] uses counter-mode
encryption and requires caches for the security metadata
such as counter, MAC, Merkle Tree, and Common Counter
Status Map. They observed that multiple counter values are
updated simultaneously, resulting in the same value for sev-
eral counters. They proposed to group several data blocks
to have a common counter to reduce counter cache misses.
Yuan et al. [26] analyzed the performance implication of
counter mode encryption for secure GPU memory. They ob-
served that the increase in memory traffic due to accessing
security metadata, including counters and MACs, is the main
contributor to performance degradation. The memory traffic
increase would affect GPUs using non-volatile memory more
than those using DRAM due to the lower bandwidth capacity
for larger memory space and crash-recoverable ability [3]. In
subsequent work, Yuan et al. [27] proposed the PSSM scheme
to reduce bandwidth overhead from the metadata. None of
the above works address the inter-operability of CPU/GPU
TEEs, hence they will still suffer the high performance over-
heads when data crosses encryption domains.
Table 1 compares the solutions discussed above versus

our software-based memory encryption LITE. Compared to
the Common Counter and PSSM, LITE provides a unified
encryption domain between CPU and GPU, allowing data to
move from/to CPU TEE and GPU TEE without re-encryption.
In contrast to Common Counter and PSSM, which require
substantial hardware support (crypto engine per memory
partition, metadata caches, etc.), LITE only requires small
hardware support (write-once pages) for protecting kernel
code. The flexibility of choosing an encryption algorithm is
unique to LITE. Due to the flexibility of LITE, after estab-
lishing a common shared key, the GPU can use the same
encryption scheme as the host CPU, leading to efficient com-
munication between them. For example, unified virtual mem-
ory (UVM) can be supported, and data can be moved back
and forth between CPU and GPU without re-encryption.
LITE also has the flexibility of applying memory security to
select data and select applications, depending on the need at
the host CPU, and requires no re-encryption. Finally, since it
requires little hardware support, LITE can be deployed easily
in current production GPU. In contrast, Common Counter
and PSSM solutions require much more hardware support
and are difficult to deploy.

Table 1. Comparing LITE with prior GPU enclaves.

Aspect Graviton [23] Common
Counter [15]

PSSM
[27] LITE

Memory encryption No Yes Yes Yes
Domain crossing N/A Yes Yes No
Hardware support Low High High Low
Flexible algo N/A No No Yes
Flexible app/data N/A No No Yes
Unified Memory N/A No No Yes
Deployability Easy Hard Hard Easy

3 Threat and Trust Model, Scope of Work
Both Intel TME and AMD SEV assume a threat model where
the attacker has both a software and physical attack surface.
The software attack surface is defined by the attacker having
control over privileged software such as the OS and hyper-
visor. The physical attack surface is defined by the attacker
having limited physical access to the machine to employ pas-
sive physical attacks such as snooping or scanning attacks
but cannot modify data stored in memory. To be compatible
with the host-side TEE, we assume the same attack model
for GPUs.
We consider the following attacks to be out of the scope

of this paper: active physical attacks (i.e., where data in
memory is physically tampered with), side-channel attacks,
and availability attacks.
Our trust model is as follows. We assume that the CPU,

GPU, and CPU/GPU memories are trustworthy components
in the sense that they operate correctly according to their
specifications, free of design errors, faults, and trojan circuits.
We assume that the system already has secure key storage
in place, where the CPU and GPU have built-in public/pri-
vate cryptographic key pair, with the public key readable
from chip pins and the private key stored securely in a non-
volatile manner in the CPU and GPU chips. Both chips are
also assumed to have non-volatile storage to keep other
keys, including session keys. Furthermore, we assume that
a trusted party, such as the system integrator or the cloud
administrator, has provided GPU public key to the CPU and
CPU public key to the GPU. Alternatively, the CPU and GPU
could automatically exchange public keys the first time they
are connected. Thus, the CPU and GPU have a mechanism
to initially trust each other.
Building on this trust, the CPU and GPU may initiate a

Diffie-Hellman key exchange to establish a different shared
session secret key, which enables a private communication
channel between the CPU and GPU. If there is more than
one CPU or GPU in the system, multiple secret keys must be
tracked and stored on-chip. The shared secret key enables a
private, authenticated communication channel that persists
until the system shuts down. When the system is rebooted,
the BIOS execution results in a new shared secret key to
establish the communication channel.
Furthermore, our LITE scheme relies on a hardware fea-

ture where kernel code cannot be tampered with once it

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

is loaded into GPU memory. Since active physical attacks
are out of scope, the kernel code would not be altered by
physical attacks. So, the possible threats would be malicious
software, such as a driver. The code may be protected by
the GPU page table, which sets the pages used for code as
read-only.

4 The Design of LITE
In this section, we describe the design of LITE and discuss
how, through a software solution with small hardware sup-
port, LITE allows GPU TEE to be co-designed with CPU
TEE and provides great flexibility in which application or
data is encrypted. Our discussion will start with rationale
and overview, APIs, hardware support, and optimizations
that enable LITE to achieve very low overheads for many
applications.

4.1 Rationale and Overview
Figure 3 contrasts the typical data flow of current hardware-
based GPU TEE design vs. our LITE. With current hardware
GPU TEE (Figure 3(a)), because CPU and GPU TEEs use dif-
ferent encryption schemes and/or have their own encryption
keys, they need to establish an intermediate ciphertext for-
mat that can be encrypted/decrypted by both the CPU and
GPU. Data sent by the CPU must first be decrypted from the
ciphertext 𝐶1 in the CPU TEE domain and encrypted to the
intermediate ciphertext form 𝐶2 1 . After memory copy to
device memory 2 , the ciphertext needs to be re-encrypted
again into the GPU TEE domain 3 . When data is read by
GPU, it is decrypted by the encryption engine 4 and stored
in plaintext 𝑃 in the on-chip GPU memory hierarchy. Notice
the two sets of decryption and encryption that are added
to the critical-path delay of CPU sending its data to GPU.
This has to be repeated in the reverse direction as the GPU
sends its computation result to the CPU at the end of kernel
execution.

Hardware GPU TEE

CPU GPU

Device Memory

L2

ALURegister

P

Shared Mem

C3

C2

re-
enc

Enc. Engine

L1

Host Memory

C1

C2
Mem Copy

re-
enc

LLC P

Shared Mem

Enc. Engine

L2

L1

Core

LITE

CPU GPU

Device Memory

L2

ALURegister

P

C

L1

Host Memory

C
Mem Copy

LLC P

Shared Mem

Enc. Engine

L2

L1

Core

Shared
Mem

C

C

SW
decr

Key Table RO pages

1 2 3

4 2

1

3

(a) (b)

4

5

Figure 3. The LITE vs Hardware-based GPU TEE typical
data flow from host to device.

In contrast, in LITE (Figure 3(b)), if the GPU is in the
same encryption domain as the CPU, we eliminate the re-
encryption of data between CPU and GPU. Data can be
directly copied from host memory to device memory 1 .
In theory, one could co-design GPU memory encryption
to match that of the CPU and also avoid cross-domain re-
encryption. However, this is difficult in practice for several
reasons. First, the GPU manufacturer may be different from
the CPU manufacturer, making co-design difficult. Second,
CPU may have different design and update cycles than GPU.
For example, AMD Epyc 7251 processor uses XE-based en-
cryption while AMD Epyc Embedded 3151 processor uses
XEX-based encryption mode, although produced only eight
months apart [24]. Finally, GPU may be used in many differ-
ent scenarios to execute different workloads, hence ideally,
GPU memory security should have a large degree of flexi-
bility to match use cases and workloads. Therefore, in LITE,
we focus on software memory encryption approach that
can be deployed in GPU independently on CPU. A conse-
quence of LITE’s software approach is that data is brought
into the GPU chip in ciphertext form 2 . Then software de-
crypts data using ALU 3 operating on data on registers 4 .
Data may also be stored temporarily in plaintext in on-chip
shared memory 5 . LITE’s software memory encryption
approach is enabled in GPU because data movement into
sharedmemory is controlled by software. The same approach
is not deployable in CPU because data movement in caches
is transparent to software.
There are several inherent advantages to LITE beyond

avoiding domain-crossing re-encryption overheads. It can
readily support unified virtual memory (UVM) because a
page can be copied between host and device memory with-
out any ciphertext transformation. Second, data is stored in
ciphertext form in GPU caches, which are shared by multiple
SMs that may run different kernels concurrently. While we
are not aware of current security attacks that leak cached
data, if such an attack arises in the future due to GPU design
bugs, only the ciphertext leaks out.

Challenges in achieving LITE are numerous, and we seek
to address them in this paper. Implementing the same en-
cryption algorithm in software in GPU is only the first step
in sharing an encryption domain with CPU TEE. First, sim-
ple APIs need to be defined for kernels to use. Second, an-
other necessary ingredient is to share the same encryption
metadata as used in the CPU TEE, including any tweak in-
puts (e.g., host physical address). Third, there needs to be
hardware support at GPU to ensure that encryption software
cannot be tampered with by the attacker and that encryption
keys can be stored securely in GPU chip. Fourth, software
encryption performance bottlenecks are aplenty and need
to be addressed, including high latencies, warp divergence,

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

and the challenges in collecting 128-bit of data from mul-
tiple threads to be encrypted/decrypted with block cipher
algorithms. We will discuss them in the rest of the section.

4.2 Encryption APIs
Since AES is block-based encryption, data is encrypted by
the host in blocks of 128 bits (if 128-bit AES is used). To
decrypt data correctly, the same block must be gathered and
decrypted. If the access pattern of the GPU is to contiguous
data elements, then the encryption block can be gathered
simply by collecting data from the registers of neighbouring
threads. To do that, we rely on shfl, which is awarp-level shuf-
fling instruction that enables a thread to read the registers
of other threads. After decryption, data can be redistributed
back to various threads by another round of shuffling. How-
ever, the if memory access pattern involves non-contiguous
locations, assembling an encryption block is not as straight-
forward. In this case, we rely on padding so that each data
item is expanded into a 128-bit single encryption block.
To ease adoption of LITE in the kernel code, we provide

high-level AES APIs shown in Table 2. The first two calls are
used for the case where adjacent threads in a warp access
contiguous data, while the last two are provided when adja-
cent threads do not access contiguous data, hence padding
is used (int_128 or a vector of four ints/floats) per thread.

Table 2. Encryption APIs

Interface to encryption and decryption
encrypt(data, variable_addr, addr_type, enc_mode)

decrypt(variable_addr, addr_type, enc_mode)

encrypt_v4(data, variable_addr, addr_type, enc_mode)

decrypt_v4(variable_addr, addr_type, enc_mode)

The decrypt/decrypt_v4 API loads the ciphertext and re-
turns the plaintext. The encrypt/encrypt_v4 API takes the
plaintext data in a register and returns the ciphertext gen-
erated using the key and the address tweak. In the last two
arguments for each API function, the type of address (vir-
tual or physical) and the encryption modes are specified to
match those used by the CPU TEE. Listing 1 shows the im-
plementation of APIs. decrypt shows the use of shuffling to
assemble multiple contiguous 32-bit values in neighboring
threads’ registers into one 128-bit (Step 4), which is then de-
crypted (Step 5), and redistributed back to different threads’
registers (Step 6). For decrypt_v4 and encrypt_v4, with each
thread accessing data using the float4 or int4 data types, data
assembling/re-distribution is not needed, hence AES encryp-
tion function is invoked directly (Step 4 and 3, respectively).

Listing 1. Implementation of AES APIs.
1 unsigned int decrypt(unsigned int v_addr , bool

addr_type , int enc_mode) {
2 //step 1: configure encryption mode
3 AES_Encryption_Mode(enc_mode);

4 //step 2: set address tweak type
5 AES_Address_Type(addr_type);
6 //step 3: accessing global memory at v_addr
7 unsigned int temp = (unsigned int) (* v_addr);
8 int_128 buff;
9 unsigned int p_text // plaintext
10 //step 4: assemble 128-bit data block
11 if(tid % 4 == 0) { //tid is the thread id
12 buff [0] = temp; //temp from thread i, i is a

multiple of 4
13 buff [1] = __shfl_down_sync (0xffffffff ,temp , tid +

1) //temp from thread i+1
14 buff [2] = __shfl_down_sync (0xffffffff ,temp , tid +

2) //temp from thread i+2
15 buff [3] = __shfl_down_sync (0xffffffff ,temp , tid +

3) //temp from thread i+3
16 //step 5: decrypt data with AES_decrypt
17 buff = AES_decrypt(buff , v_addr);
18 }
19 //step 6: Distribute decrypted data to threads
20 if(tid% 4 == 0)
21 p_text = buff [0];
22 else
23 p_text = shfl_down_sync (0xffffffff , buff[tid%4],

tid - tid %4]);
24 return p_text;
25 }
26 unsigned int encrypt(unsigned int data , unsigned int

v_addr , bool addr_type , int enc_mode) {
27 unsigned int c_text; // ciphertext
28 int_128 buff;
29 //step 1: configure encryption mode
30 AES_Encryption_Mode(enc_mode);
31 //step 2: set address tweak type
32 AES_Address_Type(addr_type);
33 //step 3: assemble 128-bit data block
34 if(tid % 4 == 0) {
35 buff [0] = data; //data from thread i, i is a

multiple of 4
36 buff [1] = __shfl_down_sync (0xffffffff ,data , tid +

1) //data from thread i+1
37 buff [2] = __shfl_down_sync (0xffffffff ,data , tid +

2) //data from thread i+2
38 buff [3] = __shfl_down_sync (0xffffffff ,data , tid +

3) //data from thread i+3
39 //step 4: encrypt data with AES_encrypt
40 buff = AES_encrypt(buff , v_addr);
41 }
42 //step 5: distribute encrypted data to threads
43 if(tid % 4 == 0)
44 c_text = buff [0];
45 else
46 c_text = shfl_down_sync (0xffffffff , buff[tid%4],

tid - tid %4]);
47 return c_text;
48 }
49 int_128 decrypt_v4(unsigned int v_addr , bool addr_type ,

int enc_mode) {
50 int_128 p_text // plaintext
51 //step 1: configure encryption mode
52 AES_Encryption_Mode(enc_mode);
53 //step 2: set address tweak type
54 AES_Address_Type(addr_type);
55 //step 3: accessing global memory at v_addr
56 int_128 temp = (int_128) (* v_addr);
57 //step 4: decrypt data with AES_decrypt
58 p_text = AES_decrypt(temp , v_addr);
59 return p_text;
60 }
61 int_128 encrypt_v4(int_128 data , int_128 v_addr , bool

addr_type , int enc_mode) {
62 int_128 c_text // ciphertext;
63 //step 1: configure encryption mode
64 AES_Encryption_Mode(enc_mode);
65 //step 2: set address tweak type
66 AES_Address_Type(addr_type);
67 //step 3: encrypt data with AES_encrypt
68 c_text = AES_encrypt(data , v_addr);
69 return c_text;
70 }

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

4.3 AES Encryption and Address as the Tweak
As LITE encryption is based on software, the encryption
algorithm and mode could be changed and updated to make
it more secure, e.g., to add resistance to side-channel [13] or
using a weaker algorithm such as DES [17] if higher perfor-
mance is desired. For our implementation, we use the AES
encryption from OpenSSL v1.1.1 and adapt it to CUDA [13].
It uses a T-table with a series of table lookups for each round
and XORed to the round key.

To achieve CPU-GPU TEE interoperability, for host (CPU)
memory encryption relying on a tweak, LITE needs to rely
on the same tweak used by the host. Two approaches are
possible. The first approach is to use the host physical ad-
dress as the AES tweak. With this approach, the GPU needs
to have the host physical address to decrypt data encrypted
by the host and to encrypt the output for the host to decrypt.
To achieve this, the GPU needs to keep the host physical
address and uses it for decryption and encryption or be able
to look it up. At least three techniques are possible. One
technique is to add host physical address into the GPU page
table such that given a virtual address, both host and GPU
physical addresses can be looked up [19] [20]. With this tech-
nique, the GPU TLB also needs to be extended to include
the host physical address. An alternative technique is for the
GPU and host to share the same page table [11]. When the
GPU misses in its TLB, the host IOMMU can be triggered to
do a page table walk and provide the host physical address
to the GPU for use in decryption and encryption. In this
case, the GPU TLB can keep the host physical addresses but
avoid modifications to the page table. Such a technique can
utilize existing features such as NVIDIA Address Translation
Service (ATS), available since Volta [21]. Finally, host physi-
cal addresses can be maintained in a separate data structure
maintained entirely by the GPU. Such a structure needs to be
populated prior to kernel launch, protected as read-only dur-
ing kernel execution and looked up as needed by the GPU for
encryption/decryption. In any case, in order for the host to
decrypt the GPU computation result correctly, we need to re-
serve data pages in the host physical memory until the GPU
computation is completed. In other words, LITE requires
that all UVM data have consistent host physical addresses. It
can be achieved by reserving & pinning host memory when
UVM is allocated with the cudaMallocManaged API (a host
function). If a page is first accessed by the GPU, the host
physical address is sent through the page fault handler with-
out data migration. If a page from UVM is migrated from
host memory to GPU device memory, it is not unmapped,
similar to page pinning. For the data generated from GPU,
such as stack frames, for which there are no corresponding
host physical addresses, the GPU physical addresses can be
used as the tweak. This practice would not affect CPU-GPU
interoperability since GPU private data is not part of UVM
and would not be accessed by the host.

The second approach is to use virtual addresses as the
AES tweak. As UVM provides a unified virtual address space
between host and GPU, the virtual addresses are the same
on either side. Therefore, no additional changes are needed
to achieve interoperability. Neither pinning nor modifica-
tions to paging are necessary. However, most host memory
encryption uses physical addresses, which requires some
changes to host memory encryption design, e.g., additional
datapath to pass virtual addresses from the core to the mem-
ory controller. In our experiments on real GPU hardware,
we assume this approach for the purpose of performance
evaluation. The performance of the first approach (i.e., using
host physical address as a tweak) would be very similar to
the second approach if the GPU TLB is expanded to include
the host physical address.

4.4 Kernel Code Adaptation
With our provided APIs, GPU kernel modification is quite
straightforward. After determining the encryption algorithm,
its mode, tweak, and address used in the tweak, global mem-
ory accesses to the data are examined. By default, we treat
all GPU global memory as secure (encrypted) unless config-
ured otherwise. If the memory accesses for four consecutive
threads fall into contiguous locations, then no padding is
assumed, and the APIs to use are the first two in Table 2.
Otherwise, padding is used, and the last two are used.
Kernel code can be adapted to use the APIs either manu-

ally or automatically by a compiler. With the compiler ap-
proach, the programmer can annotate the secure data vari-
ables through #pragma directives similar to OpenMP-style
annotation, and the compiler transforms the directives into
API calls. In this case, the compiler transformation forms a
part of the trust base.

Listing 2 illustrates an example with tiled matrix multipli-
cation. Global memory reads include ’a[row * n + (i*tile_size

+tx)]’ and ’b[(i * tile_size * n + ty* n) + col]’. Since
accesses are to contiguous 32-bit data, we simply convert
them to ’decrypt(&a[row * n + (i*tile_size+tx)], addr_type,

enc_mode)’ and ’decrypt(&b[(i * tile_size * n + ty* n) +

col], addr_type, enc_mode)’. Similarly, the global memory
store statement ’c[(row*n) + col] = temp_val’ is converted
to ’c[(row*n) + col] = encrypt(temp_val, &c[(row*n) + col],

addr_type, enc_mode)’.

Listing 2.Matrix multiplication kernel after code adaptation.

1 __global__ void tiledMatrixMul(float *a, float *b,
float *c, int n,

2 int tile_size) {
3 __shared__ float A[SHMEM_SIZE];
4 __shared__ float B[SHMEM_SIZE];
5 int_128 buff1 , buff2;
6 int row = by * tile_size + ty;
7 int col = bx * tile_size + tx;
8 int temp_val = 0;
9 bool addr_type = true; // true: phsyical , false:

virtual
10 enc_mode = 1; // 0:ECB , 1:AES -XTS , 2:XE, 3:XEX etc.

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

11 // Sweep tiles over entire matrix
12 for (int i = 0; i < (n / tile_size); i++) {
13 A[(ty * tile_size) + tx] = (float) decrypt(&a[row

* n + (i * tile_size + tx)], addr_type , enc_mode);
14 B[(ty * tile_size) + tx] = (float) decrypt(&b[(i *

tile_size * n + ty * n) + col], addr_type ,
enc_mode);

15 __syncthreads ();
16 for (int j = 0; j < tile_size; j++) {
17 temp_val += A[(ty * tile_size) + j] * B[(j *

tile_size) + tx];
18 }
19 __syncthreads ();
20 }
21 c[(row * n) + col] = encrypt(temp_val , &c[(row * n) +

col], addr_type , enc_mode);
22 }

Listing 3. BFS kernel before and after code adaptation.
1 struct pad_128 {
2 int32_t data; //32 bit
3 int32_t pad; //32 bit
4 int64_t pad; //64 bit
5 };
6 bfs_kernel(pad_128 *row , pad_128 *col , pad_128 *d,

float_128 *rho , pad_128 *cont ,
7 const pad_128 num_nodes , const pad_128

num_edges , const pad_128 dist)
8 { ...
9 /* original code
10 for (int edge = start; edge < end; edge ++) {
11 int w = col[edge];
12 if (d[w] < 0) {
13 (*cont) = 1;
14 ...
15 } ... */
16 //code after padding
17 for (int edge = start; edge < end; edge ++) {
18 int w = decrypt_v4 (&col[edge], addr_type ,

enc_mode);
19 if (decrypt_v4(d[w], addr_type , enc_mode) <0){
20 int_128 i;
21 i.data = 1;
22 (*cont) = encrypt_v4(i, cont , addr_type ,

enc_mode);
23 ...
24 }
25 }

For non-contiguous access patterns, the data structure is
padded before using the AES APIs to ensure that we would
get 128-bit of data for encryption. The BFS function of the
BC benchmark in Listing 3 shows ’col[edge]’, ’d[w]’, and
’(*cont)’ in lines 11-13 not accessing contiguous locations,
hence the ’int’ type is converted to pad_128 type, which
contains 96-bit padding beside the 32-bit data. Padding, how-
ever, increases the data structure size and incurs significant
performance penalties.

4.5 Hardware Support
In order for LITE to work securely, some hardware support
is needed. The hardware support required by LITE includes
on-chip key storage, remote attestation, and code-integrity
protection. Among them, on-chip key storage and remote at-
testation are supported in the latest NVIDIAHopper GPU [2].
In LITE, code-integrity protection is achieved by page table
protection, which sets the code pages as read-only. Such

hardware overhead does not affect the performance of ker-
nel execution. Note that compared to Hopper GPU, which
enables encrypted CPU-GPU data transfer, LITE provides
confidentiality of data stored in GPU memory.

4.6 Code Optimizations
Masked shuffle. As discussed earlier, we could use shfl

instruction to collect 128-bit of data for decryption. shfl has
an implicit thread synchronization that acts as a barrier to
ensure threads in a warp have finished earlier computation
prior to data exchange. This fact is important when consider-
ing applications with branch divergence. If threads in a warp
have thread-divergent branches and execute a shfl, which
is permitted in Volta and later GPU architectures [12], the
shuffle is delayed until the threads with the longest branch
path complete. This performance bottleneck is illustrated
in an example in Figure 4 (top), where odd-ID threads di-
verge on a branch path than even-ID threads. When only
odd-ID threads need to load ciphertext from global memory,
shfl forces them to wait for even-ID threads before data ex-
change in the decrypt function. To solve this, we propose
a masked shuffle optimization that ensures only threads in
the same branch path would be masked so that only those
same threads will participate in data exchange. It takes ad-
vantage of the "mask" operand in the shfl instruction, which
indicates specific threads in a warp that participate in the
shuffling. We use the __ballot_sync() function to determine
the set of participating threads in a warp for a branch path.
This function is invoked before the diverging if statements.
The result is used to set the mask of the shfl instruction such
that only participating threads in a branch path perform the
shuffle. In the example in Figure 4 (bottom), we use an odd
mask in the decrypt function. By doing this, we let the odd
ID threads complete the shuffle sooner, and the even threads
do not participate in data exchange, thereby reducing the
execution time.

Unoptimized shfl on divergent branch

path B

path A stall
Todd shfl

Teven

Masked shfl on divergent branch

path B

path A shfl

Time

saved cycles
Todd

Teven

AES_dec

AES_dec stall

Figure 4. The timeline comparison between unoptimized
shfl vs masked shfl. Following a divergent branch, only
threads in path A fetch ciphertext from global memory.

Delayed Shuffle. Another problem with the implicit syn-
chronization of shfl is that it limits instruction overlapping.
For example, lines 13 and 14 in Listing 2 are two independent
global memory reads, ’fetch A’ and ’fetch B’, and they can

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

fetch A
T0

fetch A
T1

shfl

stall shfl

AES_dec

AES_dec fetch B

fetch B stall shfl

shfl

AES_dec

AES_dec

fetch A
T0

fetch A
T1

shfl

shfl

AES_dec

AES_decfetch B

fetch B saved cyclesshfl

shfl

AES_dec

AES_dec saved cycles

Unoptimized shfl

Delayed shfl

Time

Figure 5. The timeline comparison between unoptimized
code and optimized code with delayed shuffle. Fetch A and
fetch B are two independent global memory accesses. Unop-
timized code decrypts the data immediately while delayed
shuffle decrypts the data after the data are loaded into shared
memory/registers.

be issued back to back. However, due to the shfl used in the
decrypt function, fetch A and fetch B are sequentialized, as il-
lustrated in Figure 5 (top). As a result, when there is memory
divergence, i.e., some threads having cache hits while others
in the same warp have cache misses, the longest latency
is exposed. To address this problem, we propose a delayed
shuffle optimization, which delays the decrypt function after
independent global memory reads. In the example of Listing
2, the decrypt function is moved to right before the sync-
threads function in line 15. In other words, the ciphertexts
are first loaded in shared memory (both fetch A and fetch
B), then the decrypt function is used to overwrite the shared
memory array with plaintext. This would re-enable overlap-
ping between fetch A and fetch B, as illustrated in Figure 5
(bottom), leading to improved performance.

Selective Padding. If threads do not access contiguous
data and the access pattern is hard to identify statically,
there may be a data coherence problem that arises when
two threads modify different data items in the same encryp-
tion block.We refer to this as an encryption block false sharing
problem. Without hardware cache coherence, both threads
will need to read the same encryption block in order to de-
crypt it, but this may create incoherent replicas. Earlier, we
discussed that we eliminate the false sharing by padding the
data structure such that each element is expanded to 128 bits.
While this solution works, it increases memory footprint and
bandwidth pressure. To improve on this, we note that having
encryption block replicas only leads to coherence issues only
if the block is modified. Thus, we perform selective padding
optimization by differentiating the data access type; and skip-
ping padding if data is read-only. The read-only attribute
can be obtained from the programming model, e.g., the in-
put buffers in OpenCL, compiler analysis, or programmer
annotation.

5 Methodology
We evaluate LITE on an NVIDIA RTX 2080 GPU. The system
runs on Ubuntu OS version 18.04 with NVIDIA driver version
440.33.01. For compilation, we use the CUDA version 11.0 and
GCC version 7.1.0. We also use NVIDIA Nsight Compute to
collect the hardware performance statistics. Each experiment
was repeated 100 times, and we use the average of them.

To test LITE, we use a wide range of applications from two
benchmark suites, Parboil and Pannotia, as shown in Table
3. They consist of both regular GPU and irregular GPU code.
Parboil benchmarks have regular GPU code and work well
with GPUs since their memory accesses can be coalesced,
and a 128-bit block of data is accessed either by one or four
adjacent threads. Pannotia has irregular GPU code that ac-
cesses memory locations depending on the input, i.e., the
sequence of memory accesses are randomly determined by
the input. Irregular GPU codes have relatively poor perfor-
mance on GPUs. As discussed in the previous section, we
use padding for the irregular benchmarks, in which a 128-
bit data block is not accessed by a single thread or by four
consecutive threads in a warp.

Table 3. Benchmarks

Name Input Suites Reg Size(MB) Bottleneck
SPMV 1138_bus.mtx Parboil[18] Yes 0.04 Memory
MM medium Parboil Yes 55.8 Compute
TPACF small Parboil Yes 0.88 Compute
GRIDDING small.uks Parboil Yes 63.7 Compute
MRI-Q 32_32_32_dataset Parboil Yes 0.44 Compute
LBM short Parboil Yes 2.2 Memory
SAD large Parboil Yes 8.2 Memory
STENCIL 128x128x32 Parboil Yes 2.1 Memory
HISTO large Parboil Yes 4.1 Memory
FW 256_16384.gr Pannotia[4] No 0.19 Memory
BC 1k_128k.gr Pannotia No 1.7 Memory
MIS ecology1.gr Pannotia No 28.5 Memory
PAGERANK coAuthorsDBLP.gr Pannotia No 12.6 Memory
SSSP NY.gr Pannotia No 14.4 Memory
COLOR ecology1.gr Pannotia No 28.5 Memory

In Table 3, the ’Reg’ column indicates whether the bench-
mark is regular or irregular, ’Size’ indicates the input size
in megabytes, and ‘Bottleneck’ indicates the performance
bottleneck of the benchmark is compute or memory. The bot-
tleneck categorization is determined mainly from the DRAM
utilization and Streaming Multiprocessor (SM) utilization, as
shown in Figure 6. If the DRAM utilization is higher than
the SM utilization, the benchmark is categorized as memory
bound, and vice versa. An exception is SAD; this benchmark
is categorized as memory bound since it has 98% utilization
of the internal caches.

6 Evaluation
6.1 LITE Performance Overhead
We present the kernel execution time overheads incurred
by naive vs. optimized LITE implementations over the un-
secured GPU baseline in Figure 7 and Figure 8 for regular

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

52.44% 62.37% 74.36% 62.87% 76.23% 88.28% 81.99% 73.96% 62.88%

Figure 6. Streaming Multiprocessor (SM) utilization and
DRAM bandwidth utilization.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

4.00%70.21% 41.98% 14.25% 65.95% 18.94%

shfl-optshfl-naive encryption

Figure 7. Kernel execution time overheads of naive
LITE (shfl-naive+encryption) vs. optimized LITE (shfl-
opt+encryption) over unsecured GPU baseline on regular
GPU benchmarks.

and irregular code, respectively. The naive implementation
always encrypts or decrypts data immediately after loading
it or immediately before storing it to global memory. The
optimized LITE applies all the optimizations described in
Subsection 4.6. The execution time overhead is broken down
into the time to perform encryption/decryption (encryption),
the time to perform data shuffling without optimizations
(shfl-naive), and the time to perform data shuffling with opti-
mizations (shfl-opt). The last set of bars shows the geometric
mean overheads across all benchmarks in the respective cat-
egory. Note that the y-axes of the figure is capped at 3%
for easier reading, but the actual magnitude overheads are
shown in numbers for any bars that exceed the cap.
For regular applications in Figure 7, the naive implemen-

tation of LITE incurs 18.9% mean overheads.The overheads
are especially very high for four benchmarks: SPMV (70.2%),
MM (42.0%), GRIDDING (14.3%), and STENCIL (66.0%). In
contrast, our optimizations are extremely effective, bring-
ing the geometric mean down to more than one order of
magnitude smaller, at 1.1%.
Examining the source of the overhead, we note that the

encryption time itself causes only 0.5% overhead in general.
Although encryption/decryption latency is relatively high
when performed in software, GPU is good at hiding it via
thread-level parallelism, resulting in nearly negligible en-
cryption overheads. This observation is also consistent with
the findings in the prior work [26]. However, anything that

reduces the degree of thread-level parallelism can easily in-
troduce high execution time overheads. In particular, the shfl
instruction exposes the load imbalance of path divergence
between threads in a wrap, forcing the wrap synchronization
to wait for the slowest execution path to be completed. Also,
it limits overlapping among independent instructions. The
naive LITE shows that nearly all of the overheads for SPMV,
MM, GRIDDING, and STENCIL, come from shuffling.

To verify if the implicit wrap synchronization in shfl is the
culprit, we replaced the shfl instruction with __syncwarp()
and noticed roughly the same overheads.Wewill now discuss
the impact of optimizations on each benchmark.

For SPMV, we apply the masked shuffle optimization, en-
suring that only threads that fetched data would participate
in the corresponding data exchange and would be indicated
active in the "mask". This optimization lowers the perfor-
mance overhead from 70.2% to just 4.0%. The reason for the
masked shuffle effectiveness is that SPMV may make some
threads idle if their global thread id is beyond the length of
the vector input. Thus, the idle threads should not be indi-
cated as active in the "mask." We did not apply delayed shuffle
because there are no independent data accesses.
For MM, we apply both the masked shuffle and delayed

shuffle optimizations. We also replace some of the shfl with
data fetch from the neighbouring addresses to collect the
128-bit encryption block. These optimizations significantly
lower the overheads from 42.0% to just 0.6%, which is nearly
two orders of magnitude improvement.

For GRIDDING and STENCIL, we applied both the masked
shuffle and delayed shuffle optimizations. After applying the
masked shuffle, the overhead decreases to 10.4% and 2.0%
respectively, which is still somewhat high. However, after
applying the delayed shuffle, the overheads go down to just
1.7% and 0.4% for GRIDDING and STENCIL, respectively. For
TPACF, the masked shuffle optimization was applied similar
to SPMV.

For irregular benchmarks (Figure 8), padding removes the
false sharing coherence problem but significantly contributes
to the overheads, incurring 206.5% geometric mean over-
heads for naive LITE due to increased working set size lead-
ing to higher bandwidth pressure. When we apply selective
padding to the benchmarks, the execution time overheads
decrease substantially as bandwidth pressure decreases. The
geometric mean overhead decreases to 55.7%.

Only FW does not suffer from much overhead. The anom-
aly of FW is because its working set (Table 3) fits entirely
in the L2 cache even after padding, hence padding does not
increase bandwidth pressure. For other benchmarks, band-
width pressure increases in padding due to the higher total
number of memory accesses. In addition, miss rates often
increase also. Figure 9 shows the L2 cache miss rate of unse-
cured GPU, full padding, and selective padding. Generally,
the figure shows that padding increases the L2 miss rates,

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

196.30% 419.52%188.74% 394.05% 577.22% 206.47%

Figure 8. Kernel execution time overhead of naive LITE
implementation (pad+encryption) vs. optimized LITE (se-
lective_pad+encryption) over unsecured GPU baseline on
irregular GPU workloads.

which are then reduced by selective padding. The only ex-
ception is COLOR. However, even though COLOR’s L2 miss
rate decreases with padding, its L1 cache miss rate increases
(from 71% to 79%).

84.23%

Figure 9. Comparison of the L2 miss rate of unsecure GPU
(baseline) vs. full padding (pad) vs. selective padding (selec-
tive_pad) on irregular GPU code.

6.2 Benefit of Partial Encryption on LITE
Due to its software approach, LITE has great flexibility. We
demonstrate one particular usage that stems from the flex-
ibility, which is partial encryption. Here we explore sce-
narios where only the input or the output to GPU is confi-
dential, hence needs encryption. Figure 10 shows the exe-
cution time overheads, normalized to full encryption (i.e.,
full encryption overheads are 100%), for input-only encryp-
tion with padding applied only to input, and output-only
encryption with padding only applied to the output. Only
irregular benchmarks are shown in the figure since full en-
cryption overheads for regular workloads are already very
small. The figure shows that partial encryption is gener-
ally effective, more so for input-only (82.0% lower) than for
output-only (20.5% lower). Furthermore, its effect varies sig-
nificantly across benchmarks, with some achieving nearly
negligible overheads for input-only encryption (MS, PAGER-
ANK, and COLOR) while others for output-only encryption
(BC).

6.3 Performance of Software Implementation of AES
As LITE does not use a crypto engine to encrypt the data,
it relies on software implementation of AES to perform en-
cryption. The software performance of AES encryption of a

86.26% 66.16% 96.28% 96.50% 99.18% 67.94% 99.50% 79.51%

N
or

m
al

iz
ed

 E
xe

cu
ti
on

 T
im

e
O

ve
rh

ea
d

Figure 10. Normalized execution time overhead over full
encryption of optimized LITE for input-only encryption vs
output-only encryption on irregular GPU code.

single round of AES takes up to 1011 cycles before the cache
warms up, while after that, it takes only 34 cycles for a single
round. Similarly, the overall AES encryption latency is 7880
cycles before the cache warms up, while after that, it takes
340 cycles. The latency is measured by taking the difference
between the clock cycle before and after each round or the
encryption function. After the cache warms up, the GPU
only needs to perform bit operations such as XOR, AND, and
bit shift for encryption. While before the cache warms up,
the GPU needs to fetch the T-table into its caches followed by
bit operations for performing encryption, thereby incurring
higher latency.

6.4 Performance Comparison between LITE and
PSSM

We modeled LITE in GPGPU-sim [9] and compared it with
PSSM [27]. We also simulated the re-encryption process by
running a re-encryption kernel for the input of each bench-
mark on the simulator. We simulated on all benchmarks
listed in Table 3 up to 1B instructions or finished earlier. The
results are shown in the Figure 11. As shown in the figure,
for regular codes, LITE always achieved lower performance
overhead compared to PSSM. For irregular codes, PSSM has
lower performance overhead if the re-encryption overhead
is not included. With re-encryption, PSSM shows a similar
overall performance to LITE. Across all benchmarks, LITE
achieved 11.7% performance overhead while PSSM with re-
encryption achieved 68.8% overhead. From this, we could see
that a key advantage of LITE is its interoperability, which
eliminates the high re-encryption cost.

7 Conclusion
In this work, we proposed a software-based TEE for GPUs
(LITE). We observed that when CPU and GPU TEE are not
co-designed, communication between them incurs high per-
formance overheads because of encryption domain cross-
ing. Since LITE is software-based encryption, its encryption
scheme can be co-designed to match host-side TEE, even
after tape out. LITE only needs minor architecture support.

ICS ’22, June 28–30, 2022, Virtual Event, USA Ardhi Wiratama Baskara Yudha, Jake Meyer, Shougang Yuan, Huiyang Zhou, and Yan Solihin

259.46% 215.21% 149.50% 72.77% 141.88% 82.39% 68.78%

Figure 11. Comparison of execution time overhead of LITE
vs. PSSM with re-encryption overhead evaluated in GPGPU-
sim.

Measured on NVIDIA RTX 2080 GPU, naive LITE implemen-
tation incurs substantial performance overheads. We pro-
posed three different optimizations including masked shuffle,
delayed shuffle, and selective padding. Together, these opti-
mizations are effective. LITE incurs execution time overheads
of only 1.1% and 56% for regular and irregular benchmarks,
respectively.

8 Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments. We also thank Rex McCrary for his feedback on this
work. For this work, the UCF team is supported in part by
NSF through grant 1908079 and by AMD, while the NCSU
team is funded in part by NSF through grant 1908406 and by
an AMD gift fund.

References
[1] 2019. IEEE Standard for Cryptographic Protection of Data on Block-

Oriented Storage Devices. IEEE Std 1619-2018 (Revision of IEEE Std
1619-2007) (2019), 1–41. https://doi.org/10.1109/IEEESTD.2019.8637988

[2] Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal
Mehta, Gonzalo Brito, and Sridhar Ramaswamy. 2022. NVIDIA H100
Tensor Core GPU Architecture. https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth

[3] Ardhi Wiratama Baskara Yudha, Keiji Kimura, Huiyang Zhou, and
Yan Solihin. 2020. Scalable and Fast Lazy Persistency on GPUs. In 2020
IEEE International Symposium on Workload Characterization (IISWC).
252–263. https://doi.org/10.1109/IISWC50251.2020.00032

[4] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. 2013. Pan-
notia: Understanding irregular GPGPU graph applications. In 2013
IEEE International Symposium on Workload Characterization (IISWC).
185–195. https://doi.org/10.1109/IISWC.2013.6704684

[5] Victor Costan and Srinivas Devadas. 2016. Intel sgx explained. IACR
Cryptol. ePrint Arch. 2016, 86 (2016), 1–118.

[6] Intel. 2019. Intel® Architecture Memory Encryption Technologies
Specification. https://software.intel.com/content/dam/develop/
external/us/en/documents/multi-key-total-memory-encryption-
spec-753926.pdf

[7] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. 2019. Heterogeneous Isolated Execution for Commodity
GPUs. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Sys-
tems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 455–468. https://doi.org/10.1145/
3297858.3304021

[8] D. Kaplan, J. Powell, and T. Woller. 2016. AMD Memory Encryp-
tion. https://developer.amd.com/wordpress/media/2013/12/AMD_
Memory_Encryption_Whitepaper_v7-Public.pdf

[9] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G.
Rogers. 2020. Accel-Sim: An Extensible Simulation Framework for
Validated GPU Modeling. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 473–486. https://doi.org/
10.1109/ISCA45697.2020.00047

[10] O. Kwon, Y. Kim, J. Huh, and H. Yoon. 2019. ZeroKernel: Secure
Context-isolated Execution on Commodity GPUs. IEEE Transactions
on Dependable and Secure Computing (2019), 1–1. https://doi.org/10.
1109/TDSC.2019.2946250

[11] Bingyao Li, Jieming Yin, Youtao Zhang, and Xulong Tang. 2021. Im-
proving Address Translation in Multi-GPUs via Sharing and Spilling
Aware TLB Design. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21).
Association for ComputingMachinery, New York, NY, USA, 1154–1168.
https://doi.org/10.1145/3466752.3480083

[12] Yuan Lin and Vinod Grover. 2018. Using CUDA Warp-Level Primitives.
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives

[13] Zhen Lin, Utkarsh Mathur, and Huiyang Zhou. 2019. Scatter-and-
gather revisited: High-performance side-channel-resistant AES on
GPUs. In Proceedings of the 12thWorkshop onGeneral Purpose Processing
Using GPUs. 2–11.

[14] FrankMcKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon John-
son, Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® software
guard extensions (intel® sgx) support for dynamic memory manage-
ment inside an enclave. In Proceedings of the Hardware and Architec-
tural Support for Security and Privacy 2016. 1–9.

[15] Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, and Jaehyuk Huh.
2021. Common Counters: Compressed Encryption Counters for Se-
cure GPU Memory. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 1–13. https://doi.org/10.
1109/HPCA51647.2021.00011

[16] NVIDIA Pascal. 2016. NVIDIA Tesla P100 Whitepaper.
[17] FIPS Pub. 1999. Data encryption standard (DES). FIPS PUB (1999),

46–3.
[18] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-

Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012).

[19] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014.
GPUvm: Why Not Virtualizing GPUs at the Hypervisor?. In 2014
USENIX Annual Technical Conference (USENIX ATC 14). USENIXAssoci-
ation, Philadelphia, PA, 109–120. https://www.usenix.org/conference/
atc14/technical-sessions/presentation/suzuki

[20] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2016.
GPUvm: GPU Virtualization at the Hypervisor. IEEE Trans. Comput.
65, 9 (2016), 2752–2766. https://doi.org/10.1109/TC.2015.2506582

[21] Nvidia Team. 2022. CUDA C++ Programming Guide. https://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[22] NVIDIA Tesla. 2017. NVIDIA TESLA V100 GPU Architecture Whitepa-
per.

[23] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:
Trusted Execution Environments on GPUs. In 13th USENIX Symposium
onOperating Systems Design and Implementation (OSDI 18). USENIXAs-
sociation, Carlsbad, CA, 681–696. https://www.usenix.org/conference/
osdi18/presentation/volos

https://doi.org/10.1109/IEEESTD.2019.8637988
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth
https://doi.org/10.1109/IISWC50251.2020.00032
https://doi.org/10.1109/IISWC.2013.6704684
https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/multi-key-total-memory-encryption-spec-753926.pdf
https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1145/3297858.3304021
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/TDSC.2019.2946250
https://doi.org/10.1109/TDSC.2019.2946250
https://doi.org/10.1145/3466752.3480083
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives
https://doi.org/10.1109/HPCA51647.2021.00011
https://doi.org/10.1109/HPCA51647.2021.00011
https://www.usenix.org/conference/atc14/technical-sessions/presentation/suzuki
https://www.usenix.org/conference/atc14/technical-sessions/presentation/suzuki
https://doi.org/10.1109/TC.2015.2506582
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos

LITE: A Low-Cost Practical Inter-Operable GPU TEE ICS ’22, June 28–30, 2022, Virtual Event, USA

[24] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisen-
barth. 2020. SEVurity: No Security Without Integrity: Breaking
Integrity-Free Memory Encryption with Minimal Assumptions. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1483–1496.

[25] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers, and Yan Solihin.
2006. Improving Cost, Performance, and Security of Memory Encryp-
tion and Authentication. In 33rd International Symposium on Computer
Architecture (ISCA’06). 179–190. https://doi.org/10.1109/ISCA.2006.22

[26] Shougang Yuan, Ardhi Wiratama Baskara Yudha, Yan Solihin, and
Huiyang Zhou. 2021. Analyzing Secure Memory Architecture for
GPUs. In 2021 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 59–69. https://doi.org/10.1109/

ISPASS51385.2021.00017
[27] Shougang Yuan, Yan Solihin, and Huiyang Zhou. 2021. PSSM: Achiev-

ing Secure Memory for GPUs with Partitioned and Sectored Security
Metadata. In Proceedings of the ACM International Conference on Super-
computing (Virtual Event, USA) (ICS ’21). Association for Computing
Machinery, New York, NY, USA, 139–151. https://doi.org/10.1145/
3447818.3460374

[28] ArdhiWiratama Baskara Yudha, Reza Pulungan, Henry Hoffmann, and
Yan Solihin. 2020. A Simple Cache Coherence Scheme for Integrated
CPU-GPU Systems. In 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218664

https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1109/ISPASS51385.2021.00017
https://doi.org/10.1109/ISPASS51385.2021.00017
https://doi.org/10.1145/3447818.3460374
https://doi.org/10.1145/3447818.3460374
https://doi.org/10.1109/DAC18072.2020.9218664

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 GPU Architecture and Unified Memory
	2.2 Host-side TEE
	2.3 Related Work

	3 Threat and Trust Model, Scope of Work
	4 The Design of LITE
	4.1 Rationale and Overview
	4.2 Encryption APIs
	4.3 AES Encryption and Address as the Tweak
	4.4 Kernel Code Adaptation
	4.5 Hardware Support
	4.6 Code Optimizations

	5 Methodology
	6 Evaluation
	6.1 LITE Performance Overhead
	6.2 Benefit of Partial Encryption on LITE
	6.3 Performance of Software Implementation of AES
	6.4 Performance Comparison between LITE and PSSM

	7 Conclusion
	8 Acknowledgments
	References

